
IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 10, 15 MAY 2023 8533

IVYCIDE: Smart Intrusion Detection System
Against E-IoT Driver Threats

Luis Puche Rondon , Leonardo Babun , Member, IEEE, Ahmet Aris ,
Kemal Akkaya , Senior Member, IEEE, and A. Selcuk Uluagac

Abstract—The rise of Internet of Things (IoT) devices has led
to the proliferation of smart environments worldwide. Although
commodity IoT devices are employed by ordinary end users,
complex environments, such as smart buildings, government,
or private offices, or conference rooms require customized and
highly reliable IoT solutions. Enterprise IoT (E-IoT) connect such
environments to the Internet and are professionally managed
solutions usually offered by dedicated vendors As E-IoT systems
require specialized training, closed-source software, and propri-
etary equipment to deploy. In effect, E-IoT systems present an
unprecedented, under-researched, and unexplored threat vector
for an attacker. In this work, we focus on E-IoT drivers, software
modules used to integrate devices into E-IoT systems, as an attack
mechanism. We first present PoisonIvy, a series of generalized
proof-of-concept attacks used to demonstrate that an attacker can
use a malicious driver to perform denial-of-service attacks, gain
remote control, and abuse E-IoT system resources. To defend
against E-IoT driver-based threats, we introduce IVYCIDE, a
novel intrusion detection system used to detect unexpected E-IoT
network traffic from an E-IoT system. IVYCIDE operates as a
passive monitoring system within an E-IoT system using machine
learning and signature-based classification to detect POISONIVY
attacks. We evaluated the performance of IVYCIDE in a realis-
tic E-IoT deployment. Our detailed evaluation results show that
IVYCIDE achieves an average accuracy of 97% in classifying the
type of POISONIVY attack and operates without modifications
or operational overhead to the existing E-IoT systems.

Index Terms—Cyber attacks, enterprise IoT (E-IoT) systems,
intrusion detection.

I. INTRODUCTION

THE INTRODUCTION of modern commodity Internet of
Things (IoT) devices has changed the everyday lives of

users with the deployment of millions of smart environments
(e.g., smart buildings, offices, homes, etc.) worldwide [2].
While many IoT systems are easily installed by average end
users via Do-it-Yourself (DIY) applications, Enterprise IoT

Manuscript received 25 March 2022; revised 18 June 2022; accepted
25 July 2022. Date of publication 4 August 2022; date of current version
9 May 2023. This work was supported in part by the U.S. National Science
Foundation under Award NSF-CAREER CNS-1453647, Award NSF-1663051,
and Award NSF-2219920; and in part by the Microsoft Research Grant.
(Corresponding author: Luis Puche Rondon.)

Luis Puche Rondon, Leonardo Babun, Ahmet Aris, and A. Selcuk Uluagac
are with the Cyber-Physical Systems Security Lab, Florida International
University, Miami, FL 33199 USA (e-mail: lpuch002@fiu.edu;
lbabu002@fiu.edu; aaris@fiu.edu; suluagac@fiu.edu).

Kemal Akkaya is with the Advanced Wireless and Security Lab, Florida
International University, Miami, FL 33199 USA (e-mail: kakkaya@fiu.edu).

Digital Object Identifier 10.1109/JIOT.2022.3196282

(E-IoT) systems exist as an automation solution for profes-
sional settings. As such, E-IoT systems are used exclusively
for applications, such as smart buildings, luxury smart homes,
expensive yachts, classrooms, meeting rooms, government
offices, and business establishments. In these professional set-
tings, proprietary E-IoT systems (e.g., Crestron, Control4,
and Savant) introduce robust, reliable, and custom solu-
tions catered to meet an enterprise client’s needs. As such,
E-IoT systems require professional installation and special-
ized training to deploy. Additionally, maintenance, service,
and upgrades of E-IoT systems are handled by specialized
integrators.

Although many consumer-grade commodity IoT systems are
well understood due to their mainstream popularity, very little
security research exists on E-IoT systems’ design, develop-
ment, verification processes, and vulnerabilities. The lack of
research on these systems has led many users to overlook
E-IoT systems as possible attack vectors and assume that
these systems are secure. With many of these professional
systems present in high-profile locations, evaluating threats
for E-IoT systems should be of utmost importance. In this
article, we systematically explore E-IoT system vulnerabili-
ties and insecure development practices, specifically, the usage
of drivers as an attack mechanism. To demonstrate that mali-
cious actors can easily attack E-IoT systems, we introduce
POISONIVY, a collection of novel attacks that leverages E-IoT
system vulnerabilities to an attacker’s benefit. Specifically,
with POISONIVY, we demonstrate that an attacker can use
malicious E-IoT drivers to remotely: 1) perform Denial-of-
Service (DoS) attacks on E-IoT systems; 2) assume control of
E-IoT systems as an effective botnet; and 3) use E-IoT system
resources to perform illicit activities (e.g., bitcoin mining and
distributed password cracking).

Securing an E-IoT system against POISONIVY attacks
presents distinct challenges as E-IoT systems are closed-
source. E-IoT systems cannot be modified without the help of
the vendor to monitor the running processes or API/system
calls to detect the activities of the malicious drivers in
POISONIVY. Therefore, a passive network monitoring solu-
tion remains as an applicable methodology to detect such
driver-based attacks based on the network traffic they create.
Hence, to defend against POISONIVY-style threats we present
IVYCIDE; a passive network monitoring-based intrusion detec-
tion system (IDS) designed to protect E-IoT deployments
against POISONIVY-like threats using machine learning (ML)
and signature-based classification. As POISONIVY attacks rely

2327-4662 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 14:02:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6287-0787
https://orcid.org/0000-0002-7082-8423
https://orcid.org/0000-0003-4114-5321
https://orcid.org/0000-0002-7103-4545
https://orcid.org/0000-0002-9823-3464

8534 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 10, 15 MAY 2023

on network communication to communicate with the attacker
or apply the attack, IVYCIDE operates as a standalone frame-
work for E-IoT systems, passively monitoring network traffic
for unexpected and malicious behavior. IVYCIDE first classi-
fies individual incoming and outgoing network packets into
four types of distinct behaviors caused by POISONIVY attacks
using ML-based techniques. IVYCIDE then uses these indi-
vidual network packets and signature-based classification to
determine the type of POISONIVY attack occurring. To test
IVYCIDE’s performance against POISONIVY attacks, we con-
ducted a set of evaluations in a realistic E-IoT testbed using
real E-IoT devices. Our results show that IVYCIDE achieves
an average accuracy of 97% and precision of 94% against
POISONIVY-style attacks without any operational overhead or
modification to the E-IoT system.

Contributions: The contributions of this work are as follows.
1) We demonstrate that E-IoT system drivers are a

viable attack vector for smart buildings by introduc-
ing POISONIVY, a series of novel attacks against E-IoT
systems.

2) We test and evaluate POISONIVY attacks in a real E-IoT
system and leverage malicious drivers to cause unde-
sired behavior in a smart building on behalf of a remote
attacker.

3) We propose IVYCIDE, a novel IDS to protect E-IoT
systems against driver-based threats. IVYCIDE moni-
tors active E-IoT network traffic and detects unexpected
network traffic generated by the malicious drivers of
POISONIVY.

4) We evaluate IVYCIDE in a realistic E-IoT environment
with a variety of E-IoT devices, achieving an overall
accuracy of 97% and precision of 94%.

Organization: The remainder of this work is organized as
follows: In Section II, we provide background information
on E-IoT systems. Section III introduces the problem scope
and threat model of the POISONIVY attacks. In Section IV,
we cover the architecture, attack implementation, and evalua-
tion of the POISONIVY attacks. Section V covers definitions
and the IVYCIDE architecture. In Section VI, we cover the
IVYCIDE defense system implementation. The effectiveness of
IVYCIDE is covered in Section VII. Section VIII discusses the
related work. Finally, we conclude this article in Section IX.

II. BACKGROUND

In this section, we introduce some concepts about E-IoT
systems.

A. E-IoT Systems

E-IoT systems are specialized closed-source smart systems
with unique design and deployment practices distinguishing
them from off-the-shelf IoT solutions [44]. As all installa-
tions are custom, an integrator, a specialized programmer and
installer, configures and integrates all devices with an E-IoT
system. An integrator is hired to perform the physical instal-
lation, device configuration, testing, and technical support of
the E-IoT system [24], [25]. There are many different use-
cases where E-IoT is the best solution for automation and

Fig. 1. Applications of E-IoT systems.

integration of multiple devices. Automation may be done in
single-room systems (e.g., a theater, a conference room) or
multiroom systems. Fig. 1 highlights applications of E-IoT in
smart buildings. For instance, a smart office may be automated
with CCTV systems, lighting control systems, and access con-
trol components with an E-IoT system. As such, E-IoT systems
are customized for each specific application and deployment.
We highlight some E-IoT use-cases on smart buildings, where
these use cases can work together under a single E-IoT system.
Thus, if the E-IoT system is compromised, the integrated
devices may also be compromised.

Lighting Control: Any control of physical lighting or elec-
trical loads by an E-IoT system (e.g., lights, fans, outlets).
E-IoT systems may be used in this use-case to schedule light
events, program independent keypads, and allow remote con-
trol of lighting functions. E-IoT allows users to control their
lights remotely, schedule light events (e.g., wake up, turn out-
door lights on sundown, and trigger light-based events from
other devices.

Security and Safety: E-IoT systems are often integrated to
control security components. This integration grants autho-
rized users the ability to control security aspects of a location
(e.g., CCTV systems, access control systems, motion sensors,
fire alarms, and security alarm systems). Thus, E-IoT systems
allow for remote access, control, and camera activation based
on motion sensor triggers. E-IoT allows users to integrate other
components, such as lights with security systems. For exam-
ple, an E-IoT system may start flashing lights when the alarm
system is triggered.

Advanced Media Control: The control and management
of media and audio/video (A/V) components with E-IoT
systems (e.g., projectors, televisions, video distributions,
HDMI networks, and audio matrix management). E-IoT
systems manage complex audio/video distribution networks
from a single interface through audio/video zones, audio
switchers, video switchers, and amplifiers. With the complex-
ity of many A/V systems, E-IoT is a reliable method of control
through a single user interface.

B. Architecture of E-IoT Systems

E-IoT systems follow a centralized system design. We refer
to Fig. 2 which shows the generalized design of an E-IoT

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 14:02:09 UTC from IEEE Xplore. Restrictions apply.

PUCHE RONDON et al.: IVYCIDE: SMART INTRUSION DETECTION SYSTEM AGAINST E-IoT DRIVER THREATS 8535

Fig. 2. E-IoT system with four different control drivers, controller, and user
interfaces. Individual devices are controlled through the user interfaces after
being integrated.

system. These systems consist of several modules, the user
interfaces, a controller, drivers, and physical devices. Physical
devices are devices, such as televisions or smart lights which
are integrated into an E-IoT system. E-IoT systems usually
integrate physical devices without cloud-based access [24].
To accomplish this, E-IoT systems use a central controller, a
dedicated processing device that contains the main logic, com-
munication behavior, and configuration of an E-IoT system.
The controller stores drivers locally, which contain all the nec-
essary information to integrate a specific physical device or
service into the E-IoT system. Each physical device requires
a driver of its own to be integrated to a smart system. For
instance, to integrate a smart door lock, an E-IoT driver for
that specific door lock must be added to the controller. After
a device is integrated, that device becomes available to the
user through any of the smart system’s user interfaces (e.g.,
laptop app, phone/tablet app, and television on-screen dis-
play). In contrast to traditional system drivers, E-IoT drivers
function on top of the proprietary E-IoT operating system.
The implementation may also be different between E-IoT
systems.

C. E-IoT Drivers

One of the primary components of many E-IoT systems
is the inclusion of drivers which may have different names
depending on the manufacturer (e.g., Crestron modules and
Control4 drivers). Drivers provide all the information and soft-
ware modules necessary to integrate a device into a centralized
E-IoT system. For instance, to integrate a Sony television into
an E-IoT system, the controller must know what the pro-
tocol of communication is (e.g., IR, serial, IP, ZigBee, and
z-wave), the physical inputs (HDMI ports, analog ports), and
the vendor-specific proprietary commands to interface with the
device. Drivers are not limited to simply integrating physical
devices. They also integrate services such as Weatherbug to
add more functionality to an existing system [21], [22].

Drivers are inserted and configured during programming or
maintenance stages of a smart environment by the integrator.
Integrators may obtain drivers in three different ways: 1) they
may get drivers directly from the E-IoT system software

(preloaded drivers); 2) directly from a catalog hosted by the
manufacturer of the E-IoT system devices; or 3) download
from a third-party site in the Internet (from a third-party ven-
dor or a developer). Vendors of E-IoT systems often validate
drivers distributed in their platforms for functionality such as
Control4’s certified drivers [21]. However, with millions of
different devices to be integrated, certifying every driver is
not possible. In effect, integrators may be forced to use third-
party drivers for their installations if no drivers are available
for their specific solutions from the vendor or manufacturer. In
this work, we focus on unverified drivers, or drivers available
on third-party sites that have not been checked for malicious
content.

Unverified Drivers: Integrators may opt for unverified, third-
party drivers due to several reasons.

1) Driver Availability: Verified drivers may not always be
available to an integrator. Therefore, the only recourse
to integrate a third-party device to an E-IoT system
may be with an unverified driver from an untrusted
source. Additionally, to integrate less-known devices,
the driver has to be made by the manufacturer, who
may be untrusted and their code closed-source. For
instance, integrator forums offer a floury of unverified
drivers for projectors, televisions, and other devices [16].
Additionally, many vendors do not offer E-IoT drivers
for their devices, leading to third-party developers to
offer their own drivers.

2) Cost: Developers may charge for verified drivers (e.g.,
Atlona HDMI Switcher drivers for U.S. $110), which, in
turn, has to be paid by the integrator and end user [28].
Integrators may be tempted to use free unverified drivers
available on forums and online storefronts. Further,
while paid drivers may be made by trusted developers,
they are not necessarily verified by the E-IoT vendor.

3) Compatibility: Devices may change commands and
specifications when their firmware is updated [38]. As
such, verified drivers need to be updated to remain com-
patible with the latest models and firmware. To get a
system running quickly after an update, an integrator
may use an unverified driver that claims to run perfectly
with a newer firmware version of the device when a
verified driver is not available.

4) Phishing: It is possible that an integrator may install
an untrusted driver through a phishing link offering a
“driver update” or a tampered vendor website. It is
possible to receive drivers through email attachments,
impersonating a trusted vendor.

III. PROBLEM SCOPE AND THREAT MODEL

This section presents the problem scope and threat model
for POISONIVY attacks.

A. Problem Scope

This work assumes the existence of an E-IoT system
installed in a smart building. Indeed, such E-IoT systems have
experienced a rapid increase in popularity in smart buildings,
luxury smart homes, expensive yachts, classrooms, meeting

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 14:02:09 UTC from IEEE Xplore. Restrictions apply.

8536 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 10, 15 MAY 2023

Fig. 3. General end-to-end implementation for POISONIVY-based attacks. Attack-related components are highlighted in gray, E-IoT system components are
in blue.

rooms, government offices, and business establishments. The
E-IoT system’s controller is connected to a network and the
Internet. The attacker, named Mallory, is a malicious actor
with knowledge of E-IoT systems and their weaknesses. In
this scenario, Mallory develops a malicious driver for a popu-
lar device and advertises the driver through user boards such
as online forums [16] to integrators. Mallory also creates
fake accounts to give good reviews on the driver and mis-
lead integrators. The driver advertised is not available by the
manufacturer or through verified drivers, making Mallory’s
driver the only way to integrate a particular device into an
E-IoT system. With this malicious driver, Mallory assumes
the control of E-IoT system controllers and uses her machine
to execute remote attacks.

Additionally, we assume that an integrator uses Mallory’s
unverified malicious driver for the E-IoT system deployment,
introducing it into the system without issues as there are no
security mechanisms in place. These assumptions are realistic
as online drivers from third-party sites are not verified, and
smart systems require Internet connectivity for many of their
services (e.g., remote access, music streaming, movies) [33].
Anyone can upload a driver to public forums easily. As inte-
grators may download unverified drivers from any website,
an attacker can create an attractive driver for integrators to
download and install in their systems. For instance, unverified
drivers may be offered at a third-party website that advertises
them. In our current scenario, Mallory compromises E-IoT
system devices indirectly through the use of a downloaded
unverified malicious driver.

B. Threat Model

In our work, we consider the following powerful adversaries
as part of the threat model.

Threat 1 (DoS): This threat considers DoS attacks where
Mallory disrupts the availability of an E-IoT system through
the use of a malicious driver.

Threat 2 (Remote Control): This threat considers a case
where Mallory assumes the control of E-IoT system devices
to execute attacks (e.g., DoS) against remote targets such as
webservers.

Threat 3 (Malicious System Resource Farming): In this
threat, Mallory uses local system resources in a compromised
device to perform unauthorized processor-intensive actions

to her benefit (e.g., cryptocurrency mining [45], password
cracking [4]).

IV. POISONIVY

In this section, we present an overview of the POISONIVY

attacks. The complete details of this work can be found in
our previous publication [42]. Fig. 3 depicts the end-to-end
implementation of POISONIVY attacks. Such implementation
involves the interaction of four modules: 1) remote attacker;
2) command server; 3) malicious driver; and 4) target envi-
ronment.

A. POISONIVY Overview

In this architecture, the attacks begins with a remote attacker
(e.g., Mallory) initiating an attack with a webclient such as a
laptop by communicating with the command server 1 . The
command server grants Mallory an intermediary point of com-
munication between her device and infected controllers, and
includes three components: 1) the server API; 2) server UI;
and 3) the command cache. The server API represents the pri-
mary endpoints (e.g., REST Architecture) of the server, which
can be requested by Mallory or the malicious driver. Mallory
uses the server UI component executed by the webclient,
which grants her a visual interface, to initiate attacks and view
the attack’s status. As the last component of the command
server, the command cache stores attack initiation requests
fetched by malicious drivers through the server API endpoints.
Once the command server receives initiation requests from
Mallory, the malicious driver can now query the command
server for new attack details 2 . The Malicious driver is the
core of POISONIVY attacks and contains the driver logic and
the malicious payload. As such, the driver logic controls a
smart device in an expected manner, which allows the driver
to appear as a benign driver. In contrast, the malicious payload
contains the attacker’s malicious code for the execution of the
attacks 3 . Finally, the target environment contains the smart
system’s controller and the drivers of the smart environment.
Mallory takes control of the target environment’s functions
through the malicious driver. As attacks complete, the mali-
cious driver sends back the attack status to the command server
4 . The attack status includes feedback to the attacker from

the driver, such as hashing results, errors, or success codes, and
can be then queried by Mallory from the command server 5 .

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 14:02:09 UTC from IEEE Xplore. Restrictions apply.

PUCHE RONDON et al.: IVYCIDE: SMART INTRUSION DETECTION SYSTEM AGAINST E-IoT DRIVER THREATS 8537

B. POISONIVY Implementation

To implement the POISONIVY attacks in a realistic man-
ner, we created a malicious television E-IoT driver and an
E-IoT system testbed with real Control4 devices. Control4
was selected as it is one of the most popular E-IoT systems
available in the market, named a leading brand in E-IoT for
five years in a row [23]. The testbed includes vendor-specific
devices and is configured to function as a small E-IoT system.
We utilized the Driver Editor, a tool available for the devel-
opment of drivers in Control4 [15]. Additionally, we used
LUA, an open-source programming language which is the core
development platform of Control4 drivers [51]. We configured
the E-IoT system using Control4’s Composer 2.10.6 and with
an EA-1 as the main controller. To grant Internet access to the
devices included in the testbed, we configured a network with
the TP-Link TL-WR841N Router. We verified the running
version of LUA in Control4 devices as LUA 5.1 program-
matically (executing a script which returned the running LUA
version). To implement POISONIVY realistically, we created a
command and control webserver with a RESTful API in JAX-
RS hosted in Amazon AWS. A Swagger-based Web interface
was implemented for the command server. Furthermore, we
highlight that these examples noted are generalized, proof-of-
concept attacks which were designed to prove the capabilities
of POISONIVY. The capabilities proved with these attack con-
cepts may be used to create more numerous and specific attack
cases.

C. POISONIVY Attacks

In this section, we realized the POISONIVY attacks. More
details on the realization and evaluation can be found on our
prior publication [42].

Attack 1 (DoS): This attack was developed to demonstrate
that Threat 1 (DoS) is possible through POISONIVY. This
attack implements a DoS condition in a local system through
memory exhaustion with a deliberate memory leak in the
driver and an iterating loop. Using this attack, the E-IoT
system was rendered inoperable within five seconds of acti-
vation. As such, any function tied to the E-IoT system was
unreachable.

Attack 2 (Remote Control): The remote control attack served
as a way to demonstrate the feasibility of Threat 2 (Remote
Control) using POISONIVY. In this attack, the infected con-
troller received a remote request to target a specific webhost
“www.pucherondon.com.” The attack was successful, the con-
troller began repeated requests on the target webhost upon
initiation. We note that with multiple infected controllers, it
may be possible to negatively impact a target webpage. As
such, this generalized attack demonstrates the viability of
POISONIVY being for a variety of attacks, such as DoS or
remote code execution.

Attack 3 (Malicious Resource Farming): The resource
farming attack was developed to demonstrate that Threat 3
(Malicious Resource Farming) is possible through POISONIVY

for purposes such as bitcoin mining. For this sample attack,
the required cryptographic operations were created in the
driver. The attack was successful, the driver began to perform

hashing operations upon the command server’s request. As
such, Attack 3, proves that an attacker can easily misuse E-IoT
system resources, with the given example of cryptographic
operations. Functions for other operations can be created and
deployed for other types of malicious resource farming.

Summary and Findings: All of the proposed attacks were
implemented successfully, the implications which could neg-
atively impact E-IoT systems. In Attack 1, we demonstrate
that an entire system can be rendered unusable at the com-
mand of an attacker. The attack presents a viable method of
disabling access to security systems, gates, doors, or any other
system which is integrated into an E-IoT system. For instance,
if the gate access or panic button is controlled purely through
an E-IoT system, a user will not be able to operate the gate
access or a panic button while a DoS attack is active. Attack 2
is made possible due to the lack of limitations on connec-
tions to external websites and shows how an attacker can
perform DDoS-type attacks on target webpages using multiple
controllers. There have been documented cases of malware
purposely accessing illegal websites to frame the system own-
ers [37]. An attacker with a compromised E-IoT system may
request illegal websites and frame the owners for illicit activity.
These results (Attack 2) also imply that an attacker may also
perform any other hardware-intensive actions such as pass-
word cracking. Attack 3 is possible due to a lack of restrictions
in the LUA implementation and unfettered access to system
resources. Further,more with processor-intensive operations, a
compromised controller could also be used for cracking hashed
passwords. An attacker with a list of passwords to crack
could use the processing power of compromised controllers to
attempt to reverse password hashes, a very similar operation to
cryptocurrency mining. As POISONIVY-style attacks present
a substantial negative impact on E-IoT systems, acknowledg-
ing these threats and finding solutions should be of utmost
importance.

Generalizability of POISONIVY Attacks: As noted, these
attacks only act as a generalized representation of what is
possible with POISONIVY and, thus, the effects and impact
of each attack concept may differ from each custom deploy-
ment and attack implementation. Even with this, POISONIVY

attacks rely on some basic concepts that come with drivers. For
Attack 1, the method of attack relies on memory exhaustion.
Thus, any method that can cause memory exhaustion, inde-
pendent of the E-IoT system or implementation will cause the
same effect. Attack 2 and the general communication between
the attacker and driver rely on the ability for drivers to per-
form API calls. This feature needs to be available for E-IoT
controllers to communicate with API-controlled devices and
Web services. As such, it is likely that many, if not all, E-IoT
systems have some method for drivers to perform API calls.
Finally, Attack 3 relies on the ability to perform mathemati-
cal operations. Thus, any driver with a scripting language that
allows the mathematical operations for cryptographic function
will be able to perform Attack 3 or similar.

Existing Defenses and Need for New Solutions: Research
into defending IoT and E-IoT systems has been an active
research topic, with several solutions presented to different
problems [6], [14], [44]. For instance, software solutions such

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 14:02:09 UTC from IEEE Xplore. Restrictions apply.

8538 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 10, 15 MAY 2023

as context-aware defense mechanisms have been proposed to
defend IoT systems [47]. While some concepts are applicable,
E-IoT suffers from limitations such as closed-source design.
As such, API/system call hooking techniques employed by
some defense mechanisms are not entirely viable. Other widely
accepted defense strategies, such as encryption, are not a
viable solution as the E-IoT systems can be compromised by
an integrator willingly installing a driver. Solutions, such as
signature-based detection, for known malicious drivers are a
possibility, however, such frameworks rely on vendor imple-
mentation. As these frameworks do not currently exist for
E-IoT, development would require substantial research and
funding. Another solution is the manual code verification of
software modules, such as drivers and apps. While verifica-
tion poses an attractive solution, there are some drawbacks.
For instance, each E-IoT manufacturer uses their own imple-
mentation of a “driver” [1], [21]. Thus, while implementing
E-IoT-wide solutions through standardization is a possibility,
it requires the collaboration of E-IoT vendors, software, and
framework changes to individual E-IoT systems and deploy-
ment practices. The necessary collaboration would require the
development of a secure driver standard and agreements made
between all vendors. However, older E-IoT systems with older
drivers would be still vulnerable as legacy and discontinued
equipment cannot be updated. In summary, the specific limita-
tions of E-IoT environments make existing defense solutions
impractical or inadequate to defend E-IoT systems against
POISONIVY-style attacks. In effect, new defense solutions
must be proposed considering the threats and the distinct
challenges of E-IoT systems.

V. IVYCIDE ARCHITECTURE

To address POISONIVY attack threats, we introduce
IVYCIDE, a passive network-based IDS, easily configurable
to detect traffic anomalies in E-IoT controller network traffic.

A. Design Considerations and Challenges

In this section, we first include the distinct challenges
of E-IoT systems that make it difficult to protect against
POISONIVY attacks and require a specialized solution such as
IVYCIDE. The design considerations of the IVYCIDE frame-
work are driven by these challenges.

Closed-Source E-IoT: E-IoT systems are very often closed-
source that makes many accepted defense strategies very
difficult without vendor cooperation. Furthermore, software for
configuration is not available to researchers and consumers. As
such, a defense strategy must be designed with closed systems
in mind. In the case of IVYCIDE, mechanisms must be created
using features available to integrators and consumers. Without
special permissions, source code, API/system call hooking,
performance analysis, and other features, a defense system
is a notable challenge to outside developers. Thus, IVYCIDE

is needed as current defense systems may not work with the
limited access of E-IoT systems and the lack of support from
E-IoT vendors.

System-to-System Differences: There are many different
E-IoT system vendors, each E-IoT system often with their

type of configuration. As such, traffic will vary from E-IoT
system to system, even if they are from the same vendor.
For instance, a system that controls a single room (e.g., con-
ference room and theater) will be vastly different in traffic
than a large-scale system (e.g., whole home, smart office, and
yacht complete integration). Furthermore, systems may differ
from the services integrated. For instance, some users may
opt for a fully offline system, while other users may request
a system that integrates music services (e.g., Spotify, TuneIn,
and Weatherbug). Since all systems are custom, a custom solu-
tion needs to be proposed for POISONIVY attacks as existing
solutions may not consider or be too costly for complex. A
solution for E-IoT needs to be flexible, affordable, and needs
to consider that systems may be updated and modified by the
integrator.

E-IoT Traffic: In contrast to E-IoT devices, E-IoT controllers
have some unique characteristics in E-IoT environments due
to their role in E-IoT systems. First, the controller is the
hub of all communication, as such, integrated devices (e.g.,
keypads, touchscreens, and televisions) communicate with the
controller. Second, E-IoT controllers will often have audio and
video interfaces, such as audio out, for streaming services and
Internet radio (e.g., Spotify, Rhapsody, and TuneIn). Thus, in
some systems, the E-IoT controller will handle the stream-
ing service communication traffic. Finally, the E-IoT controller
often communicates with the vendor’s Web services and con-
figuration software. In most cases, this means that the only
way to modify the system (and drivers) for both benign or
malicious purposes will be through the E-IoT controller and a
network connection. As the E-IoT controller acts as the central
communication hub, monitoring the network traffic of only the
controller instead of all of the E-IoT devices can be useful to
detect POISONIVY attacks.

Constraints of E-IoT on the POISONIVY Attacker: While
POISONIVY attacks demonstrate the capabilities of attackers
using malicious drivers, there are limitations of E-IoT systems
on POISONIVY attacks that can be of use by a defense system
such as IVYCIDE. First, a POISONIVY attacker is limited
on how they may communicate to the Internet. Namely, an
attacker must rely on the driver’s API to communicate remote
servers. Second, an attacker must rely on this form of exter-
nal communication for the core of Attacks 2 and 3 (Remote
Control and Malicious Resource Farming, Section IV). Finally,
traffic from a malicious driver originates from the controller.
Thus, an attacker using the malicious drivers has only one
device they can establish communication to external servers
[e.g., Command-and-Control (CnC) server and target servers]
and cannot execute attacks from other devices integrated in the
E-IoT system. Knowing these limitations, a defense solution
such as IVYCIDE can rely on network communication from
the E-IoT controller to identify and detect malicious activities
originating from a malicious driver.

B. E-IoT Devices, Drivers, and Expected Traffic

Modifications to E-IoT systems are not done frequently for
several reasons. First, there are costs associated with con-
tracting an integrator and purchasing new drivers after initial

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 14:02:09 UTC from IEEE Xplore. Restrictions apply.

PUCHE RONDON et al.: IVYCIDE: SMART INTRUSION DETECTION SYSTEM AGAINST E-IoT DRIVER THREATS 8539

installations. Additionally, if a device integrated into an E-IoT
system needs a replacement (e.g., damages and upgrades), an
integrator will often replace the device with a similar device
to fulfill the same purpose. As such, it may not be necessary
to retrain a learned model for an E-IoT system with simi-
lar replacements. Devices integrated into E-IoT have expected
communication traffic dependent on the type of driver and
device. In Table I, we show some examples of how device type
defines the communication traffic of each integrated device.
For instance, a display (e.g., television and projector) will
communicate with the E-IoT system with information, such as
power state, firmware version, and volume levels. Furthermore,
depending on the E-IoT devices and their drivers, network
traffic will be different. For instance, a driver for a device
controlled through ZigBee by the E-IoT system should not
create any additional IP network traffic. We highlight some
examples of driver types as follows.

Driver Types: We highlight three types of drivers used for
devices in E-IoT, and how each type of driver affects the E-IoT
network traffic.

1) Non-IP Drivers: Drivers (e.g., ZigBee drivers) that
do not use any IP network communication to control
integrated devices. These drivers should not add any
additional traffic to the E-IoT system. Since POISONIVY

attacks require Internet connection, they will not func-
tion as this type of driver.

2) IP Drivers: Drivers that use IP network communication
to connect to devices or services (e.g., IP TV driver,
Spotify Drivers). These drivers will create network traf-
fic relevant to the device or service. More information
on expected network traffic is highlighted in Table I.

3) Drivers With Remote Validation: Drivers that require
online validation, such as a licensed driver that must
validate a license key with the developer of the driver.
These drivers will have communication with a remote
server.

C. Terminology

Expected Operation: We define the expected operation of an
E-IoT system, as usage of an E-IoT system in a manner that is
benign, such as selecting video sources, listening to music, and
menu navigation. Activity occurring from malicious drivers is
outside of expected operation.

Expected Traffic: We define benign traffic as any IP network
communication which is caused by the expected operation of
the E-IoT system.

Unexpected Network Behavior: Unexpected behavior occurs
from unexpected network traffic due to active POISONIVY

attacks in the E-IoT system. For the scope of this work,
unexpected behavior is observed through the IP network
communication.

D. IVYCIDE Overview

IVYCIDE is designed to protect E-IoT systems from
POISONIVY-based threats. It aims to detect POISONIVY

attacks via passive network monitoring and a two-step clas-
sification approach. In the first step of the classification,

TABLE I
EXAMPLES OF EXPECTED NETWORK TRAFFIC BY DEVICE TYPE

Fig. 4. Architecture of IVYCIDE, modules numbered.

individual attack patterns are detected via a ML-based clas-
sifier, whereas in the second step, series of patterns are
checked against attack signatures and the type of the attack
is determined via a signature-based classifier.

The proposed IVYCIDE architecture is composed of five
different modules as seen in Fig. 4. The first module is the
Network Collector which captures network traffic incoming
and outgoing from the E-IoT controller 1 . Furthermore, the
Network Collector preprocesses E-IoT network traffic and for-
wards it to the Traffic Handler. The Traffic Handler evaluates
incoming traffic and logs suspicious network activity using two
submodules: the Traffic Analyzer and Evaluation Logger 2 .
The Traffic Analyzer submodule is used as the first step, per-
forming ML-based classification of individual E-IoT network
traffic packets. These packets are classified into the four types
of behaviors: 1) benign; 2) UER; 3) CnC; and 4) activation.
As POISONIVY attacks are composed of a series of such
behaviors, as the second step, the Traffic Analyzer applies
a signature-based classification on a set of classified pack-
ets within a time window to determine the type of attack
occurring. The Evaluation Logger submodule is then used to
forward suspicious network packets and analysis results to the
user notification and logged activities modules. The Model
Container stores the ML model and Signature Model used by
IVYCIDE’s traffic analyzer 3 . The User Notification module
is used to alert and notify the user on warnings and suspi-
cious activities 4 . Finally, the Logged Activities module stores
all the suspicious packets and classification results from the
Traffic Handler 5 . This logged information may be queried
later for reference, or further analysis.

E. Network Collector

The Network Collector allows IVYCIDE to passively col-
lect incoming and outgoing traffic to the E-IoT controller.
As such, Network Collector only captures TCP/IP network

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 14:02:09 UTC from IEEE Xplore. Restrictions apply.

8540 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 10, 15 MAY 2023

Fig. 5. IVYCIDE classification process.

traffic relevant to the E-IoT controller. Additionally, this cap-
ture is passive, as packet manipulation of E-IoT traffic may
cause undesired operation for the E-IoT system. Furthermore,
the captured traffic data that is irrelevant to IVYCIDE is
then filtered out (e.g., internal LAN communication). Relevant
packets to IVYCIDE (e.g., communication from controller to
external servers) are parsed and features are extracted by the
Network Collector for further processing. Filtered and for-
matted network data coming out of the Network Collector
includes all packet information and additional attributes neces-
sary for IVYCIDE training and classification (e.g., timestamp,
data length, TCP or UDP flags).

F. Traffic Handler

The Traffic Handler acts as the classification stage for
IVYCIDE and is composed of two submodules; the Traffic
Analyzer and the Evaluation Logger.

1) Traffic Analyzer: The Traffic Analyzer is one of the
core components of IVYCIDE and performs the ML multi-
class classification of incoming/outgoing data to the controller.
Additionally, the Traffic Analyzer performs signature-based
classification using a series of attack patterns/behaviors to
determine the type of the attack. This two-stage process is
required since the type of the POISONIVY attacks cannot be
identified from a single malicious packet or a single attack
behavior. Furthermore, classifying behaviors per packet can
yield to more flexibility and types of signatures for future
attacks. We refer to Fig. 5, for the ML and signature-based
classification processes employed by IVYCIDE. The first step
of the Traffic Analyzer is the Multiclass Classifier. In this step,
IVYCIDE attempts to classify network traffic as benign or as
different types of unexpected behaviors/patterns (UER, activa-
tion, malicious CnC). Once network traffic is classified with
ML, signature-based classification can take place. However,
if a packet is classified as benign, no further classification is
needed. For signature-based classification, IVYCIDE follows
a set of rules and attempts to determine the type of attack
that occurred depending on the unexpected activity observed
within a set timeframe. The resulting classification and times-
tamps are then forwarded to the Evaluation Logger and user
notification modules.

Multiclass Classifier: The Traffic Analyzer uses ML classi-
fication to infer the type of network activity occurring with the
E-IoT controller. As IVYCIDE is designed to be flexible and
better fit the heterogeneous nature of E-IoT systems, different

ML algorithms and models may be used for better accuracy.
For IVYCIDE, we defined four distinct types of behaviors for
E-IoT systems and POISONIVY attacks. Specifically, attacks
can be identified by a combination of these behaviors. While
we define four distinct types of behaviors associated with
E-IoT systems and attack behaviors, more types of behav-
iors may be learned and added with newer threats. A more
detailed description of behaviors classified during this stage
are highlighted as follows.

1) Benign: Benign behavior is expected network traffic and
does not raise any flags for IVYCIDE. Benign behavior
is dismissed from further analysis.

2) UER: Traffic classified as UERs is Unexpected traffic
from the E-IoT controller to external servers. Usually,
these requests are repetitive during a short span of time
and can be associated with POISONIVY DoS attacks.

3) Malicious CnC Requests: CnC requests are unexpected
network traffic used by a malicious POISONIVY driver to
communicate with the command server. As such, mali-
cious CnC requests are associated with an infected E-IoT
system actively communicating with a command server.

4) Activation: Activation requests are unexpected network
traffic used by POISONIVY to initiate attacks. When acti-
vation requests are detected, IVYCIDE can determine that
an attack was initiated. Thus, these requests may be used
to determine the type of traffic that occurs after an attack.

Signature Classifier: Signatures are an accepted method of
identifying types of attacks [30]. The Traffic Analyzer uses
a signature model and signature-based classification to infer
the type of attack occurring from unexpected behavior found
during the multiclass classification stage. First, the signature
classifier stage will determine if the threshold of unexpected
behavior found during the multiclass classification stage was
reached within a given window timeframe. If this is the case,
the classifier will refer to the Signature Model, a set of rules
that define the behaviors that make up the POISONIVY attacks.
IVYCIDE will then determine the type of attack that occurred
in ongoing traffic using the Signature Classifier. For instance,
if a number of unexpected requests for an external server is
observed, IVYCIDE will infer that a POISONIVY remote con-
trol attack is occurring. As such, it is possible to configure
IVYCIDE to classify for future attacks using additional rule-
sets and additional behaviors. For the purpose of this work,
we only consider POISONIVY driver-based attacks.

2) Evaluation Logger: The Evaluation Logger receives the
evaluation results and any relevant packet data from the Traffic
Handler. As such, the Evaluation Logger acts as a middle stage
between the evaluation and the data logs, caching and for-
matting data into a database compatible format. Essentially,
this module allows IVYCIDE users to view prior warnings,
see ongoing network communication, and review activity that
was deemed to be suspicious.

G. Model Container

IVYCIDE’s model container stores the classification model
for the E-IoT system. The model container uses several packet
attributes as the features to classify E-IoT network activity

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 14:02:09 UTC from IEEE Xplore. Restrictions apply.

PUCHE RONDON et al.: IVYCIDE: SMART INTRUSION DETECTION SYSTEM AGAINST E-IoT DRIVER THREATS 8541

and is divided into two submodules, the ML model and the
signature-based model.

1) ML Model: The ML model is one of the core subcompo-
nents used by the traffic analyzer for multiclass classification.
The ML model should be learned from an active E-IoT system,
or generated from expected network traffic. As such, the
ML model includes several common features in IP commu-
nication (e.g., packet size, TCP flags, UDP flags, and TCP
Source/Destination port). Additionally, IVYCIDE includes two
custom features described as follows.

1) Packet Rate: The number packets an IP source com-
municates with an IP destination within a 0.1-s time
window before and after the given packet. For instance,
if the E-IoT controller requests information from a
Spotify service at time t, the frequency value will show
the number packets were sent from the E-IoT controller
to the Spotify servers were from time t-0.1 s to
t+0.1 s.

2) External Origin: A Boolean value is set to true if the
packet originates from an external source to the E-IoT
controller.

2) Signature-Based Model: IVYCIDE uses a signature-
based model to infer the type of attack occurring from
traffic classified in the multiclass classification stage. The
signature-based model contains the signatures of each attack.
For instance, the signature-based model would dictate that an
activation command, followed by a large number of unautho-
rized requests to an external target address is likely to be a
POISONIVY DoS attack. While POISONIVY attacks are the
focus of this work, there may be many more attacks in the
future, as new attacks become known, the signature model can
be updated to include new attacks. These signatures should be
created manually or with tool-assisted definitions. As such, the
Signature Model should be flexible, and easily expandable to
include current and future attack signatures.

H. User Notification

The User Notification module is used to notify a user
or the network administrator on warnings and messages
from IVYCIDE. After traffic is analyzed, the Notification
Module will detail the traffic logs and give the user all the
information necessary to evaluate a possible breach of secu-
rity. Additionally, the user should receive a notification (e.g.,
mobile notification) that suspicious activity is occurring in the
controller so that they may take action and prevent further
issues.

I. Logged Activities

The Logged Activities module acts as a storage database
for any information found during IVYCIDE monitoring. The
administrator queries the logged activities module and can
view the suspicious packets and activity detected by IVYCIDE.
Logged Activities only includes packets and data deemed to
be of interest to the administrator as well as IVYCIDE’s eval-
uation of the traffic data stored. This module acts as the final
stage of IVYCIDE and acts as a point of reference for any

TABLE II
HARDWARE AND SOFTWARE USED IN IVYCIDE

IMPLEMENTATION AND TESTING

network administrator that needs to review logged information
and prior events.

VI. IVYCIDE IMPLEMENTATION

To implement IVYCIDE’s necessary modules, we used open
source, freely available software and libraries. We detail soft-
ware and hardware used for IVYCIDE in Table II. Our testing
environment is identical to the POISONIVY attacks implemen-
tation, with the addition of the Hak5 Plunder bug as an active
network sniffer between the E-IoT controller and the network
router. We assume that the attacker executes the POISONIVY

attacks in the same manner as discussed in Section IV, receiv-
ing the attack initiation commands from the remote command
server and executing the attacks on the local E-IoT system.

A. Network Collector Implementation

The implementation of the Network Collector required
the use of the Hak5 Plunder Bug, Wireshark, and Python
scripts to process incoming network data. For the Network
Collector, the Hak5 Plunder Bug was placed between the
E-IoT controller and the network router. The Plunder Bug was
then connected the Acer GX-785 desktop for data collection.
Data were collected using Wireshark and then preprocessed
using Scapy, a Python-based library used to manipulate and
extract data from Wireshark .pcap files. These data were then
passed through our preprocessing software and exported as a
comma-delimited string that extracted all of each packet’s rel-
evant data (e.g., TCP/UDP ports, TCP/UDP flags, timestamp,
source/destination IP, packet size). Additionally, our software
added additional attributes.

B. Traffic Handler Implementation

The Traffic Handler and both submodules were imple-
mented using Python with JupyterLab and Visual Studio
Code.

1) Traffic Analyzer: The Traffic Analyzer was implemented
using JupyterLab and the Python Scikit-learn library used for
ML applications. The Traffic Analyzer receives traffic data
formatted by the Network Collector and performs classifica-
tion on each individual packet using KNN, Decision Tree and
Random Forest classifiers using the ML Model submodule.
Packets are tagged by the Traffic Handler as four distinct
types of network activity (e.g., benign, UER, activation, or
malicious CnC request) as highlighted in Section V. Packets

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 14:02:09 UTC from IEEE Xplore. Restrictions apply.

8542 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 10, 15 MAY 2023

TABLE III
SIGNATURES USED IN IVYCIDE

marked as one of the three types of malicious behaviors are
sent sequentially to the signature-based classification stage
of the Traffic Analyzer. In the signature-classification stage,
the Traffic analyzer refers to the Signature-Based Model for
attack classification. All classified packets within the cache
window are converted into a string. If this string is beyond a
threshold (e.g., seven malicious packets per window) and falls
under the known signatures of attacks in the signature-based
model, the activity is classified as one of the three well-known
POISONIVY attacks. For instance, remote control is detected
if two activation packets followed more than eight unexpected
request packets are received. A full description of the signa-
tures used in IVYCIDE can be found in Table III. We chose
a 3-min cache window as POISONIVY attacks take less than
3 min to execute. Reducing the speed of the attack network
throughput (e.g., less packets per second for a remote DoS
attack) would greatly reduce an attack’s effectiveness.

2) Evaluation Logger Implementation: The Evaluation
Logger was implemented as a Python-based console notifi-
cation that provides the classification of E-IoT traffic data.

C. Model Container Implementation

The IVYCIDE Model Container contains two models used
for classification purposes: 1) the ML Model and 2) the
Signature-Based Model. In this section, we overview both
models and the data collection process used to implement these
models.

1) ML Model Implementation: The ML Model was stored
as a Python object in Jupyterlabs as a list of fitted mod-
els. Each model was then queried by the program to process
each incoming packet sequentially. For the implementation,
we evaluated several classifiers including: Nearest Neighbors,
Decision Tree, and Random Forest classifiers. We chose the
Decision Tree classifier for the final implementation as it
provided adequate classification accuracy and precision for
the purposes of IVYCIDE. For better classification, we also
introduced the following features.

1) Frequency: The frequency was calculated using a slid-
ing window during data collection. Essentially, IVYCIDE

stores packets for a given time window (100 ms), then
calculates how many packets share the same source and
destination address within the time window.

2) External Origin: The external origin feature was cre-
ated by comparing the known IP address of the E-IoT
controller and setting this flag to “True” if the E-IoT
controller was the destination of the packet.

2) Signature-Based Model Implementation: The Signature-
Based model was implemented as a set of rules in our custom
Python software. We apply these rules to the signature string
generated from the first stage of classification. We highlight
the signature rule table as follows.

1) Benign: A set of traffic data is classified as Benign
if the attack pattern does not contain activation com-
mands, indicating no attack was initiated and malicious
communication was infrequent.

2) DoS: A set of traffic data is classified as DoS if the
final commands (last five) in attack pattern are classi-
fied under “activation.” This behavior indicates that the
E-IoT controller became unavailable after an activation
command was received from the attacker.

3) Remote Control: Traffic data is classified as Remote
Control if there is a high frequency of packets classified
as UERs in the Multiclass stage. This signature string
indicates that the E-IoT controller is making multiple
UERs in a short timeframe.

4) Resource Farming: A set of traffic data is classified
as Malicious Resource farming if CnC requests are
observed after activation without UER. This behavior
indicates an attack was activated, however, the E-IoT
controller is still functional after attack activation.

D. Other Implementations

The User Notification module was implemented using the
Python ctypes library to create a notification on the machine
running the core IVYCIDE software. The Logged Activities
module was implemented as direct text file exports on the local
machine, allowing for future reference of the attack logs and
providing any relevant information of the IVYCIDE analysis.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of IVYCIDE

in detecting POISONIVY attacks. Specifically, we attempt to
answer the following research questions.

RQ1 (Malicious Behavior Evaluation): How do different
ML classification algorithms perform in detecting malicious
activity based on individual network packets? (Section VII-B).

RQ2 (Malicious Activity Type): How effective is IVYCIDE

in classifying between different POISONIVY attacks with
signature-based detection? (Section VII-C).

A. Attack Data Collection

Based on the previously mentioned POISONIVY attacks, we
performed the attacks as specified in Section IV.

To train IVYCIDE, we collected daily usage data from the
E-IoT environment by performing expected operation with
the E-IoT system as defined in Section V. Expected opera-
tion involved the use of the E-IoT environment for streaming
media, volume control, menu navigation, and any use con-
sistent with an expected smart system usage. Benign data
were collected from the E-IoT environment over the span of
two weeks, where the system was allowed to idle, turn on,
turn off, and otherwise operate in a manner consistent with
expected operation. Malicious data was captured as detailed
in the POISONIVY attacks. In total, we collected 525 705
packets from the E-IoT system for testing and training. The
collection resulted in a total of 60 data sets of attack data,
20 for each attack. Additionally, we recorded 20 data sets of
expected network traffic from the E-IoT system as defined in

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 14:02:09 UTC from IEEE Xplore. Restrictions apply.

PUCHE RONDON et al.: IVYCIDE: SMART INTRUSION DETECTION SYSTEM AGAINST E-IoT DRIVER THREATS 8543

TABLE IV
MULTICLASS CLASSIFICATION OF MALICIOUS

E-IOT TRAFFIC BEHAVIORS

Section V for a total of 80 data sets. To train the model, we fol-
lowed a supervised learning approach, requiring labeled data
for the training. We found that it was necessary to use super-
vised learning to properly categorize the four types of network
activity from the E-IoT controller and evaluate IVYCIDE. All
of the POISONIVY attacks were executed as highlighted in
Section IV. For Attack 1. we performed a remote activation
of DoS attack, disabling the E-IoT controller. For Attack 2,
our attacker issued a CnC request to the malicious driver to
perform unauthorized requests to a target webserver. Finally,
for Attack 3, we issued a CnC request for the E-IoT controller
to begin performing resource-intensive calculations on behalf
of the attacker.

1) Performance Metrics: Performance metrics in our work
follow the accepted parameters: accuracy, precision, F-score,
recall, true-positive rate (TPR), true-negative rate (TNR), false-
positive rate (FPR), and false-negative rate (FNR).

TPR: It denotes the total number of correctly identified
benign traffic within the test environment.

TNR: It denotes the total number of correctly identified
malicious traffic within the test environment.

FPR: It denotes the total number of cases where malicious
traffic was mistaken as being benign.

FNR: It denotes the total number of cases where benign
traffic is mistaken as malicious

Recall Rate = TNR

TNR + FPR
(1)

Precision Rate = TPR

TPR + FPR
(2)

Accuracy = TPR + TNR

TPR + TNR + FPR + FNR
(3)

F1 = 2 ∗ Recall Rate ∗ Precision Rate

Recall Rate + Precision Rate
. (4)

B. IVYCIDE Performance for Different Classifiers (RQ1)

As part of RQ1, we evaluate different ML-based classifiers
and their performance on individual network traffic packets.
As highlighted in Section V, IVYCIDE may use the most
effective classifier to classify between behavior types. For
RQ1 IVYCIDE evaluation, we implemented several classifiers,
highlighting Decision Tree, Nearest Neighbors, and Random
Forest with the best performance. We refer to Table IV for

TABLE V
SIGNATURE-BASED CLASSIFICATION OF MALICIOUS E-IOT ATTACKS

the performance of each classifier used with IVYCIDE. In these
results we show how different classifiers perform against E-IoT
network traffic in terms of accuracy and precision. For all of
the covered classifiers, we observed accuracy and precision
rates averaging higher than 90%.

UER were particularly challenging to classify. In most
cases, UER was misclassified as CnC attacks. This is possi-
bly due to the fact that the internal programming functions to
perform UER requests in the attack code are identical to CnC
attacks. The IVYCIDE architecture (Section V) highlights that
the multiclass classification is the first step for IVYCIDE. We
note that perfect classification accuracy on individual packets
is not required for effective signature classification because
attack signatures have some matching tolerance given the
rulesets. Furthermore, the configurable design of IVYCIDE,
means that evaluating different classifiers yields to valuable
information. For instance, some classifiers may have more
success at classification on some E-IoT deployments and
configuration than others. As such, since E-IoT systems are
highly heterogeneous, IVYCIDE can be adapted with one or
multiple classifiers to provide better accuracy and precision
for individual deployments.

C. IVYCIDE Signature-Based Classification
Performance (RQ2)

We refer to Table V for IVYCIDE’s signature-based clas-
sification performance in terms of accuracy, precision, recall,
and F1 metrics for each attack type. As such, we note that
IVYCIDE achieved an overall accuracy of 97% and precision
of 94%. More notable is that no malicious cases were classi-
fied as benign, as such, even if an attack is misclassified as
another attack, the administrator will still be alerted of sus-
picious traffic. Specifically, we found that three DoS attacks
were misclassified as malicious resource farming attacks. This
may be due to both POISONIVY DoS (memory exhaustion
on the controller) and resource farming attacks low network
throughput.

In some cases, we found that the music streaming service
TuneIn, caused false positives. IVYCIDE improperly classified
some benign data from the streaming service as unautho-
rized requests. We believe that the addition of whitelisting
to approved IP addresses may further improve the accuracy
of IVYCIDE since attackers cannot spoof addresses using the
driver API. However, even without whitelisting, the num-
ber of unauthorized requests in our proof-of-concept attacks
were limited as legal limitations with the target Amazon
Web Services hosted website do not allow for DDoS attacks.
Specifically, Amazon Web Services explicitly prohibits any

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 14:02:09 UTC from IEEE Xplore. Restrictions apply.

8544 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 10, 15 MAY 2023

type of DDoS testing what would put any stress on their
servers. Traffic-based DoS attacks performed by attackers
without legal concerns would create many more observ-
able unexpected requests within a given timeframe from an
E-IoT controller and, as such, become easier to identify using
IVYCIDE.

We note that the classification performance was accom-
plished using only black-box integration and with no modifi-
cation to the E-IoT controller, drivers, or system code. While
some attacks were misclassified as other attacks, all malicious
instances of attacks were detected as suspicious activities.
Similarly, benign activity was properly classified in all cases,
greatly reducing the number of false alarms by the signature-
based classification. As such, in any system implementation,
network administrators would have been alerted for all attacks,
been able to investigate attacks further, and take action against
an infected E-IoT controller.

D. Detection Time and Overhead

How quickly attacks are detected is dependent on the attacks
and the attack payload through the network. For instance,
a remote control (DoS) attack is much more noticeable in
network traffic than a DoS attack. As such, the maximum
time it would take for an attack to be detected is the time
window given for IVYCIDE. We measured the CPU usage and
memory consumption of IVYCIDE for each stage with 4.5%
CPU usage and 11.6 MB of peak usage for the multiclass clas-
sification stage; and a 0.3% CPU and 19.2-MB peak usage for
the signature classification stage. We must note that this over-
head is only applied to the computer running the IVYCIDE

system (16 GB RAM and i7-700 3.6 GHz) and not to the
E-IoT system controller.

VIII. RELATED WORK

Research and active attacks against smart devices have been
an ongoing topic of research in recent years. Within the scope
of smart homes, work by Abrishamchi et al. [3] summarized
side-channel threats in smart home systems. Work presented
by Koh et al. highlights how smart building applications are
often over-privileged for their purpose. Defense mechanisms
have been proposed in response to threats in smart buildings,
homes and appliances [17], [20], [31], [40]. As early as 2013,
some works highlight various threats in smart devices and note
that attackers are in constant search of new methods to infect
smart devices [5], [7], [8], [9], [10], [11], [12], [13], [18],
[26], [32], [34], [35], [36], [48], [49]. Additionally, research
in alternative attack vectors, such as HDMI, USB, and E-IoT
buses exist, which can provide attackers with an expanded
attack vector as E-IoT systems become more well-known to
attackers [27], [39], [41], [43].

In terms of IoT, there have been numerous works covering
IoT attacks and defense mechanisms in recent years. We do not
go into details in this study but we refer readers to the surveys
of Rondon et al. [44] for attacks, threats, and defenses against
E-IoT systems, Aris et al. [6] for the intrusion detection and
mitigation mechanisms applicable to 6LoWPAN-based IoT
networks. For the existing ML-based and traditional network

IDSs (NIDSs), we refer to the survey by Chaabouni et al. [19].
For research on attacks and defenses on wireless sensor
networks, we refer to a survey by Butun et al. [14] on emerg-
ing sensor threats and security. Furthermore, for works on
distributed IoT devices, attack techniques, and defenses are
covered in a survey by Vishwakarma and Jain [50]. Finally,
individual defense mechanisms such as the one proposed by
Sforzin et al. [46] investigates the use of Snort on Raspberry
Pis to create an IDS for IoT systems. Another notable exam-
ple is Flowguard, an edge-defense mechanism proposed by
Jia et al. [29] to mitigate against IoT DDoS attacks.

Our work differs from the previously discussed works
as POISONIVY focuses on the insecurity of E-IoT system
drivers, an attack vector which has been largely unexplored.
Further. IVYCIDE targets this threat vector and offers a solu-
tion to an under-researched problem. Specifically, for this work
we presented three threats possible through malicious E-IoT
drivers: 1) DoS attacks on the host system; 2) remote control of
a target E-IoT system; and 3) the malicious farming of system
resources for unauthorized activities (e.g., bitcoin mining).
To address these threats, we introduced IVYCIDE, a defense
mechanism accounting for E-IoT system design and tailored
specifically to E-IoT systems. Furthermore, IVYCIDE poses
no modification or overhead to the original E-IoT system,
and defends with a passive two-step network traffic defense
framework.

IX. CONCLUSION

Recent years have seen a dramatic rise in IoT systems and
applications that enabled billions of commodity IoT devices
to empower smarter settings in buildings, offices, and homes.
Although commodity IoT devices are employed by ordinary
end users, more reliable, complex, customized, and robust E-
IoT solutions are required for enterprise customers. With the
higher price, customization, robustness, and scalability of E-
IoT systems, they are commonly found in settings, such as
smart buildings, government or private smart offices, academic
conference rooms, luxury smart homes, and hospitality appli-
cations. With very little research investigating the security of
E-IoT systems and their components, E-IoT systems in pro-
fessional smart settings present an unexplored threat vector. In
this work, we explored E-IoT system vulnerabilities and inse-
cure development practices, specifically, the usage of drivers
as an attack mechanism. We implemented an E-IoT system
testbed in a smart building setting and introduced POISONIVY,
a novel attack mechanism to show that it is possible for a mali-
cious actor to easily attack and command E-IoT system con-
trollers using malicious drivers. Specifically, with POISONIVY,
we demonstrated that an attacker may cause DoS conditions,
take control of E-IoT system controllers, and remotely abuse
the resources of the such systems for illegal activities (e.g., bit-
coin mining). To defend against these threats, we introduced
IVYCIDE, a novel, configurable defense mechanism designed
specifically for E-IoT systems. As IVYCIDE operates as a stan-
dalone framework, it provides no additional overhead to E-IoT
systems. Finally, we evaluated the IVYCIDE performance on
a realistic E-IoT system. Our analysis showed that IVYCIDE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 14:02:09 UTC from IEEE Xplore. Restrictions apply.

PUCHE RONDON et al.: IVYCIDE: SMART INTRUSION DETECTION SYSTEM AGAINST E-IoT DRIVER THREATS 8545

achieved 97% in accuracy and 94% precision for attack-type
identification.

ACKNOWLEDGMENT

The views are those of the authors only.

REFERENCES

[1] “Crestron application market: User upload guide.” Jan. 2019. Accessed:
Dec. 10, 2019. [Online]. Available: https://applicationmarket.crestron.
com/user-upload-guide/

[2] “The number of smart homes in Europe and North America reached
45 million in 2017.” Sep. 2018. Accessed: Dec. 10, 2019. [Online].
Available: https://cutt.ly/wpW2vLt

[3] M. A. N. Abrishamchi, A. H. Abdullah, A. D. Cheok, and
K. S. Bielawski, “Side channel attacks on smart home systems: A short
overview,” in Proc. 43rd Annu. Conf. IEEE Ind. Electron. Soc. (IECON),
Oct. 2017, pp. 8144–8149.

[4] J. A. Dev, “Usage of botnets for high speed MD5 hash cracking,” in
Proc. 3rd Int. Conf. Innov. Comput. Technol. (INTECH), Aug. 2013,
pp. 314–320.

[5] A. Arabo and B. Pranggono, “Mobile malware and smart device secu-
rity: Trends, challenges and solutions,” in Proc. 19th CSCS, May 2013,
pp. 526–531.

[6] A. Aris, S. F. Oktuğ, and T. Voigt, “Security of Internet of
Things for a reliable Internet of Services,” in Autonomous Control
for a Reliable Internet of Services. Cham, Switzerland: Springer,
2018. [Online]. Available: https://link.springer.com/chapter/10.1007/
978-3-319-90415-3_13

[7] L. Babun, H. Aksu, L. Ryan, K. Akkaya, E. S. Bentley, and
A. S. Uluagac, “Z-IoT: Passive device-class fingerprinting of ZigBee
and Z-wave IoT devices,” in Proc. IEEE ICC, 2020, pp. 1–7.

[8] L. Babun, H. Aksu, and A. S. Uluagac, “Identifying counterfeit smart
grid devices: A lightweight system level framework,” in Proc. IEEE
ICC, May 2017, pp. 1–6.

[9] L. Babun, H. Aksu, and A. S. Uluagac, “A system-level behavioral detec-
tion framework for compromised CPS devices: Smart-grid case,” ACM
Trans. Cyber-Phys. Syst., vol. 4, no. 2, pp. 1–28, 2020.

[10] L. Babun, Z. B. Celik, P. McDaniel, and A. S. Uluagac, “Real-time anal-
ysis of privacy-(un)aware IoT applications,” 2019, arXiv:1911.10461.

[11] L. Babun, A. K. Sikder, A. Acar, and A. S. Uluagac, “IoTDots: A digital
forensics framework for smart environments,” 2018, arXiv:1809.00745.

[12] L. Babun, H. Aksu, and S. A. Uluagac, “Detection of counterfeit and
compromised devices using system and function call tracing techniques,”
U.S. Patent 10 027 697 B1, Jul. 2018.

[13] L. Babun, H. Aksu, and S. A. Uluagac, “Method of resource-limited
device and device class identification using system and function call
tracing techniques, performance, and statistical analysis,” U.S. Patent
10 242 193 B1, Mar. 2019.

[14] I. Butun, P. Österberg, and H. Song, “Security of the Internet of Things:
Vulnerabilities, attacks, and countermeasures,” IEEE Commun. Surveys
Tuts., vol. 22, no. 1, pp. 616–644, 1st Quart., 2020.

[15] “Control4 driver programming.” C4Drivers. Oct. 2014. Accessed:
Dec. 10, 2019. [Online]. Available: https://c4drivers.wordpress.com/
2014/10/13/hello-world/

[16] “Control4 forums files download.” C4Forums. Accessed: Jan. 23, 2020.
[Online]. Available: https://www.c4forums.com/files/

[17] Z. B. Celik, P. McDaniel, G. Tan, L. Babun, and A. S. Uluagac,
“Verifying Internet of Things safety and security in physical spaces,”
IEEE Security Privacy, vol. 17, no. 5, pp. 30–37, Sep./Oct. 2019.

[18] Z. B. Celik et al., “Sensitive information tracking in commodity IoT,”
in Proc. 27th USENIX Security Symp., 2018, pp. 1687–1704.

[19] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki,
“Network intrusion detection for IoT security based on learning tech-
niques,” IEEE Commun. Surveys Tuts., vol. 21, no. 3, pp. 2671–2701,
3rd Quart., 2019.

[20] A. B. Chen, M. Behl, and J. L. Goodall, “Trust me, my neighbors say it’s
raining outside: Ensuring data trustworthiness for crowdsourced weather
stations,” in Proc. BuildSys, 2018, pp. 25–28.

[21] “Control4 driver search.” Control4. Jan. 2019. Accessed: Dec. 10, 2019.
[Online]. Available: https://drivers.control4.com/solr/drivers/browse

[22] “Control4 operating system OS release notes.” Control4. 2010.
Accessed: Jun. 20, 2020. [Online]. Available: https://silo.tips/download/
control4-operating-system-os-release-version-releasenotes-copyright-
2010-contro

[23] “Press release: Four years in a row, Control4 named leading whole-
house automation brand in CEPro brand analysis.” Control4. 2018.
Accessed: Jun. 20, 2020. [Online]. Available: https://www.control4.
com/press_releases/2018/07/05/four-years-in-a-row-control4-named-
leading-whole-house-automation-brand-in-2018-cepro-brand-analysis/

[24] “Getting started with composer pro.” Control4. Jun. 2010. [Online].
Available: https://www.yumpu.com/en/document/view/35663397/
composer-pro-getting-started

[25] “Crestron technical institute.” Crestron. Accessed: Dec. 10, 2019.
[Online]. Available: https://www.crestron.com/Training-Events/Training

[26] K. Denney, L. Babun, and A. S. Uluagac, “USB-watch: A generalized
hardware-assisted insider threat detection framework,” J. Hardw. Syst.
Security, vol. 4, pp. 136–149, Mar. 2020.

[27] K. Denney, E. Erdin, L. Babun, M. Vai, and S. Uluagac, “USB-watch: A
dynamic hardware-assisted USB threat detection framework,” in Proc.
SecureComm, 2019, pp. 126–146.

[28] “Control4 drivers.” Drivercentral. 2020. Accessed: May 20, 2020.
[Online]. Available: https://drivercentral.io/platforms/control4-drivers

[29] Y. Jia, F. Zhong, A. Alrawais, B. Gong, and X. Cheng, “FlowGuard: An
intelligent edge defense mechanism against IoT DDoS attacks,” IEEE
Internet Things J., vol. 7, no. 10, pp. 9552–9562, Oct. 2020.

[30] “Attack signature.” Kaperski. 2021. Accessed: Jan. 15, 2022. [Online].
Available: https://encyclopedia.kaspersky.com/glossary/attack-signature/

[31] A. Karapetyan, S. C.-K. Chau, K. Elbassioni, M. Khonji, and
E. Dababseh, “Smart lighting control using oblivious mobile sensors,”
in Proc. BuildSys, 2018, pp. 158–167.

[32] C. Kaygusuz, L. Babun, H. Aksu, and A. S. Uluagac, “Detection of
compromised smart grid devices with machine learning and convolution
techniques,” in Proc. IEEE ICC, 2018, pp. 1–6.

[33] K. Lancaster. “Control4 delivers high-resolution audio and homeowner
personalization enhancements to elevate the smart home experience.”
Sep. 2018. Accessed: Dec. 10, 2019. [Online]. Available: https://cutt.ly/
8pW1b2Q

[34] J. Lopez, L. Babun, H. Aksu, and A. Uluagac, “A survey on function
and system call hooking approaches,” J. Hardw. Syst. Security, vol. 1,
pp. 114–136, Sep. 2017.

[35] J. Myers, L. Babun, E. Yao, S. Helble, and P. Allen, “MAD-IoT: Memory
anomaly detection for the Internet of Things,” in Proc. IEEE Globecom
Workshops (GC Wkshps), 2019, pp. 1–6.

[36] A. I. Newaz, A. K. Sikder, L. Babun, and A. S. Uluagac, “HEKA: A
novel intrusion detection system for attacks to personal medical devices,”
in Proc. IEEE CNS, 2020, pp. 1–9.

[37] Viruses Frame PC Owners for Child Porn, CBS News, New York, NY,
USA, Nov. 2009. Accessed: Dec. 10, 2019.

[38] Pinkoos. “Apple TV tvOS 13 killed my remote programming.” 2019.
Accessed: May 20, 2020. [Online]. Available: https://www.c4forums.
com/topic/32727-psa-apple-tv-tvos-13-killed-my-remoteprogramming/

[39] L. C. P. Rondon, L. Babun, K. Akkaya, and A. S. Uluagac, “HDMI-
watch: Smart intrusion detection system against HDMI attacks,” IEEE
Trans. Netw. Sci. Eng., vol. 8, no. 3, pp. 2060–2072, Jul.–Sep. 2021.

[40] H. Rashid, N. Batra, and P. Singh, “RIMOR: Towards identifying
anomalous appliances in buildings,” in Proc. BuildSys, 2018, pp. 33–42.

[41] L. P. Rondon, L. Babun, K. Akkaya, and A. S. Uluagac, “HDMI-walk:
Attacking HDMI distribution networks via consumer electronic control
protocol,” in Proc. 35th ACSAC, 2019, pp. 650–659.

[42] L. P. Rondon, L. Babun, A. Aris, K. Akkaya, and A. S. Uluagac,
“PoisonIvy: (In)secure practices of enterprise IoT systems in smart
buildings,” in Proc. BuildSys, New York, NY, USA, 2020, pp. 130–139.

[43] L. P. Rondon, L. Babun, A. Aris, K. Akkaya, and A. S. Uluagac,
“LightningStrike: (in)secure practices of E-IoT systems in the wild,”
in Proc. 14th ACM Conf. Security Privacy Wireless Mobile Netw.,
New York, NY, USA, 2021, pp. 106–116.

[44] L. P. Rondon, L. Babun, A. Aris, K. Akkaya, and A. S. Uluagac,
“Survey on enterprise Internet-of-Things systems (E-IoT): A security
perspective,” Ad Hoc Netw., vol. 125, Feb. 2022, Art. no. 102728.

[45] S. Seth. “What is botnet mining?” 2019. Accessed: Jan. 23,
2020. [Online]. Available: https://www.investopedia.com/tech/what-
botnet-mining

[46] A. Sforzin, F. G. Mármol, M. Conti, and J.-M. Bohli, “RPiDS:
Raspberry Pi IDs—A fruitful intrusion detection system for IoT,” in
Proc. Int. IEEE Conf. Ubiquitous Intell. Comput. Adv. Trusted Comput.
Scalable Comput. Commun. Cloud Big Data Comput. Internet People
Smart World Congr. (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld),
2016, pp. 440–448.

[47] A. K. Sikder, H. Aksu, and A. S. Uluagac, “6thSense: A context-aware
sensor-based attack detector for smart devices,” in Proc. 26th USENIX
Security, 2017, pp. 397–414.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 14:02:09 UTC from IEEE Xplore. Restrictions apply.

8546 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 10, 15 MAY 2023

[48] A. K. Sikder, L. Babun, H. Aksu, and A. S. Uluagac, “Aegis: A context-
aware security framework for smart home systems,” in Proc. ACSAC,
2019, pp. 28–41.

[49] A. K. Sikder et al., “Kratos: Multi-user multi-device-aware access con-
trol system for the smart home,” in Proc. 13th ACM WiSec, 2020,
pp. 1–12.

[50] R. Vishwakarma and A. K. Jain, “A survey of DDoS attacking tech-
niques and defence mechanisms in the IoT network,” Telecommun. Syst.,
vol. 73, no. 1, pp. 3–25, 2020.

[51] Zaphod. “Why is Lua used for Control4 driver programming.”
May 2017. [Online]. Available: https://www.c4forums.com/topic/24086-
why-is-lua-used-for-control4-driverprogramming/

Luis Puche Rondon received the bachelor’s degree
in computer science and the master’s degree in
cybersecurity from Florida International University,
Miami, FL, USA, in 2016 and 2017, respectively.

He is a member of the Cyber-Physical Systems
Security Lab, Department of Electrical and
Computer Engineering, Florida International
University, and a CyberCorps Scholarship for
Service Fellow. He has over a decade of experience
in audio/video, smart homes, professional smart
systems, and CCTV installations. His research

interests focus on the security of enterprise Internet of Things systems, and
the security implications of threats under-researched threat vectors.

Leonardo Babun (Member, IEEE) received the
first master’s degree in electrical engineering from
Florida International University, Miami, FL, USA,
in 2015, and the second master’s degree in
computer engineering and the Doctoral degree
in electrical and computer engineering from the
Department of Electrical and Computer Engineering,
Florida International University, in 2019 and 2020,
respectively.

He is currently a member of the Cyber-Physical
Systems Security Lab and a CyberCorps Scholarship

for Service Alumni with the Department of Electrical and Computer
Engineering, Florida International University. His research interests are
focused on the security and privacy of cyber–physical systems and Internet
of Things.

Ahmet Aris received the B.Sc. degree in computer
engineering from Bahcesehir University, Istanbul,
Turkey, in 2009, and the M.Sc. and Ph.D. degrees
in computer engineering from the Graduate School
of Science, Engineering and Technology, Istanbul
Technical University, Istanbul, 2012 and 2019,
respectively.

He is a Research Assistant Professor with the
Department of Electrical and Computer Engineering,
Florida International University, Miami, FL, USA,
and is conducting research in Cyber-Physical

Systems Security Lab under the supervision of Dr. A. S. Uluagac. He
also worked with the Medianova CDN R&D Center, Istanbul, as an R&D
Analyst. He conducted research with the Networked Embedded Systems
Group, Swedish Institute of Computer Science, Kista, Sweden, as a Visiting
Researcher. His research interests include IoT security, network security, Web
security, and malware.

Kemal Akkaya (Senior Member, IEEE) received the
B.S. degree in computer engineering and information
sciences from Bilkent University, Ankara, Turkey,
in 1997, the M.S. degree in computer engineering
from Middle East Technical University, Ankara, in
1999, and the Ph.D. degree in computer science
from the University of Maryland Baltimore County,
Baltimore, MD, USA, in 2005.

He leads the Advanced Wireless and Security
Lab, Florida International University, Miami, FL,
USA. His research areas span various challenges of

mobile and wireless networks, Internet of Things, and cyber–physical systems,
such as security, privacy, quality of service, topology control, and mobility
management.

Dr. Akkaya is the Area Editor of the Ad Hoc Networks (Elsevier) and
serves for the editorial board of the IEEE COMMUNICATION SURVEYS AND

TUTORIALS. He has been a guest editor for various journals and serves
for the organizing committees of leading IEEE communication conferences,
such as IEEE LCN, ICC, Globecom, WCNC, and SmartGridComm. He is a
member of the IEEE Computer Society and IEEE Technical Committees on
Communication, Cybersecurity, Smart Cities, and Online Social Networks.

A. Selcuk Uluagac received the first M.Sc. degree
in electrical and computer engineering (ECE) from
Carnegie Mellon University, Pittsburgh, PA, USA,
in 2002, the second M.Sc. degree in information
security from the School of Computer Science, The
Georgia Institute of Technology (Georgia Tech),
Atlanta, GA, USA, in 2009, and the Ph.D. degree
with a concentration in information security and
networking from the School of ECE, Georgia Tech
in 2010.

He is currently an Associate Professor with the
Department of ECE, Florida International University (FIU), Miami, FL, USA.
Before joining FIU, he was a Senior Research Engineer with the School of
ECE, Georgia Tech. Prior to Georgia Tech, he was a Senior Research Engineer
with Symantec, Mountain View, CA, USA. The focus of his research is on
cybersecurity topics with an emphasis on its practical and applied aspects. He
is interested in and currently working on problems pertinent to the security
of cyber–physical systems and Internet of Things.

Dr. Uluagac received the Faculty Early Career Development (CAREER)
Award from the U.S. National Science Foundation in 2015 and the Summer
Faculty Fellowship from the University of Padua, Padua, Italy, in 2016.
He was awarded the U.S. Air Force Office of Sponsored Research’s 2015
Summer Faculty Fellowship in 2015. He is currently the Area Editor of the
IEEE TRANSACTIONS ON MOBILE COMPUTING and Computer Networks
(Elsevier), and serves for the editorial board of the IEEE COMMUNICATION

SURVEYS AND TUTORIALS as the Network Security Track Lead. He is also
an active member ACM and ASEE and a regular contributor to national pan-
els and leading journals and conferences in the field. More information can
be obtained from: http://web.eng.fiu.edu/selcuk.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 14:02:09 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

