
Internet of Things 21 (2023) 100670

A
2

R

E
i
N
a

U
b

c

A

K
O
E
I
S
I

1

W
S
t
a
m

l

c

h
R

Contents lists available at ScienceDirect

Internet of Things

journal homepage: www.elsevier.com/locate/iot

esearch article

nergy consumption of on-device machine learning models for IoT
ntrusion detection
azli Tekin a,b,∗, Abbas Acar a, Ahmet Aris a, A. Selcuk Uluagac a, Vehbi Cagri Gungor c

Cyber-Physical Systems Security Lab, Department of Electrical and Computer Engineering, Florida International
niversity, Miami, FL 33174, USA
Department of Software Engineering, Erciyes University, 38280, Kayseri, Turkey
Department of Computer Engineering, Abdullah Gul University, 38080 Kayseri, Turkey

R T I C L E I N F O

eywords:
n-device machine learning
nergy consumption
ntrusion detection
mart home
oT

A B S T R A C T

Recently, Smart Home Systems (SHSs) have gained enormous popularity with the rapid
development of the Internet of Things (IoT) technologies. Besides offering many tangible
benefits, SHSs are vulnerable to attacks that lead to security and privacy concerns for SHS
users. Machine learning (ML)-based Intrusion Detection Systems (IDS) are proposed to address
such concerns. Conventionally, ML models are trained and tested on computationally powerful
platforms such as cloud services. Nevertheless, the data shared with the cloud is vulnerable to
privacy attacks and causes latency, which decreases the performance of real-time applications
like intrusion detection systems. Therefore, on-device ML models, in which the user data is kept
locally, have emerged as promising solutions to ensure the security and privacy of the data for
real-time applications. However, performing ML tasks requires high energy consumption. To
the best of our knowledge, no study has been conducted to analyze the energy consumption
of ML-based IDS. Therefore, in this paper, we perform a comparative analysis of on-device
ML algorithms in terms of energy consumption for IoT intrusion detection applications. For
a thorough analysis, we study the training and inference phases separately. For training, we
compare the cloud computing-based ML, edge computing-based ML, and IoT device-based ML
approaches. For the inference, we evaluate the TinyML approach to run the ML algorithms on
tiny IoT devices such as Micro Controller Units (MCUs). Comparative performance evaluations
show that deploying the Decision Tree (DT) algorithm on-device gives better results in terms
of training time, inference time, and power consumption.

. Introduction

ith the proliferation of the Internet of Things (IoT) technologies, Smart Home Systems (SHSs) have gained tremendous popularity.
HSs enable autonomous activities. For example, a smart thermostat that automatically regulates room temperature or a smart light
hat automatically turns on during a detected motion provide convenience to the users while providing energy savings [1]. Users
lso benefit from smart cameras and smart door locks with motion sensors to enhance their home security. In addition, smart health
onitoring systems assist patients who need constant supervision [2].

Albeit many advantages, SHSs suffer from various cyber attacks such as Denial of Service (DoS) or botnet attacks that may
ead to security and privacy concerns [3]. Such attacks can cause substantial damage to IoT services in SHSs. Additionally, SHSs

∗ Corresponding author at: Department of Software Engineering, Erciyes University, 38280, Kayseri, Turkey.
E-mail addresses: nazlitekin@erciyes.edu.tr (N. Tekin), aacar001@fiu.edu (A. Acar), aaris@fiu.edu (A. Aris), suluagac@fiu.edu (A.S. Uluagac),

agri.gungor@agu.edu.tr (V.C. Gungor).
vailable online 19 December 2022
542-6605/© 2022 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.iot.2022.100670
eceived 7 November 2022; Received in revised form 8 December 2022; Accepted 11 December 2022

https://www.elsevier.com/locate/iot
http://www.elsevier.com/locate/iot
mailto:nazlitekin@erciyes.edu.tr
mailto:aacar001@fiu.edu
mailto:aaris@fiu.edu
mailto:suluagac@fiu.edu
mailto:cagri.gungor@agu.edu.tr
https://doi.org/10.1016/j.iot.2022.100670
http://crossmark.crossref.org/dialog/?doi=10.1016/j.iot.2022.100670&domain=pdf
https://doi.org/10.1016/j.iot.2022.100670


Internet of Things 21 (2023) 100670N. Tekin et al.

M
i
i
t
a
t
o
d
n
r
l
t
D

d
b
s
r
t
d
a
t
e
i

d
m
r
p
r
c
a
a
b
v
a

C

O
b
m
p

include several IoT devices that periodically collect sensitive information such as user credentials, user behavior/preferences and
video records that can be manipulated/stolen/used for destructive activities by attackers [4]. Malicious activities may include system
disablement or personal data breach [5]. Therefore, intrusion detection systems for SHSs have become imperative to provide security
and privacy for the IoT devices deployed in SHSs and their users. Machine Learning (ML)-based intrusion detection is a promising
solution to address the security and privacy concern of SHSs.

The training phase of such an ML-based intrusion detection system can be deployed in three different ways. First, conventionally,
L-based IoT intrusion detection systems are deployed with the assistance of the cloud services, in which the ML models are trained

n the cloud due to its unlimited resources and massive storage capabilities. After the training, either the final model parameters or
nference results are transmitted back to the device for the intrusion detection application running on the device. This approach has
he advantage of cloud capabilities, but it also has drawbacks such as security and privacy concerns as well as long network delays
nd high energy consumption due to the data transmission. Second, edge computing is an alternative to cloud computing, in which
he data is kept local and processed at an edge device [6]. Accordingly, performing ML on edge devices close to the data source
r IoT device itself reduces storage usage in the cloud, high network bandwidth requirement, and latency. The latency drastically
ecreases as there is no data exchange between IoT devices and the cloud. However, the edge computing-based ML approach does
ot provide the highly configurable hardware opportunities and unlimited resources provided by cloud computing-based ML. Third,
ecent advancements in IoT devices have enabled bringing ML tasks on-device. On-device ML solutions have been proposed in the
iterature to meet real-time application needs [7]. It usually refers to learning/training on the IoT end devices. Additionally, similar
o edge computing, running ML models on an IoT end device provides data privacy since the data is not shared with other entities.
espite its advantages, ML tasks require huge computation power and massive data storage.

In addition to different training approaches, the inference phase of an ML-based IoT intrusion detection system can also be
eployed in two different ways. In the first method, the pre-trained model, which is trained using any of the methods above, can
e transmitted to the IoT end device without any conversion. This method can only be applied to programmable devices. In the
econd method, model conversion techniques like TinyML [8] can be applied to convert the ML model into the C code that can
un on resource-constrained IoT devices. Despite different approaches for distributing the computation and resource usage among
he application components, the energy consumption of ML algorithms remains a critical constraint for resource-constrained IoT
evices. On the other hand, energy consumption can also be critical for cloud services, as the increase in the dataset size can cause
n exponential increase in the energy consumed by the cloud service. Moreover, one can use a less energy-consuming algorithm if
he same accuracy can be achieved. An optimal on-device ML-based solution for IDS should achieve better accuracy as well as energy
fficiency. Because of these, a comparative evaluation of different on-device ML approaches for IoT intrusion detection applications
n terms of energy consumption is required.

To this end, in this work, we evaluate the energy consumption of on-device ML learning algorithms, in which we compare three
ifferent training and two different inference approaches. We measure energy consumption via both execution time and power
onitoring tool. Our results reveal some interesting findings: For example, we observed that training the Naive Bayes (NB) algorithm

equires much less time than all other algorithms in all computing platforms, thereby consuming less energy. However, the accuracy
erformance of NB is lower than others. On the other hand, Decision Tree (DT) and k-Nearest Neighbor (k-NN) training also require
elatively less time while providing the best accuracy together with Artificial Neural Network (ANN) and Random Forest (RF) in all
omputing platforms. Second, we found that while the cloud provides a significant decrease in execution time of the training for
lgorithms that support multiple cores, such as RF, it does not have the same impact on the other algorithms. Third, we found that
clustering algorithm k-NN spends much longer time in the inference than the training, so the inference in an IoT device would not
e ideal for the computation even the training phase was performed on the cloud or edge. Finally, our energy consumption analysis
ia power monitoring tool verified that the DT algorithm provide the same accuracy while consuming much less power than other
lgorithms.

ontributions: Our contributions are listed as follows:

• We investigate the energy consumption of on-device ML models for IoT intrusion detection applications that can be deployed
in SHSs. Particularly, for training, we compare cloud computing-based ML, edge computing-based ML, and IoT device-based
ML approaches. On the other hand, we compare conventional and TinyML approaches for the inference phase.

• We implement each approach (three training + two inference approaches) and empirically evaluate the results.
• We show two different techniques to evaluate the energy consumption of ML algorithms.
• Our experiments revealed interesting findings. Our findings can be used as a guide while deploying a real-world ML-based IoT

intrusion detection system.

rganization: The rest of the paper is organized as follows. Section 2 presents a motivational example. Section 3 provides
ackground information on ML algorithms. Section 4 defines the on-device ML approaches for IDS. Section 5 presents our experiment
ethodology. Section 6 presents our results. Section 7 provides a summary of the previous works. Finally, Section 8 concludes the
2

aper.



Internet of Things 21 (2023) 100670N. Tekin et al.
Fig. 1. Example Intrusion Detection System (IDS) for SHSs.

2. Motivational example

Real-time IoT Intrusion Detection System: SHSs consist of various IoT devices that may be exposed to a wide range of attacks
such as denial of service (DoS) or botnet attacks. An example of such an attack is the Mirai botnet, which infected over 600k IoT
devices [9]. These attacks generally are used to target high-profile networks, but they can also be used to target local IoT users. For
example, ransomware [10] or cryptojacking [11] are some examples of IoT users/devices being the victim of such attacks. On the
other hand, the IoT attack surface also includes the network attacks such as eavesdropping or spoofing [12]. With these attacks, the
attacker can learn the daily routine of the IoT device user and can cause attacks like physical harm, burglary, or hardware damage.
Moreover, the attackers can also target low-security IoT devices in SHSs. For example, these attacks can disable the smart lock or
camera if they access the user’s smartphone apps [13]. Therefore, real-time IoT intrusion detection is very critical. Fig. 1 illustrates
an example of IDS. On-device ML models enable real-time IDS. However, running ML models on IoT devices is challenging due to
their limited computation power and memory. On the other hand, most IoT devices are battery-powered, and the batteries deplete
while performing energy-intensive ML algorithms. Therefore, in this paper, we analyze the on-device ML-based IDS for SHSs in
terms of energy consumption.

3. Background

An ML algorithm consists of two phases: training and inference. Training refers to building a model using ML algorithms and training
datasets, whereas inference refers to predicting a new data instance using a pre-trained ML model. This section gives background
information about the ML algorithms we used in this study.

Logistic Regression: Logistic Regression (LR) is a widely used supervised ML technique for classification predictions. LR models use
the sigmoid function to provide binary classification. The probability of binary classification output based on the sigmoid function
is given by

𝑃 (𝑥) = 1 + 1
𝑒−(𝑎𝑥+𝑏)

, (1)

where 𝑥 is an input, and a and b are the slope and intercept of the learning model, respectively.
k-Nearest Neighbor: K-Nearest Neighbor (k-NN) is a non-parametric supervised ML algorithm for both classification and regression.

The k-NN algorithm does not generate a mathematical model for training. Instead, it calculates the distance between input data and
instances of training data to identify the 𝑘 number of nearest neighbors. Each training data votes for a classification label and the
input data are classified with the most voted label among its nearest neighbors.

Decision Tree: Decision Tree (DT) is another non-parametric supervised ML algorithm used for both classification and regression.
DT consists of internal nodes that indicate feature data, branches that indicate decision rules, and leaf nodes that indicate predicted
value. The algorithm creates a set of if-then-else decision rules to perform classification. There are various DT algorithms such as
Iterative Dichotomiser 3 (ID3), C4.5, C5.0, and Classification and Regression Trees (CART). In this paper, we use CART from the
scikit-learn library [14] to build a tree for anomaly detection.

Random Forest: The Random Forest (RF) algorithm performs classifications by aggregating many decision trees to reduce
overfitting. The decision trees are trained in parallel by using various random subsets of features in the dataset. In the end, the
prediction is performed according to the majority decisions of the trees.

Naive Bayes: Naive Bayes (NB) is a supervised ML model based on the Bayes theorem [15]. The model calculates the probability
that a new data instance belongs to a particular class and performs classification by selecting the highest probability. Therefore, the
classification model is given by [15]:

𝐶(𝑑) = argmax 𝑝(𝑐)
𝑛
∏

𝑖=1
𝑝(𝑑𝑖|𝑐), (2)

where 𝑑 is the instance data, 𝑑𝑖 is the instance attribute, 𝑛 is the number of attributes, and 𝑐 is the class type. Gaussian NB is the type
of NB that estimates the mean and standard deviation of the data, unlike the other functions that calculate the data distribution.
3



Internet of Things 21 (2023) 100670N. Tekin et al.
Fig. 2. Architecture of on-device ML deployment models.

Artificial Neural Networks: An artificial Neural Network (ANN) consists of input layers, one or more hidden layers, and an output
layer. Input layers transfer the information through hidden layers that adjust and process the information. As the information goes
through hidden layers, the network learns about the information and provides data to the output layer. Since Multilayer Perception
(MLP) is the most common type of ANN, we use an MLP classifier from the scikit-learn library [14] in this study.

4. On-device machine learning deployment approaches

This section explains the different approaches that can be used to deploy on-device ML models for training and inference. The
training phase of the ML algorithm can be performed on the cloud, edge device, or IoT device. Similarly, the inference phase can be
performed on-device by utilizing two different methods that depend on the programmability of the end device. Provided that the
end device allows running ML algorithm on the device (e.g., Raspberry Pi), the model can be directly deployed on the end device to
perform inference. However, if the device is not programmable (e.g., Azure IoT Kit), a model conversion technique such as TinyML
can be applied to transform the model into a machine code that can run on the end device. In the following sections, we explain
the details of these approaches.

4.1. Training approaches

As shown in Fig. 2, the training phase of an ML-based intrusion detection application can be performed on the cloud, edge devices,
or IoT devices. Then, the pre-trained model can be shared with the end device for on-device inference.

4.1.1. Cloud computing-based machine learning
Cloud computing is a service that provides computing resources such as memory, servers, databases, and networks through the
Internet. Cloud services can be categorized into three main groups: Software as a Service (SaaS), Platform as a Service (PaaS),
and Infrastructure as a Service (IaaS). Basically, SaaS is the software delivery method for online access instead of installing the
software. PaaS delivers platform resources such as development frameworks and operating system support. IaaS offers resources
such as processing, storage, and network.

Cloud computing has ample storage and high processing power capabilities that can meet the increased computational needs of
ML tasks. Big technology companies offer cloud-delivering services to support the high storage and computational power demand
of ML-based IoT applications. For instance, Amazon Web Services (AWS), Google Cloud, and Microsoft Azure are major cloud
computing platforms for performing ML models on the cloud.
4



Internet of Things 21 (2023) 100670N. Tekin et al.
4.1.2. Edge computing-based machine learning
Edge computing is an emerging approach that brings computation and data storage closer to IoT devices and sensors (i.e., data
source) [6]. In addition to data processing and storage, the edge can provide delivery service between the cloud and the end-user.
Generally, an edge device is defined as a computing platform with limited resources. It can be a powerful local server, computer,
or even a small IoT device such as Raspberry Pi or a smartphone. Distributed edge devices such as gateways, PCs, IoT hubs, and
smartphones provide data processing and storage services for a group of IoT devices. The advantages include supporting delay-
sensitive applications by performing computation on edge devices close to the data generated by many IoT devices. Additionally,
unlike cloud computing, edge computing does not require high network bandwidth to transmit a vast amount of data. Moreover,
edge computing-based ML prevents data leakage by keeping the data locally. On the other hand, it reduces the energy cost of data
transmissions to the cloud. Therefore, edge computing has the potential to tackle latency, high bandwidth requirements, and privacy
challenges.

4.1.3. IoT device-based machine learning
IoT devices are resource-limited, so they have low computational power and memory. Generally, commercial-off-the-shelf IoT
devices are not programmable. Therefore, performing ML algorithms on these devices is very challenging. In addition, they come
with two power source options: wired or battery-powered. Battery-powered ones can quickly deplete their resources while training
the ML model. Moreover, development boards such as Raspberry Pi are generally referred to as IoT prototyping devices [16], and
they can run ML models as they are small computer systems.

4.2. Inference approaches

The inference part of an on-device ML algorithm can be in two ways: Conventional or TinyML. Below, we explain the details of
these two methods.

4.2.1. Conventional
Conventionally, the pre-trained model is shared with the local devices in plain formats. This would work for programmable IoT
devices such as Raspberry Pi as they are small size computers and allow to run the ML algorithm. However, this approach cannot
be extended to commercial-of-the-shelf IoT devices, smartphones, or boards like Arduino.

4.2.2. TinyML
Tiny Machine Learning (TinyML) is an approach that brings ML inference to tiny IoT devices such as Micro Controller Units (MCUs).
For this, TinyML converts ML models into C code. To this end, many TinyML tools and libraries have been developed in the
industry for model conversion such as TensorFlow Lite by Google [17], Embedded Learning Library (ELL) by Microsoft [18], ARM-
NN [19], and Common Microcontroller Software Interface Standard NN (CMSIS-NN) by ARM [20]. Additionally, various open-source
TinyML frameworks such as EmbML [21], emlearn [22], and MicroMLGen [23] are proposed in the literature. In this work, we use
MicroMLGen library [23] since it can port a wide range of supervised learning algorithms such as LR, RF, DT and NB.

5. Experiment methodology

5.1. Dataset

In this work, we use a dataset of IoT network traffic captured in a Distributed Smart Space Orchestration System (DS2OS)
environment [24]. The dataset covers 4 different sites: a house with 6 rooms, a 2-rooms flat, a 3-rooms flat, and an office with
10 rooms. Each site includes 7 different service types that manage the different IoT devices such as light controllers, door locks,
thermostats, washing machines, batteries, motion sensors, and smartphone. The dataset includes 357 953 samples in total.

5.1.1. Types of attacks in the dataset
The DS2OS dataset was created to detect the anomalies that are caused by seven different types of attacks: DoS, network scan,
malicious control, malicious operation, spying, data probing, and wrong setup. A DoS attack makes all the resources exhausted with
the continuous request while a network scan anomaly occurs when someone pretends to a client to access the network. Additionally,
a malicious control anomaly occurs when someone out of the network controls the network traffic and malicious operation transpires
when the attackers alter the original activities. Moreover, the spying anomaly takes place when someone tracks the activities leaking
the crucial information and the data type probing occurs when the transmitted data is changed. Finally, the wrong setup anomaly
occurs when someone attempt to change the setup or the user does not configure correctly.

5.1.2. Preprocessing the dataset
The DS2OS dataset consists of categorical data that have numerical and nominal values. In total, there exist 13 features:
sourceID, sourceAddress, sourceType, sourceLocation, destinationServiceAddress, destinationServiceType, destinationLocation, ac-
cessedNodeAddress, accessedNodeType, operation, value, timestamp and normality. We removed the timestamp column since it has
minimal correlation with dependent variable ‘‘normality’’. There were some missing data in ‘‘accessedNodeType’’ feature and we
filled them with the mode of this feature. Similarly, we filled the missing data in the ‘‘value’’ feature with 0 and unexpected string
data such as ‘‘false’’, ‘‘true’’, ‘‘none’’ and ‘‘twenty’’ with 0, 1, 0 and 20, respectively. After feature selection and filling the missing
5

data, we converted categorical data into numeric form by using the label encoding.



Internet of Things 21 (2023) 100670N. Tekin et al.
Table 1
Parameters used for each ML algorithm.
ML Algorithm Parameters

LR solver=‘liblinear’
k-NN n_jobs=1, n_neighbors = 5, metric=‘Minkowski’, p = 2
DT criterion=‘gini’, max_depth=None
RF n_jobs=1, criterion=‘gini’, max_depth=None
NB var_smoothing=1e−9
ANN activation=‘relu’, solver=‘adam’ , hidden_layer_sizes = (100,)

Table 2
Dataset accuracy results.

ML Algorithm Accuracy Precision Recall F1-score

LR 0.98 0.98 0.90 0.94
k-NN 0.99 0.99 0.96 0.98
DT 0.99 0.99 0.96 0.98
RF 0.99 0.99 0.96 0.98
NB 0.97 0.99 0.81 0.89
ANN 0.99 0.98 0.94 0.97

Table 3
Device specifications used in the experiments.
Approach Device Hardware Software

Cloud Azure Cloud Intel Xeon 16 core CPU 32 GB RAM Scikit-learn
Edge Dell Laptop Intel(R) Core(TM) i7-9750H CPU 16 GB RAM Scikit-learn
IoT Raspberry Pi 4 Quad core Cortex-A72 64-bit SoC 8 GB RAM Scikit-learn
IoT end device Azure IoT Kit STMicroelectronics STM32F412 256 KB RAM MicroMLGen

5.1.3. Dataset accuracy
As noted, we implemented all ML algorithms using the popular Python scikit-learn library [14]. The solver parameter of the LR
algorithm was set to liblinear and other parameters remained as default. NB was used with the default parameters in which
likelihood probability was based on Gaussian. DT algorithm was also implemented with the default parameters (i.e., criterion =
gini, and max_depth = None). In k-NN, we set the n_jobs parameter to −1 and kept other parameters as default (i.e., n_neighbors
= 5, Minkowski distance with p = 2). Similarly, the n_jobs parameter of the RF algorithm was set to −1 to utilize the maximum
number of cores available in the device. Finally, ANN was used with default parameters (i.e., activation = relu, solver = adam,
hidden_layer_sizes = (100,)). Parameters used in ML algorithms are given in Table 1.

As a baseline, we conducted several experiments to measure the accuracy of the dataset using different ML algorithms such as LR,
k-NN, DT, RF, NB, and ANN. We used the metrics such as accuracy, precision, recall, and F1-score. The results of the experiment
are given in Table 2. The results show that k-NN, DT, RF, and ANN outperform the LR and NB in terms of accuracy with 99%.
Additionally, k-NN, DT, RF, and NB achieve 99% precision value, whereas LR and ANN achieve 98%. k-NN, DT, and RF attain 96%
recall whereas ANN, LR, and NB attain 94%, 90%, and 81%, respectively. Finally, the highest F1-score is achieved by k-NN, DT,
and RF, which is 98%.

5.2. Devices used

As a cloud service, we leveraged the Azure cloud computing instance that had Intel 16 cores CPU with 32 GB RAM. Additionally,
we defined the edge device as a device with limited memory and computation power whereas IoT device as a device with very low
memory and computation capacity. Accordingly, we used Dell computer that had Intel(R) Core(TM) i7-9750H CPU processor with
16 GB RAM as an edge, and Raspberry Pi 4 Model B with 8 GB RAM as an IoT device. Finally, we used ESP32 Azure IoT Kit as an
end device to evaluate inference time thus energy consumption on this device. Table 3 shows the devices, their specifications, and
the software used for the experiments for each approach in our architecture in Fig. 2.

5.3. Estimating the energy consumption of ML algorithms

We utilize two methods to estimate the energy consumption of ML algorithms: (1) Execution Time, and (2) Power Monitoring
Tool.

5.3.1. Execution time
The energy consumption for processing ML algorithm can be computed using the following equation [25]:
6

𝐸𝑝𝑟𝑜𝑐 = 𝑃𝑝𝑟𝑜𝑐 ∗ 𝑡, (3)



Internet of Things 21 (2023) 100670N. Tekin et al.

a
p
o

5
P
a
s
s

6

T
t
A
b
d
c

6

A
c
t
(

a
t
w
a
c
b
c
a

Table 4
Time consumed for training (s) of different ML model trained with different dataset size on cloud (Azure Cloud), edge (Dell
Laptop) and IoT device (Raspberry Pi).

Cloud (s) Edge (s) IoT (s)
Da

ta
siz

e
=

35
K LR 0.15 0.12 0.71

k-NN 0.04 0.08 0.13
DT 0.05 0.04 0.19
RF 0.29 0.25 2.82
NB 0.01 0.01 0.04
ANN 2.46 1.86 8.09

Da
ta

siz
e
=

35
7K LR 1.70 1.56 6.18

k-NN 0.5 1.11 2.26
DT 0.54 0.48 3.13
RF 2.29 9.83 47.26
NB 0.05 0.07 0.32
ANN 331.50 171.15 419.32

Da
ta

siz
e
=

3.
5M LR 19.06 16.54 60.18

k-NN 8.16 17.61 35.25
DT 8.98 17.46 40.86
RF 31.75 166.83 624.43
NB 0.67 0.69 3.27
ANN 1847.94 893.43 2109.90

where 𝑃𝑝𝑟𝑜𝑐 is processing power and t is the time spent for processing. In this approach, the power consumption of the device is
ssumed to be constant over time i.e., the power consumption of the time spent for processing (i.e., execution time) is directly
roportional to the energy consumption [26]. Many studies in the literature used this approach to estimate the energy consumption
f an ML-based application [27,28].

.3.2. Power monitoring tool
ower monitoring tools enable real-time processor power estimation by providing applications, drivers, and libraries. The desktop
nd server providers have qualified their systems to measure the energy consumption of the hardware components with energy
ensors. For instance, Intel introduces the Intel Power Gadget [29] software tool that uses Running Average Power Limit (RAPL)
ensors to calculate the energy consumption of a block of code.

. Analysis results

his section provides energy consumption analysis of on-device ML deployment approaches. The analysis was performed during
he training and inference part separately. Furthermore, we compared the different ML algorithms (i.e., LR, k-NN, DT, RF, NB, and
NN) and three different data sizes. We created small, medium, and large dataset sizes by downsampling by 0.1 and oversampling
y 10 of the original dataset. In the end, we obtained the dataset with 35K, 357K, and 3.5M samples to investigate the impact of
ataset size on the consumed energy for various ML algorithms used for IDS. We also used two techniques to estimate the power
onsumption. In the following subsections, we present our analysis results using the execution time and power monitoring tool.

.1. Energy consumption analysis via execution time

s mentioned previously in Section 5.3.1, the execution time of running the ML algorithm is directly proportional to the energy
onsumption. We examined the execution times of ML algorithms by taking average results of 30 runs with different seeds for
hree dataset sizes (i.e., 35K, 357K, 3.5M). Furthermore, we evaluated the execution times on different computational platforms
i.e., cloud, edge, and IoT device) as given in Table 3.

Table 4 shows the training time(s) of all ML algorithms using dataset sizes of 35K, 357K, and 3M on Azure Cloud, Dell Laptop,
nd Raspberry Pi, representing the cloud, edge, and IoT device, respectively. Our first observation is that as the dataset size increases,
he training times of all ML algorithms in all computing platforms increase. Notably, the training time of ANN increases drastically
ith the dataset size increment. In addition, we observed that the NB training requires much less time than all other algorithms in
ll computing platforms, thereby consuming less energy. In addition, the RF algorithm requires significantly less training time when
omputed in the cloud and edge than the IoT device because the algorithm can run on multicore processors, which are supported
y the cloud and edge devices. Therefore, training the RF algorithm on an IoT device is not energy-efficient. Moreover, since the
omputational power of Raspberry Pi is limited compared to the cloud and edge, the execution times of training are the highest for
ll ML algorithms.

Table 5 demonstrates the inference time (μs) for all ML algorithms on Azure Cloud, Dell Laptop, and Raspberry Pi. We observed
that the inference time of the k-NN algorithm increases significantly as the dataset size increases. The reason for that, the algorithms
calculate the distance between the new data instance and each data sample in the dataset. In addition, the inference while using the
k-NN algorithm takes a very long time on all computing platforms. Thus, it is not an energy-friendly solution for battery-powered
7



Internet of Things 21 (2023) 100670N. Tekin et al.
Table 5
Time consumed for inference time (μs) of different ml model trained with different dataset size on cloud (Azure Cloud), edge
(Dell Laptop) and IoT device (Raspberry Pi).

Cloud (μs) Edge (μs) IoT (μs).
Da

ta
siz

e
=

35
K LR 0.10 0.20 0.69

k-NN 34.10 27.18 121.97
DT 0.11 0.10 0.51
RF 4.00 2.86 18.19
NB 0.14 0.14 2.44
ANN 0.50 1.00 6.54

Da
ta

siz
e
=

35
7K LR 0.05 0.07 0.35

k-NN 81.40 57.78 298.50
DT 0.07 0.09 0.33
RF 0.80 1.53 10.11
NB 0.10 0.30 2.07
ANN 1.35 3.07 5.37

Da
ta

siz
e
=

3.
5M LR 0.04 0.04 0.04

k-NN 513.31 530.14 2078.01
DT 0.07 0.09 0.34
RF 0.62 1.88 10.10
NB 0.19 0.34 2.13
ANN 1.28 2.97 5.58

Table 6
Execution times (inference time (μs)) of different ML algorithms on IoT end device.
Azure IoT KiT

Inference (μs)

LR DT RF NB

73.06 65.06 2088 602

IoT devices to enable on-device ML intrusion detection applications. Furthermore, we converted the pre-trained ML model at the
edge device by utilizing the TinyML approach (i.e., using the microMLGen library). Later, we deployed the converted ML model
to the IoT device (i.e., Azure IoT Kit) to perform inference on-device. The inference time is given in Table 6. DT obtains the best
result, which performs the inference in 65.06 μs. Again, it is because the DT algorithm does not perform multiplication operations.

6.2. Energy consumption analysis via power monitoring tool

In this subsection, we provide an evaluation of energy consumption in Joules and power estimation in Watt while training the
ML algorithms at the edge (i.e., Dell Laptop). We leverage the Intel Power Gadget software tool [29] for evaluations. Table 7 depicts
the energy consumption (J) and average power consumption (W) of different ML algorithms trained with different dataset sizes.
We observed a similar trend in results as obtained with execution times in the previous subsection. NB achieves the least energy
consumption in training for all dataset sizes (i.e., 2.44 J, 3.73 J, 15.16 J for 35K, 357K, and 3.5M, respectively). It is followed by
DT, k-NN, and LR, respectively. RF consumes relatively higher energy than DT since the algorithm processes several decision trees
to train the model. Additionally, it is clearly seen that ANN consumes the highest energy in training. Therefore, ANN is not an
energy-efficient algorithm for training it on-device, and it also may cause significant energy consumption for cloud platforms in the
case of huge datasets. Table 7 also shows the total energy consumption to infer the test dataset. k-NN consumes the highest energy
during the inference since it is a lazy learner and computationally intensive in the inference part. ANN consumes considerably more
power than other algorithms during training since it requires higher computation that includes many multiplication and addition
operations. On the contrary, the average power usage of DT and RF (i.e., tree-based algorithms) is the lowest because they perform
computation without any multiplication operations. On the other hand, power estimation is inconsistent when computation takes a
short time, such as less than a few seconds. That is why we observe relatively higher power consumption during inference.

6.3. Computational complexity analysis

In this subsection, we analyze the impact of the computational complexity of the algorithms on power consumption. Table 8
illustrates the training and inference computational complexity of ML algorithms based on sckit-learn implementations [7,14]. Our
overall results show that the higher computational complexity of the ML algorithms results in more power consumption. Moreover,
the computational complexity is proportional with respect to the number of training samples and input features. NB is better in
terms of training complexity compared to others. The training complexity of LR regression increases exponentially as the number
of input features increases. In addition, DT has the least computational complexity in inference. Besides the number of training
samples and input features, the number of coefficients and hidden layers affect the computational complexity in ANN. A network
having a large number of coefficients and hidden layers require more computation to train a model. Therefore, as the number of
8



Internet of Things 21 (2023) 100670N. Tekin et al.

c
t

6

A
d
R
d
t
e
b
m

7

I
R
e
s

C
a
A
a

Table 7
Energy Consumption (J) and Average Power Consumption (W) of different ml model trained with different dataset size on edge
(Dell Laptop).

Training Inference

Energy (J) Power (W) Energy (J) Power (W)
Da

ta
siz

e
=

35
K LR 4.53 32 2.36 73

k-NN 3.52 39 11.40 36
DT 3.1 42 1.68 51
RF 20.68 63 4.78 51
NB 2.44 48 2.19 50
ANN 103.17 52 2.81 64

Da
ta

siz
e
=

35
7K LR 37.86 26 1.25 24

k-NN 29.21 28 338.94 53
DT 14.97 28 1.99 52
RF 173.68 16 16.16 71
NB 3.73 41 2.85 48
ANN 9786.03 37 20.37 60

Da
ta

siz
e
=

3.
5M LR 361.07 23 4.73 53

k-NN 322.72 19 14 200 24
DT 178.73 11 4.29 35
RF 1967.51 11 130.81 63
NB 15.16 25 8.41 27
ANN 22 937.68 36 157.14 55

Table 8
Computational complexity of ML algorithms.

ML Algorithm Training Inference

LR O(𝑚𝑛2 + 𝑚3) O(𝑛)
k-NN – O(𝑚𝑛)
DT O(𝑚𝑛𝑙𝑜𝑔(𝑚)) O(𝑙𝑜𝑔(𝑚))
RF O(𝑁𝑡𝑚𝑛𝑙𝑜𝑔(𝑚)) O(𝑁𝑡𝑙𝑜𝑔(𝑚))
NB O(𝑚𝑛 + 𝑛𝑐) O(𝑛𝑐)
ANN O(𝑚𝑛ℎ𝑘𝑖) O(𝑛)

m:number of training samples, n: number of input features, 𝑁𝑡: number of tree, 𝑐: number of
classes, h: number of coefficients, k: number of hidden layers, i: number of iterations.

oefficients and hidden layers increases, the power consumption increases because of the higher computational complexity. Since
raining time is a critical factor for on-device ML, a single hidden layer should be used if the accuracy of the model is satisfied.

.4. Comparative analysis

dditionally, we comparatively discuss the results of on-device ML in terms of accuracy, energy consumption, and latency. Fig. 3
emonstrates the comparative analysis for the edge device with the 3.5M dataset size. Among all ML algorithms, k-NN, DT, and
F give the best performance results in terms of accuracy, precision, recall, and F1-Score. However, k-NN consumes higher energy
uring inference which is not preferable for IoT devices. DT consumes less energy during the training and inference part than RF due
o the increasing number of trees in the RF algorithm. Therefore, the DT algorithm provides better accuracy performance and energy
fficiency. On the other hand, the response time of the ML models are critical for real-time IDS. In conventional cloud computing-
ased ML models, the communication and computation latency affect the application response time. Therefore, performing ML
odels on-device becomes imperative.

. Related work

n the last decade, ML-based IDS for IoT applications have attracted significant attention due to their high accuracy and efficiency.
ecent surveys [30–34] provide an overview of ML-based intrusion detection solutions for IoT applications. In [35–37], the authors
xamine the performance of ML algorithms on IDS for IoT applications and discuss how to choose ML algorithms according to
pecific application needs.

loud Computing-based ML. Some of the studies in the literature particularly focused on cloud-based ML models for IDS. Morfino
nd Rampone [38] investigate the performance of supervised ML algorithms in terms of accuracy and training times by using
pache Spark in the cloud. They propose an approach that performs cloud training and deploys the model on IoT devices. Karende
nd Joshi [39] develop an attack detection system by using BigQuery ML (BQML) model from Google cloud. Anthi et al. [40]
9



Internet of Things 21 (2023) 100670N. Tekin et al.
Fig. 3. Representation of comparative analysis for edge device.

present IDS to detect wireless network attacks such as DoS, replay, man-in-the-middle, and reconnaissance and classify the attack
type. Further, they classify the type of IoT devices located in the network.

Edge Computing-based ML. As the IoT devices, their applications, and their generated data exponentially increase, high com-
putation demand and network congestion occur in the cloud. As a result, high latency becomes inevitable for cloud computing
systems. Edge computing has emerged to meet low latency requirements and reduce network congestion [41]. A recent survey [42]
demonstrates the edge-based IoT architecture and reviews research efforts on edge-based solutions for IoT security such as IDS and
privacy-preserving systems. Kumar et al. [43] develop edge ML architecture for detecting intrusions in IP-based IoT deployments to
minimize latency. They evaluate XGBoost, Support Vector Machine (SVM), and Logistic Regression (LR) algorithms on edge devices
(i.e., Raspberry Pi3) by using Azure edge porting. Jian et al. [44] develop an intrusion prevention model based on edge computing
to detect malicious activities in real-time for smart homes. They evaluate the decision tree J48 algorithm on Raspberry Pi as an edge
device. Eskandari et al. [45] design a platform-independent anomaly-based IDS to execute it on resource-constraint edge devices.
They implement two one-class classification algorithms such as isolation forest and local outlier factor to detect HTTP and SSH brute
force, port scanning, and SYN flood attack. Basically, the isolation forest separates the anomaly instances by exploiting different
characteristics of these instances. The local outlier factor is based on density that calculates density by measuring distances between
data instances.

Hybrid ML Approaches. Hybrid systems (i.e., edge–cloud) have been proposed to take advantage of both cloud and edge computing.
Alghamdi and Bellaiche [46] present a combined ML model for IDS based on both edge and cloud to address the limitation of
the cloud such as network bandwidth and delay. Their proposed model reduces the training time while improving the accuracy.
Similarly, Cassales et al. [47] leverage both edge and cloud computing advantages. Since the classification is performed at the
edge, the latency is reduced. On the contrary, the ML model is improved and updated on the cloud. In addition, Roy et al. [48]
develop fog–cloud infrastructure for intrusion detection systems to lower delay and provide energy efficiency. Wang et al. [49]
analyze computational performance of Deep Neural Network (DNN) models for image recognition on both cloud computing platforms
(i.e., Google Colab) and edge computing platforms (i.e., Intel NCS2).

Tiny ML. TinyML is an innovative approach that enables running inference on IoT end devices (i.e., Micro-controller Units (MCUs)).
Ren et al. [50] propose TinyML with online learning (TinyOL) that empowers the incremental training of the pre-trained ML model
on resource-constraint IoT devices (e.g., Arduino Nano 33 BLE board). They exploit the TinyOL to execute a pre-trained neural
network model for anomaly detection in industrial IoT.

Our differences. To the best of our knowledge, no study in the literature provides a comparative analysis of energy consumption
of on-device ML deployment approaches for IDS in SHSs. In this work, we investigate the energy efficiency of the most common
ML algorithms such as LR, k-NN, DT, RF, NB, and ANN used in IDS on SHSs. In addition, we compare the ML-based IDS performed
on cloud, edge, and IoT end devices in terms of energy consumption.

8. Conclusions

In conclusion, on-device ML models for IDS have gained tremendous popularity due to their promising solutions to real-time response
and privacy-preserving features. However, performing energy-intensive ML tasks on-device is a critical constraint that needs to be
10



Internet of Things 21 (2023) 100670N. Tekin et al.
investigated. In this work, we evaluated the different deployment approaches to ML-based intrusion detection applications in terms
of energy consumption. Particularly, we compared various on-device ML deployment approaches such as cloud computing-based,
edge computing-based, and IoT device-based for training. Additionally, we examined the conventional and tinyML approaches used
to perform inference on IoT end devices.

Our main conclusions are listed as follows:

• NB algorithm requires less training time than all of the other ML algorithms for all platforms and dataset sizes. However, we
also found that the accuracy of NB (i.e., 97%) is also less than other algorithms. Therefore, one should consider a trade-off
between accuracy and execution time while deploying a real-life system.

• The energy consumption of k-NN during inference rapidly increases as the dataset size increases (i.e., 11.40 J, 338.94 J, and
14 200 J for 35K, 357K, and 3.5M, respectively). Therefore, it may not be ideal especially for the IoT devices.

• The power estimation results showed that DT and RF consume less power (i.e., 11 W) during training with the 3.5M dataset
size as well as achieve better accuracy (i.e., 99%). However, the execution time of RF for training and inference is higher than
DT. Therefore, using RF may not be preferable due to higher energy consumption unless it does not provide better accuracy.

• The cloud computing-based ML that offers multiple cores is efficient in terms of execution time for the algorithms which can
run on multicore in parallel such as RF, but it does not decrease the execution time of ANN so much, which is not supporting
multicore processing.

• DT gives the best performance in terms of inference time (i.e., 65.06 μs) when performed in Azure IoT KiT.

Besides the computational energy, communication energy should be considered in both cloud computing-based ML and edge
computing-based ML approaches. In both approaches, data needs to be transmitted by IoT devices to a central server (i.e., cloud
or edge devices) to train the model. Especially, in real-time applications such as intrusion detection, continuous transmission of
large volumes of data causes energy consumption. On the other hand, communication cost arises when IoT devices on the network
need to exchange parameters/data while running ML distributedly on-device. Therefore, the transmission power consumption of
IoT devices is an important factor to consider in the design and implementation of machine learning systems, and further research
into this area could help to improve the energy efficiency of these systems. Our results can be used as a guide while deploying a
real-world IoT intrusion detection system and further point to a research direction (e.g., the energy consumption of on-device ML
models) that needs improvement.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was partially supported by the U.S. National Science Foundation (Award: NSF-CAREER CNS-1453647) and Microsoft
Research, USA Grant. Dr. N. Tekin was supported by Scientific and Technological Research Council of Turkey (TUBITAK-BIDEB)
2219—International Postdoctoral Research Scholarship Program. The views expressed are those of the authors only, not of the
funding agencies.

References

[1] H. Lin, N.W. Bergmann, IoT privacy and security challenges for smart home environments, Information 7 (3) (2016) 44.
[2] V. Tamilselvi, S. Sribalaji, P. Vigneshwaran, P. Vinu, J. GeethaRamani, IoT based health monitoring system, in: 6th International Conference on Advanced

Computing and Communication Systems, ICACCS, IEEE, 2020, pp. 386–389.
[3] A.K. Sikder, G. Petracca, H. Aksu, T. Jaeger, A.S. Uluagac, A survey on sensor-based threats and attacks to smart devices and applications, Commun. Surv.

Tutorials 23 (2) (2021) 1125–1159.
[4] A.K. Sikder, L. Babun, H. Aksu, A.S. Uluagac, Aegis: A context-aware security framework for smart home systems, in: Proceedings of the 35th Annual

Computer Security Applications Conference, ACSAC, ACM, 2019, pp. 28–41.
[5] Z.B. Celik, L. Babun, A.K. Sikder, H. Aksu, G. Tan, P. McDaniel, A.S. Uluagac, Sensitive information tracking in commodity {IoT}, in: 27th USENIX Security

Symposium, ACM, 2018, pp. 1687–1704.
[6] K. Cao, Y. Liu, G. Meng, Q. Sun, An overview on edge computing research, Access 8 (2020) 85714–85728.
[7] S. Dhar, J. Guo, J. Liu, S. Tripathi, U. Kurup, M. Shah, A survey of on-device machine learning: An algorithms and learning theory perspective, Trans.

Internet Things 2 (3) (2021) 1–49.
[8] L. Dutta, S. Bharali, TinyML meets IoT: A comprehensive survey, Internet of Things 16 (2021) 100461.
[9] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric, J.A. Halderman, L. Invernizzi, M. Kallitsis, et al., Understanding

the mirai botnet, in: 26th USENIX Security Symposium, 2017, pp. 1093–1110.
[10] H. Oz, A. Aris, A. Levi, A.S. Uluagac, A survey on ransomware: Evolution, taxonomy, and defense solutions, ACM Comput. Surv. (2021).
[11] S. Bhansali, A. Aris, A. Acar, H. Oz, A.S. Uluagac, A first look at code obfuscation for WebAssembly, in: Proceedings of the 15th ACM Conference on

Security and Privacy in Wireless and Mobile Networks, 2022, pp. 140–145.
[12] A. Acar, H. Fereidooni, T. Abera, A.K. Sikder, M. Miettinen, H. Aksu, M. Conti, A.-R. Sadeghi, S. Uluagac, Peek-a-boo: I see your smart home activities, even

encrypted!, in: Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks, WiSec ’20, Association for Computing
Machinery, New York, NY, USA, 2020, pp. 207–218, http://dx.doi.org/10.1145/3395351.3399421.

[13] T. Dietrich, Smart home product security risks can be alarming, 2019, https://www.insurancejournal.com/news/national/2019/01/03/513394.htm, [Online;
accessed 01-June-2022].
11

http://refhub.elsevier.com/S2542-6605(22)00151-2/sb1
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb2
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb2
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb2
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb3
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb3
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb3
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb4
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb4
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb4
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb5
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb5
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb5
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb6
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb7
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb7
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb7
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb8
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb9
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb9
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb9
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb10
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb11
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb11
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb11
http://dx.doi.org/10.1145/3395351.3399421
https://www.insurancejournal.com/news/national/2019/01/03/513394.htm


Internet of Things 21 (2023) 100670N. Tekin et al.
[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[15] A.H. Jahromi, M. Taheri, A non-parametric mixture of Gaussian naive Bayes classifiers based on local independent features, in: Artificial Intelligence and
Signal Processing Conference, AISP, IEEE, 2017, pp. 209–212.

[16] C. Perera, C.H. Liu, S. Jayawardena, M. Chen, A survey on internet of things from industrial market perspective, Access 2 (2014) 1660–1679.
[17] TensorFlow, tflite-micro, 2022, https://github.com/tensorflow/tflite-micro, [Online; accessed 2-February-2022].
[18] Microsoft, ELL, 2020, https://github.com/microsoft/ELL, [Online; accessed 2-February-2022].
[19] MikeJKelly, ARM-software, 2022, https://github.com/ARM-software/armnn, [Online; accessed 2-February-2022].
[20] GuentherMartin, ARM-software, 2021, https://github.com/ARM-software/CMSIS_5, [Online; accessed 2-February-2022].
[21] R. Sanchez-Iborra, A.F. Skarmeta, Tinyml-enabled frugal smart objects: Challenges and opportunities, Circuits Syst. Mag. 20 (3) (2020) 4–18.
[22] Jonnor, emlearn, 2021, https://github.com/emlearn/emlearn, [Online; accessed 2-February-2022].
[23] eloquentarduino, MicroMLGen, 2020, https://github.com/eloquentarduino/micromlgen, [Online; accessed 2-February-2022].
[24] F. Aubet, M. Pahl, DS2OS traffic traces, 2018, https://www.kaggle.com/datasets/francoisxa/ds2ostraffictraces, [Online; accessed 22-April-2022].
[25] N. Tekin, V.C. Gungor, Analysis of compressive sensing and energy harvesting for wireless multimedia sensor networks, Ad Hoc Netw. 103 (2020) 102164.
[26] N. Tekin, H.U. Yildiz, V.C. Gungor, Node-level error control strategies for prolonging the lifetime of wireless sensor networks, IEEE Sens. J. 21 (13) (2021)

15386–15397.
[27] I. Amezzane, A. Berrazzouk, Y. Fakhri, M. El Aroussi, M. Bakhouya, Energy consumption of batch and online data stream learning models for

smartphone-based human activity recognition, in: 4th World Conference on Complex Systems, WCCS, IEEE, 2019, pp. 1–5.
[28] M. Ferro, G.D. Silva, F.B. de Paula, V. Vieira, B. Schulze, Towards a sustainable artificial intelligence: A case study of energy efficiency in decision tree

algorithms, Concurr. Comput.: Pract. Exper. (2021) e6815.
[29] P.C.K. Timothy McKay, Intel power gadget, 2019, https://www.intel.com/content/www/us/en/developer/articles/tool/power-gadget.html, [Online;

accessed 28-June-2022].
[30] A.S. Dina, D. Manivannan, Intrusion detection based on machine learning techniques in computer networks, Internet of Things 16 (2021) 100462.
[31] S. Abdelhamid, M. Aref, I. Hegazy, M. Roushdy, A survey on learning-based intrusion detection systems for IoT networks, in: Tenth International Conference

on Intelligent Computing and Information Systems, ICICIS, IEEE, 2021, pp. 278–288.
[32] J. Long, F. Fang, H. Luo, A survey of machine learning-based IoT intrusion detection techniques, in: 6th International Conference on Smart Cloud

(SmartCloud), IEEE, 2021, pp. 7–12.
[33] E.P. Nugroho, T. Djatna, I.S. Sitanggang, A. Buono, I. Hermadi, A review of intrusion detection system in IoT with machine learning approach: current

and future research, in: 6th International Conference on Science in Information Technology (ICSITech), IEEE, 2020, pp. 138–143.
[34] R. Ahmad, I. Alsmadi, Machine learning approaches to IoT security: A systematic literature review, Internet of Things 14 (2021) 100365.
[35] M. Almseidin, M. Alzubi, S. Kovacs, M. Alkasassbeh, Evaluation of machine learning algorithms for intrusion detection system, in: 15th International

Symposium on Intelligent Systems and Informatics, SISY, IEEE, 2017, pp. 000277–000282.
[36] A. Verma, V. Ranga, Machine learning based intrusion detection systems for IoT applications, Wirel. Pers. Commun. 111 (4) (2020) 2287–2310.
[37] S.S.S. Sugi, S.R. Ratna, Investigation of machine learning techniques in intrusion detection system for IoT network, in: 3rd International Conference on

Intelligent Sustainable Systems, ICISS, IEEE, 2020, pp. 1164–1167.
[38] V. Morfino, S. Rampone, Towards near-real-time intrusion detection for IoT devices using supervised learning and apache spark, Electronics 9 (3) (2020)

444.
[39] J. Karande, S. Joshi, Real-time detection of cyber attacks on the IoT devices, in: 11th International Conference on Computing, Communication and

Networking Technologies, ICCCNT, IEEE, 2020, pp. 1–6.
[40] E. Anthi, L. Williams, M. Słowińska, G. Theodorakopoulos, P. Burnap, A supervised intrusion detection system for smart home IoT devices, Internet Things

J. 6 (5) (2019) 9042–9053.
[41] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: Vision and challenges, Internet Things J. 3 (5) (2016) 637–646.
[42] K. Sha, T.A. Yang, W. Wei, S. Davari, A survey of edge computing-based designs for IoT security, Digit. Commun. Netw. 6 (2) (2020) 195–202.
[43] H. Kumar, A.R. Jadhav, G. Sasirekha, J. Bapat, D. Das, Intelligent edge detection of attacks on IP-based IoT deployments, in: 19th OITS International

Conference on Information Technology, OCIT, IEEE, 2021, pp. 132–137.
[44] C. Jiang, J. Kuang, S. Wang, Home IoT intrusion prevention strategy based on edge computing, in: 2nd International Conference on Electronics and

Communication Engineering, ICECE, IEEE, 2019, pp. 94–98.
[45] M. Eskandari, Z.H. Janjua, M. Vecchio, F. Antonelli, Passban IDS: An intelligent anomaly-based intrusion detection system for IoT edge devices, Internet

Things J. 7 (8) (2020) 6882–6897.
[46] R. Alghamdi, M. Bellaiche, A deep intrusion detection system in lambda architecture based on edge cloud computing for IoT, in: 4th International

Conference on Artificial Intelligence and Big Data, ICAIBD, IEEE, 2021, pp. 561–566.
[47] G.W. Cassales, H. Senger, E.R. de Faria, A. Bifet, IDSA-IoT: an intrusion detection system architecture for IoT networks, in: Symposium on Computers and

Communications, ISCC, IEEE, 2019, pp. 1–7.
[48] S. Roy, J. Li, Y. Bai, A two-layer fog-cloud intrusion detection model for IoT networks, Internet Things (2022) 100557.
[49] X. Wang, F. Zhao, P. Lin, Y. Chen, Evaluating computing performance of deep neural network models with different backbones on IoT-based edge and

cloud platforms, Internet Things 20 (2022) 100609.
[50] H. Ren, D. Anicic, T.A. Runkler, The synergy of complex event processing and tiny machine learning in industrial IoT, in: 15th International Conference

on Distributed and Event-Based Systems, DEBS, ACM, 2021, pp. 126–135.

Nazli Tekin received the B.S. degree in computer engineering from Koc University, Istanbul, Turkey, in 2011, and the Ph.D. degree
in electrical and computer engineering from Abdullah Gül University, Kayseri, Turkey, in 2020. She is an Assistant Professor with
the Department of Software Engineering, Erciyes University, Kayseri. Currently, she is post-doctoral associate at the Cyber-Physical
Systems Security Lab, Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA. Her
research interests include wireless sensor networks, IoT security.
12

http://refhub.elsevier.com/S2542-6605(22)00151-2/sb14
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb14
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb14
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb15
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb15
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb15
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb16
https://github.com/tensorflow/tflite-micro
https://github.com/microsoft/ELL
https://github.com/ARM-software/armnn
https://github.com/ARM-software/CMSIS_5
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb21
https://github.com/emlearn/emlearn
https://github.com/eloquentarduino/micromlgen
https://www.kaggle.com/datasets/francoisxa/ds2ostraffictraces
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb25
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb26
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb26
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb26
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb27
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb27
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb27
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb28
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb28
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb28
https://www.intel.com/content/www/us/en/developer/articles/tool/power-gadget.html
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb30
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb31
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb31
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb31
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb32
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb32
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb32
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb33
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb33
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb33
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb34
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb35
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb35
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb35
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb36
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb37
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb37
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb37
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb38
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb38
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb38
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb39
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb39
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb39
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb40
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb40
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb40
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb41
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb42
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb43
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb43
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb43
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb44
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb44
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb44
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb45
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb45
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb45
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb46
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb46
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb46
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb47
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb47
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb47
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb48
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb49
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb49
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb49
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb50
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb50
http://refhub.elsevier.com/S2542-6605(22)00151-2/sb50


Internet of Things 21 (2023) 100670N. Tekin et al.
Abbas Acar received his MSc and Ph.D. degrees in the Department of Electrical and Computer Engineering at Florida International
University in 2019 and 2020, respectively. Before that, he received his B.S. degree in Electrical and Electronics Engineering from Middle
East Technical University in 2015. His research interests include continuous authentication, IoT security/privacy, and homomorphic
encryption. More information can be obtained from https://web.eng.fiu.edu/aacar/

Ahmet Aris is a Research Assistant Professor in the Department of Electrical and Computer Engineering at Florida International
University. He is conducting research in Cyber-Physical Systems Security Lab (CSL) at Florida International University under the
supervision of Dr. A. Selcuk Uluagac. He earned both PhD and MSc. in Computer Engineering from the Graduate School of Science,
Engineering and Technology at Istanbul Technical University, Turkey. He also worked at Medianova CDN R&D Center as an R&D
Analyst. In addition, he conducted research in the Networked Embedded Systems (NES) Group at Swedish Institute of Computer
Science (SICS) as a visiting researcher. His research interests include IoT Security, Network Security, Web Security, and Malware.

A. Selcuk Uluagac is currently an Eminent Scholar Chaired Associate Professor in the Department of Electrical and Computer
Engineering at FIU, where he leads the Cyber-Physical Systems Security Lab, with an additional courtesy appointment in the Knight
Foundation School of Computing and Information Science. Before FIU, he was a Senior Research Engineer at Georgia Tech and
Symantec. He holds a PhD from Georgia Tech and MS from Carnegie Mellon University. He received US National Science Foundation
(NSF) CAREER Award (2015), Air Force Office of Sponsored Research’s Summer Faculty Fellowship (2015), and University of Padova
(Italy)’s Faculty Fellowship (2016), and Google’s ASPIRE Research award in security and privacy (2021). He is an expert in the areas
of cybersecurity and privacy with an emphasis on their practical and applied aspects and teaches classes in these areas. He has
hundreds of research papers/studies/publications in the most reputable venues. His research in cybersecurity and privacy has been
funded by numerous government agencies and industry, including the US NSF, the US Dept. of Energy, US Air Force Research Lab,
US Dept. of Labor, Cyber Florida, Google, Microsoft, Trend Micro, and Cisco, inter alia. He is very entrepreneurial and visionary
with his research. Many of his research ideas have resulted in patents with one licensed to a company recently. He has served on

the program committees of top-tier security conferences such as IEEE Security & Privacy (‘‘Oakland’’), NDSS, Usenix Security, inter alia. He was the General
Chair of ACM Conference on Security and Privacy in Wireless and Mobile Networks (ACM WiSec) in 2019. Currently, he serves on the editorial boards of IEEE
Transactions on Mobile Computing, Elsevier Computer Networks Journal, and the IEEE Communications and Surveys and Tutorials (network security lead).

V. Cagri Gungor received his Ph.D. degree in electrical and computer engineering from the Broadband and Wireless Networking
Laboratory, Georgia Institute of Technology, Atlanta, GA, USA, in 2007. Currently, he is a Full Professor and Dean of Faculty of
Computer Science, Abdullah Gul University in Kayseri, Turkey. His current research interests are in machine learning, machine-to-
machine communications, next-generation wireless networks, wireless ad hoc and sensor networks. Dr. Gungor has authored more than
100 papers in refereed journals and international conference proceedings, and has been serving as an editor, reviewer and program
committee member to numerous journals and conferences in these areas. He is also the recipient of TUBITAK Young Scientist Award
in 2017, Science Academy Young Scientist Award (BAGEP) in 2017, Turkish Academy of Sciences Distinguished Young Scientist
Award (TUBA-GEBIP) in 2014, the IEEE Trans. on Industrial Informatics Best Paper Award in 2012, the European Union FP7 Marie
Curie RG Award in 2009.
13

https://web.eng.fiu.edu/aacar/

	Energy consumption of on-device machine learning models for IoT intrusion detection
	Introduction
	Motivational Example
	Background
	On-Device Machine Learning Deployment Approaches
	Training Approaches
	Cloud Computing-based Machine Learning
	Edge Computing-based Machine Learning
	IoT Device-based Machine Learning

	Inference Approaches
	Conventional
	TinyML


	Experiment Methodology
	Dataset
	Types of Attacks in the Dataset
	Preprocessing the Dataset
	Dataset Accuracy

	Devices Used
	Estimating the Energy Consumption of ML Algorithms
	Execution Time
	Power Monitoring Tool


	Analysis Results
	Energy Consumption Analysis via Execution Time
	Energy Consumption Analysis via Power Monitoring Tool
	Computational Complexity Analysis
	Comparative Analysis

	Related Work
	Conclusions
	Declaration of Competing Interest
	Acknowledgments
	References


