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As many vulnerabilities of one-time authentication systems have already been uncovered, there is a growing
need and trend to adopt continuous authentication systems. Biometrics provides an excellent means for pe-
riodic verification of the authenticated users without breaking the continuity of a session. Nevertheless, as
attacks to computing systems increase, biometric systems demand more user information in their operations,
yielding privacy issues for users in biometric-based continuous authentication systems. However, the cur-
rent state-of-the-art privacy technologies are not viable or costly for the continuous authentication systems,
which require periodic real-time verification. In this article, we introduce a novel, lightweight, privacy-aware,

and secure continuous authentication protocol called PACA. PACA is initiated through a password-based key
exchange (PAKE) mechanism, and it continuously authenticates users based on their biometrics in a privacy-
aware manner. Then, we design an actual continuous user authentication system under the proposed protocol.
In this concrete system, we utilize a privacy-aware template matching technique and a wearable-assisted key-
stroke dynamics-based continuous authentication method. This provides privacy guarantees without relying
on any trusted third party while allowing the comparison of noisy user inputs (due to biometric data) and
yielding an efficient and lightweight protocol. Finally, we implement our system on an Apple smartwatch and
perform experiments with real user data to evaluate the accuracy and resource consumption of our concrete
system.
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1 INTRODUCTION

Efforts to improve the security of the authentication services have historically progressed from
what-you-know (i.e., passwords) to what-you-have (i.e., tokens), then to what-you-are (i.e., bio-
metrics) as attacks have increased in sophistication and become widespread [80, 85]. While the
deployment of biometric authentication systems increases the usability of the authentication sys-
tems, the plethora of cyber-attacks demands more user information from biometrics, which intro-
duces additional security and privacy challenges in the authentication systems.

In this landscape, another challenge is due to the nature of one-time authentication, which veri-
fies users only at the initial login session regardless of being single- or multi-factor. This is a serious
security risk as once the attacker bypasses the initial authentication, it will have a forever access
or if the user leaves the system intentionally/unintentionally unlocked, anyone such as an insider
or a strong outsider adversary [11], who has physical access to the system will have access to the
system without the actual user notification. Therefore, the user should be continuously monitored
and re-authenticated. In the literature, several solutions such as time-out or token (or even RFID)
based solutions are proposed to address these issues in the authentication systems [55]. Indeed,
biometric-based systems are considered to be ideal and usable for such cases as they cannot be
easily misplaced unlike tokens, or forgotten unlike passwords, or easily forged by an imposter.

The method of verifying and authorizing the user throughout the session is called continuous

authentication. A motivational example for continuous authentication would be an enterprise work
environment where multiple users can access the same devices. There have already been several
attempts to commercialize continuous authentication as a product in enterprise settings [12, 39, 63].
It has also been shown that continuous authentication can be useful to provide extra security
when the user is out of a trusted office environment [22] or highly critical/sensitive computing
environment such as government offices [64].

Problem Statement. In this study, our goal is ultimately to design a continuous authentication
protocol. Since especially behavioral biometrics are ideal in terms of security and usability, this
study explores the use of behavioral biometrics for this goal. However, in traditional biometric
authentication systems, it is generally assumed that an authentication server and a decision mod-
ule have access to feature vectors of users in plaintext form [21, 31] during the authentication
phase. This, in principle, violates the privacy of biometric data and a malicious/compromised au-
thentication server may infer a lot of useful information about the user. For example, it has been
shown that the gender [35, 40], the demographics [30], the emotional state [36], the application
context [17] or what the user is typing (e.g., password inference [78, 89]) can be effectively inferred
from the keystroke dynamics, which is a behavioral biometric. Therefore, the problem here is to
design a privacy-preserving continuous authentication protocol, allowing the computation of the
authentication decision on the secure templates generated from the noisy biometric user data. The
function to generate the secure templates should not allow to recover the user biometrics from a
given template (i.e., irreversibility) and should not allow to link the given template to a user (i.e.,
unlinkability).

Our Approach. In this article, we tackle these challenges and propose a novel lightweight
privacy-aware continuous authentication protocol, called PACA. In our protocol, we utilize the
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password-authenticated key exchange (PAKE) primitive, which we adapt for the biometric
continuous authentication. This provides basic security requirements of our protocol, such as a se-
cure channel between the user and server, mutual authentication, forward secrecy, as well as the
resistance against pre-computation attacks. In our design for an actual privacy-aware continuous
authentication method, we utilize a secure and noise-tolerant template generation and matching
technique called NTT-Sec-R, and combine it with a wearable-assisted continuous authentication
method called WACA. NTT-Sec-R irreversibly transforms the feature vectors, but still allows us
to distinguish genuine pairs from imposter pairs. The novel security enhancements proposed in
this article are applicable to a wide range of biometric authentication mechanisms when feature
vectors are represented as fixed-length real-valued vectors. One of the important applications of
such systems is sensor-based keystroke dynamics, which could be used in the authentication of
computer [7, 8], smartphone [56], and wearable [38] users.

Contributions. We summarize our contributions as follows:
• We construct a lightweight, privacy-aware, and secure continuous authentication protocol.

Previous works have been overlooking this and missing the details of a full protocol. To the

best of our knowledge, our work is the first lightweight privacy-aware protocol for continuous
biometric authentication methods. It is initiated through a PAKE protocol and it continu-
ously authenticates users based on their biometrics. Moreover, it is generic in the sense that
one can instantiate it using a large class of secure template generation and matching algo-
rithms, and biometrics-based authentication systems.
• We also design an actual system (the system, its full implementation, and its detailed

evaluation) under the proposed protocol: a hybrid (password and keystroke dynamics),
continuous, and privacy-preserving biometric authentication for utilized and optimized a
wearable-assisted continuous authentication mechanism, and NTT-Sec to handle the real-
valued feature vectors while preserving the accuracy. The use of PAKE and NTT-Sec allows
one to avoid TLS, any certification authority, verification of certificates, and long-term
private keys [41, 75].
• We provide a detailed security and privacy analysis of the proposed protocol against eight

different well-known attacks [66] for the biometrics-based authentication methods. We first
identify several security requirements. Moreover, we particularly describe detailed attack
strategies, and then analyze the resistance of our protocol against those attacks. The secu-
rity enhancements proposed in this article are applicable to any biometric authentication
mechanisms, where feature vectors are represented as fixed-length real-valued vectors.
• We deployed the proposed scheme and provided extensive results with data collected

from users wearing an Apple smartwatch to assess the security, accuracy, and resource
consumption. More specifically, we provided some concrete estimates for the security of the
proposed system, and we report on the timing results, and the false acceptance/rejection
rates. Finally, we also measured the resource consumption on a real computing device (e.g.,
smartwatch).

Organization. The rest of the article is organized as follows: In Section 2, we present our system
and security model. Then, in Section 3, we give a detailed description of our privacy-aware
biometrics-based continuous authentication protocol. In Section 4, we analyze the basic security
requirements of the protocol as well as its robustness against eight different attacks. After that,
in Section 5, we present a concrete system under the protocol presented in the previous section
and its security analysis. Section 6 presents full implementation details, the accuracy analysis,
as well as the resource consumption analysis of our concrete system. Finally, we discuss related
work and conclude this article in Sections 7 and 8, respectively.
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2 SYSTEM AND SECURITY MODEL

In this section, in order to understand the threat model, we present the basic security requirements
of the protocol. Then, we also present the system components and parameters of the protocol, and
the assumptions made.

2.1 Security Requirements of the Protocol

The security requirements of our continuous authentication protocol are as follows:

Secure Channel. The communication between the user and the authentication server should be
secure against any eavesdropping or interception [13].

Mutual Authentication. The proposed authentication protocol should support the mutual authen-
tication between the user and the authentication server.

Forward Secrecy. This protects past sessions and session keys even after the long-term secret
keys of the parties, future sessions, and future sessions keys are compromised.

Resistance against Known Attacks. In addition to the security requirements above, our proposed
protocol should be resistant to the main threats known against privacy-aware biometrics-based
authentication protocols [62, 66]. We split these threats into four categories: (1) Password recovery
attacks, (2) Impersonation attacks, (3) Session intervene attacks, and (4) Biometric recovery attacks.
The more details about the attacks and their analysis for PACA are explained in Section 4.

2.2 System Components and Parameters

Our continuous authentication protocol consists of three main components: (1) Password-
authenticated Key Exchange (PAKE), (2) User, and (3) Continuous Authentication Server (CAS).
Figure 1 illustrates the interactions between the main components of the protocol. (1) User extracts
the elements of the feature vector via a feature extraction algorithm and transforms the feature
vector to its corresponding template through template generation function. (2,3) After that, the
template is transmitted to CAS through the secure channel provided by the PAKE protocol, which
also provides the mutual authentication between the user and the server and forward secrecy prop-
erties. (4,5) After receiving the user’s freshly generated template, the CAS also retrieves the user’s
already registered template from the database and compares them via the template comparison
function. The template comparison function returns a similarity score. The server device decides
the authentication result by comparing this similarity score with a predetermined threshold value.
In the end, the final authentication result is returned to the user side via the underlying PAKE
method. Before explaining the details of our protocol and its components, we also give the descrip-
tion of the symbols used in the protocol in Table 1. In the following subsections, we explain the
details of the components.

1. Password-Authenticated Key Exchange (PAKE). Our authentication protocol utilizes a (strong)
password-authenticated key exchange (PAKE) method with some strong security properties.
OPAQUE [52] and SRP-6 [87] are examples of such a protocol that satisfy the following features:

(1) Public Key Infrastructure (PKI) is not needed because PAKE protocols reduce the security
of the system to only the user’s password without relying on an outside keying material such
as public keys [52]. This is a big advantage from the efficiency point of view because TLS,
any certification authority, verification of certificates, long-term private keys, and so on are
not required. Another advantage from a security point of view is that any potential failure
in PKI is not an issue anymore (such as invalid certificates [1], stolen private keys [2], etc.).

(2) A user and server can mutually authenticate each other.
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Fig. 1. System components of our proposed continu-

ous authentication protocol, PACA. The detailed def-

initions are given in Section 2.2.

Table 1. The Symbols Used Throughout This Article

Symbol Description

Useri ith user
Idi the identity of user i

Pwdi ith user’s password
Bioi,t biometrics of the user i at time t

UsrDevi ith user’s device
UsrDevi,k the k th device of the ith user

Ext feature extraction
fi,t feature vector of user i at time t

ti,t biometric template of the user i at time t

TempGen template generation algorithm
TempComp template comparison algorithm

s similarity score
DBi information of the user i at database

SerDevk k th server device
CAS continuous authentication server
Ti threshold value of the user i

Time constant time
NumQuer number of query

NumMatch number of match query
MinQuer constant number of minimum query

MinMatch constant number of match query
Ki shared session key between user i and server

(3) The server stores only a cryptographic transformation of the user’s password. The password
is never sent in clear, and the server does not learn the password of the user.

(4) Pre-computation attacks [52] are not applicable. Such attacks do apply to some password-
based protocols if salts are not used, or they are sent in clear from a server to a user, but they
do not apply to the specific PAKE instantiations as specified above.

(5) To recover the password of a selected user, the adversary can only mount an exhaustive
offline dictionary attack after compromising user data on the server. This attack cannot be
avoided but it is computationally not feasible as only the cryptographic transformation of
the password is stored on the server.

2. User. Throughout this article, Useri = (Pwdi ,Bioi,t ,UsrDevi ) denotes a user indexed with i , her
password, her biometric data indexed with t , indicating different measurements of the biometric
data of a user, and her device used for collecting the biometric data. A user has access to feature
extraction and template generation algorithms:

• fi,t ← Ext(Bioi,t ) denotes a feature extraction algorithm. The parameter t considers that
different measurements of the same biometric data may result in different feature vectors,
i.e., in general, fi,t1 � fi,t2 for t1 � t2. We assume that the feature extraction always runs on
a user device such as user’s computer. Biometric data and extracted features are stored only
temporarily on this device, and they are deleted after being communicated to another device
or entity in our protocol.
• ti,t ← TempGen(fi,t ) refers to the one-way transformation of the feature vector into a more

secure template, while allowing comparison on the transformed version as well as provid-
ing irreversibility and indistinguishability [44] and it corresponds to the traditional hash in
password-based systems. Similar to the feature extraction, the operation can be performed
on the user device.

3. Contnuous Authentication Server (CAS). CAS denotes an authentication server that validates or
invalidates an enrollment or an authentication query initiated by a user (or by an adversary who
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is trying to impersonate a user). CAS indicates the validity or invalidity of a query by an output of
1 or 0, respectively. CAS has access to a template comparison algorithm and manages a database
and server devices that the users interact with:

• s ← TempComp(ti,t1 , ti,t2 ) denotes a template comparison algorithm that takes two tem-
plates ti,t1 and tj,t2 captured at two different times as input, and outputs a similarity score,
s ∈ R, quantifying the similarity of the underlying biometric data pair (Bioi,t1 ,Bioj,t2 ).
• DB denotes a database that stores information about the users who are enrolled with CAS.

For convenience, DBi denotes the information about Useri . This information is comprised
of the user’s identity, a cryptographic transformation of her password, and her biometric
template along with her matching thresholds. The full definition is given in Section 3.0.1.
• SerDev denotes a server device which the user is trying to log in, such as the desktop or

laptop computers of the user. CAS may manage more than one server device. In this case,
the kth device of CAS is denoted SerDevk .

2.3 Assumptions

We list our assumptions regarding the components of the system as follows:

• In general, Bioi,t1 � Bioi,t2 . We assume that each user has at least one device that can extract
biometric information of that user. In one of the applications described in this article, we
equip users with a smartwatch that extracts the typing behavior of its user. As they are
commodity devices, they are easily accessible to many users.
• The user-specific values and devices are distinct and not shared among other users in a

regular run of our protocol. More formally, we assume Useri � Userj , Bioi,t1 � Bioj,t2 , and
UsrDevi � UsrDevj for i � j. It also worth noting that a malicious user may control a user
device, or a user password may be stolen, but we treat these scenarios as attack scenarios
and analyze them in detail to show how our work is robust against these attacks in Section 4.
• A user may have more than one device. In this case, the kth device of the ith user is denoted

UsrDevi,k .
• We assume the adversary is a computationally bounded, active adversary who tries to

achieve some adversarial goals in Section 4.2 to break the security and/or privacy of the
users or the system.
• We assume the right user is enrolled during the enrollment phase of the protocol.

3 CONTINUOUS AUTHENTICATION PROTOCOL

In this section, we describe our novel continuous authentication protocol, which includes both the
password authentication phase and continuous authentication using the biometrics of the user.
Particularly, in our continuous authentication protocol, a user, Useri , is involved in two phases.
The enrollment phase is implemented only once and can be implemented at any time before the
authentication phase. The authentication phase consists of two parts. The initialization part is
implemented only one time, but it has to be implemented every time the user wants to log in. It
is required to establish a secure and authentic channel between the user and CAS. Finally, the
authentication phase is performed periodically, in which the period depends on the underlying
biometrics-based authentication mechanism. We explain the details of enrollment and authentica-
tion phases below and illustrate them in Figures 2, 3, and 4, respectively.

3.0.1 Enrollment Phase. In the enrollment phase, a secure template is generated from a biomet-
ric trait and stored in CAS. The following are the steps of the enrollment phase:

(1) Useri computes ti,0 = TempGen(Ext(Bioi,0)).
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Fig. 2. The enrollment phase of our proposed continuous authentication protocol.

Fig. 3. The initialization phase of our continuous authentication protocol.

(2) Useri registers a cryptographic transformation of her password Pwdi , her template ti,0 along
with her identity, Idi by following the underlying PAKE protocol. Note that during en-
rollment, CAS may want to authenticate Useri and her information through her physical
presence. Moreover, CAS may store additional information about the user in DBi such as
her matching threshold value Ti . The final stored information for each user is shown as
DBi = (Idi , Pwd

′
i , ti,ctr 0 ,Ti ).

3.0.2 Authentication Phase. In the authentication phase, a user’s biometric template is periodi-
cally verified by the authentication server after a secure and authentic channel is initialized based
on PAKE.

Initialization. Useri and CAS execute the underlying PAKE protocol to authenticate each other
mutually and generate a session key Ki , which then establishes a secure and authentic channel. If
the mutual authentication is successful, then

(1) CAS sets the constants Time, MinQuer, and MinMatch.
(2) CAS initiates a continuous session for Useri (granting access to Useri on the server device,

SerDev such as her computer.

Continuous Authentication. In this phase, a user generates her templates and sends them to CAS

through the secure and authentic channel established in the initialization phase. Assuming the
mutual authentication in the initialization phase is successful, the following steps are executed
and are shown in Figure 4:
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Fig. 4. The continuous authentication phase of our continuous authentication protocol.

(1) CAS sets its system time t = 0, NumQuer = 0, NumMatch = 0, and keeps track of the
system time t .

(2) Useri continuously computes her secure biometric templates ti, j for j = 1, 2, . . . , and sends
packages of the form (ti, j | |j )1 to CAS using the confidential and authentic channel estab-
lished through the shared session key Ki . For each valid package that CAS receives, CAS

increments NumQuer by one, and for each ti, j with TempComp(ti,0, ti, j ) ≥ Ti , CAS incre-
ments NumMatch by one.

(3) If NumQuer == MinQuer at time t and t ≤ Time, then
• If NumMatch ≥ MinMatch, then return (1), indicating the continuity of the session.
• If NumMatch < MinMatch, then CAS terminates the session and the protocol halts.

(4) If NumQuer < MinQuer in time t and t = Time, then CAS terminates the session and the
protocol halts.

(5) If CAS returns 1, the protocol continues from step (2), where the user computes her new
biometric template periodically.

If CAS terminates the session, the action to be taken after the termination of the session (e.g.,
interruption, ended, timed out) depends on the security policy defined by the system administrator.
For example, an example policy could be as follows: (1) To return to the initialization phase of the
continuous authentication after the first failed attempt, where a new session key is generated
between the user and CAS; (2) To request to reset the user password and repeat the enrollment
after the three failed attempts phase as it is possible that an intruder is trying to imitate the user.

1Here, appending j plays the role of a counter to prevent some obvious replay attacks.
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4 SECURITY & PRIVACY ANALYSIS

In this section, we analyze the security requirements of the protocol and we show how PACA is se-
cure and robust against eight well-known malicious attacks against the privacy-aware biometrics-
based authentication protocols.

4.1 Analysis of Security Requirements of the Protocol

In our protocol, the basic requirements are provided through the PAKE protocol executed dur-
ing the initialization phase. A particular example of this PAKE protocol could be OPAQUE [52],
which is a strong asymmetric PAKE protocol providing security against pre-computation attacks.
In [52], the different versions of the PAKE protocol with different security features are proposed.
We specifically consider the version called “the generic OPRF+AKE construction”. This version is
based on Oblivious Pseudo-Random Functions (OPRF) and Authenticated Key Exchange

(AKE). The full description of the OPAQUE protocol providing the full forward secrecy and mu-
tual authentication and generating the shared session key between the parties with only three
messages exchanged between the user and server can be found in Figure 12 of [52]. In the follow-
ing subsections, we will show how this specific version of OPAQUE provides the secure channel
and satisfies the perfect forward secrecy and mutual authentication in PACA.

Secure Channel. The primary use case of PAKE protocols [52, 87] is that the user does not need
to rely on any outside key other than his password. The shared session key Ki is generated from
the user’s low-entropy password during the execution of the OPAQUE protocol. Then, throughout
the entire session, the secure channel is provided through this shared session key. This provides a
confidential and authentic communication channel and protects the current session against eaves-
dropping and man-in-the-middle attacks. Particularly, in PACA, this shared session key Ki is gen-
erated during the initialization phase of our protocol after executing the PAKE protocol between
the Useri and CAS.

Mutual Authentication. TLS provides only server-side authentication through the certificates,
and the password provides the authentication for the user side. However, PAKE protocols achieve
mutual authentication without the need for TLS or any PKI infrastructure. For example, the
OPAQUE [52] protocol uses HMQV [53] as a base AKE protocol to provide mutual authentica-
tion. HMQV extends the computational Diffie-Hellman (DH) key exchange with Exponential

Challenge-Response (XCR) signatures. These signatures are proven to be unforgeable in [53],
and they are computed directly on the identity of parties. The ability of parties to provide the sig-
nature shows the proof that exchange is carried by the claimed parties and since the messages on
which the signatures are computed are directly the identity of the user and server, it proves that the
key they computed is uniquely associated with the correct identities (i.e., mutually authenticated).

Forward Secrecy. A protocol is said to have the forward secrecy [53] if the session keys of previous
runs cannot be recovered by the attacker after the keys are established, used, and deleted from the
memory even after the compromise of long-term keys. Similar to the mutual authentication, the
forward secrecy in OPAQUE is provided by the HMQV protocol. The perfect forward secrecy can
be achieved if one of the user messages depends on the user’s private key. This is achieved by
letting DH values by both parties for the session.

4.2 Attack Resistance

In this section, we first present several known attacks against privacy-aware biometrics-based
authentication systems [62, 66] and we also analyze our protocol to see if it is robust against these
attacks. More specifically, we present the adversarial goals (AGs) by focusing on the adversarial
model, attack strategies, their analysis, and the countermeasures our protocol provides against
the attacks.
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In our proposed continuous authentication protocol, the underlying PAKE method provides the
basic security features given in Section 4.1; however, it does not guarantee that the user data will
not be revealed to the CAS. This violates the privacy of the user against the server, and to protect
the user privacy, in the next section, we propose the use of NTT-Sec-R for realizing the function
TempGen() which is used as a black-box function. The proposed template generation function and
its benefits are separately evaluated in Sections 5.3 and 5.4.

AG-1: Password Recovery Attacks. In this attack, the adversary’s goal is to recover the password
of a user (Pwdi ). The underlying protocol prevents an attacker to read the transmitted packets
through the secure channel. An adversary who is capable of actively controlling sessions or com-
promising a server can achieve this goal only if he succeeds in an exhaustive offline dictionary
attack.
Analysis of the attack: Such dictionary attacks cannot be prevented perpetually, but strong pass-
words would increase the run time of the attack. More precisely, assuming that users choose their
passwords uniformly at random from a password space PassSpace , then the attack would require
|PassSpace | trials. In OPAQUE [52], it has been shown that the cost can be increased by increasing
the number of iterations in the hashing operation (i.e., replacing H with Hn in the full protocol).
Moreover, we quantify the cost of this attack in Section 5.3.1 particularly for our implementation.
Also, note that obtaining the user’s password through social engineering techniques is out of this
work’s scope.

AG-2: Impersonating the User (or the Server) at the Initial Login Phase. In this attack, the adver-
sary’s goal is to initiate a session and generate a valid session key (Ki ) on behalf of a user, or
impersonate a server to a user. These may be achieved by the following two attacks:

(1) Replay attack: The adversary may try to replay messages from the previous runs of the pro-
tocol between the user and the server.
Analysis of the attack: Such an attempt would fail thanks to the fresh and randomized session
keys generated per session with PAKE.

(2) Password recovery attack through the user impersonation: If an adversary achieves AG-1
above, she can clearly achieve AG-2. In other words, if the attacker can recover the user’s
password, then the attacker can impersonate the user during the shared session key gener-
ation in the enrollment phase of the authentication.
Analysis of the attack: As in the analysis of AG-1, an offline dictionary attack cannot be pre-
vented perpetually, but strong passwords would increase the run time of the attack.

AG-3: Session Intervene. In this attack, the adversary’s goal is to intervene an active session of a
user, and to stay undetected as long as possible while behaving maliciously (e.g., interacting with
SerDev and impersonating Useri ). In the following, we assume that Useri initiates a session with
CAS and they both computes the shared session key Ki . We also assume that UsrDevi stores a
copy of Ki . The adversary can achieve AG-3 as follows:

(1) Package delay attack: In this first attack scenario, an adversary eavesdrops the communi-

cation between Useri and CAS, and interrupts a sequence of legitimate packages (includ-
ing templates and their counters (ti, j | |j ), j = 1, 2, . . . ,k , encrypted under Ki ) going from
Useri to CAS. Now, suppose that Useri is out for lunch after sending her last package and
leaves the server device SerDev unlocked.2 Then, the adversary forwards the packages she
already collected to CAS while behaving maliciously on SerDev. Receiving sufficiently many

2This is a reasonable user behavior in a continuous biometric authentication scheme as such systems assure that adversaries
can successfully be detected when they try to impersonate legitimate users.
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legitimate packages (e.g., at least MinQuer in time Time), CAS cannot distinguish the adver-
sary from Useri , and therefore, the adversary stays undetected and achieves her goal.
Analysis of the attack: This attack can be detected easily if the server device SerDev (i.e., the

user’s computer) acknowledges CAS immediately after an action is received on SerDev be-
cause CAS can detect whether or not the adversary is interrupting and delaying legitimate
packages while Useri is legitimately interacting with SerDev.

(2) Zero-effort and mimicking attacks: In this second attack scenario, we assume that Useri is out
for lunch after initiating a session with CAS and establishing Ki . We also assume that Useri

leaves her device UsrDevi behind, and leaves the server device SerDev unlocked. Now, the
adversary captures UsrDevi , and presents her own biometric measurements to CAS (zero-
effort attack), or tries to reproduce the physiological or behavioral characteristics of Useri

(i.e., imitation attack).
Analysis of the attack: The success rate of this attack would be strongly correlated to the FAR
of the system, and the uniqueness of the underlying biometric trait. If the underlying authen-
tication system has a low FAR, the system will identify the real user and the attacker trying
to mimic the user, which would prevent the mimicking attacks. See Section 6.1 for the FAR
rates of our protocol and see [8] for the robustness of WACA against the mimicking attacks.

(3) Session key reveal attacks: The third attack scenario is similar to the second one, but we
consider a more powerful adversary. We assume that Useri is not available after initiating a
session with CAS, establishing Ki , and sending some packages to CAS (including templates
and their counters (ti, j |j ), j = 1, 2, . . . ,k , encrypted under Ki ). We also assume that Useri

leaves her device UsrDevi behind and the server device SerDev unlocked. In addition, we
assume that the adversary recovers the session key Ki from UsrDevi . Having captured
some of the previously exchanged packages, the adversary can now recover ti, j using
the knowledge of the key Ki . Next, the adversary can form legitimate packages with the
appropriate counters and impersonate Useri during that current session.
Analysis of the attack: In PACA, the communication between CAS and User is protected
with the session key, which is created at the beginning of every session using the underlying
PAKE protocol. We do not consider this cascaded third attack to be a practical attack because
it requires an attacker to extract the session key from the User device in a relatively short
amount of time (i.e., before a new session starts, and a new session key is generated).

(4) Input device replacement attack: The fourth attack that we consider is a physical attack.
After a session is initiated between Useri and CAS, the attacker replaces the legitimate
input device of SerDev (e.g., a keyboard or a smartwatch) by her own malicious input device.
Useri may still think that she is interacting with SerDev through the legitimate input device,
and she may keep sending valid packages to CAS. In the meantime, SerDev receives the
adversary’s malicious input through the legitimate input device, and CAS keeps the session
live based on the legitimate packages it receives from Useri .
Analysis of the attack: This attack may work in theory, but it may be challenging to deceive
Useri that she is interacting with SerDev through the legitimate input device while indeed
she is providing her input through a malicious input device. Therefore, we do not consider
this fourth attack to be practical.

AG-4: Recovering Biometrics. In this attack, the adversary tries to recover the biometric informa-
tion of a user.

(1) Server compromise attack: The adversary may be able to capture some of the biometric
templates ti, j of Useri by compromising the server database, or by capturing some of the
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packages from a previous session and the session key Ki of that specific session. Then, the
adversary can try to reverse the templates (ti, j ) back to the biometric information (Bioi,t ).
Analysis of the attack: The success rate of the adversary would depend on the difficulty
of reversing templates for the given template generation algorithm. Therefore, this attack
does not seem to be feasible if an irreversible and indistinguishable template generation al-
gorithm TempGen is deployed. We show the proof of irreversibility and indistinguishability
of NTT-Sec-R in Section 5.3 more formally for our implementation.

4.3 Further Notes on the Attacks, their Limitations, and Justification for Multi-factors

(1) If an adversary captures the secure template of a user ti,t and a particular session key Ki ,
but not the password (Pwdi ), then the adversary can impersonate Useri only for that session,
because in the next session a fresh session key is generated by the underlying PAKE method
and without the knowledge of the new session key, the adversary cannot produce secure
templates and legitimate packages to send to CAS.

(2) If an adversary captures the password of a user (Pwdi ), but not the template of a user (ti,t ),
then she can initiate a session, but her chances for avoiding detection are limited by the
success probability of the mimicking attack or the zero-effort attack (or FAR attack).

(3) Another interesting scenario is when an adversary steals the template (ti,t ) and the pass-
word of a user (Pwdi ). In this case, the adversary can impersonate the user forever unless
the user becomes aware and resets the password and re-enrolls in the system. Therefore,
one may consider equipping the user device UsrDev with a public-key/private-key pair and
involve UsrDev in the session key generation at the beginning of the protocol. For example,
a UsrDev signature together with a timestamp can independently be used to confirm that
Useri is initiating a session with CAS. In this scenario, the adversary would need the tem-
plate, password, and also the user device to impersonate Useri . If the user cannot locate her
device at any time, she may acknowledge CAS, reset her password, and re-enroll. Moreover,
even if the two-way TLS is affordable in the system, a password would still provide an extra
barrier for the adversary in case she captures the user’s biometric information and device.

(4) So far, we have analyzed the different attack types. Each of these attacks can be instantiated
by an outsider or insider. It would be easier for an insider to instantiate a password recovery
attack, as an insider would have access to more privilege by having access to the authentica-
tion databases. On the other hand, an outsider who is passing through would also instantiate
these attacks. However, our analysis above does not change depending on the attacker type
in this manner.

We note that, even if UsrDev has a long-term private key and it becomes a part of the protocol in
the session key generation, one would still need a biometric factor because otherwise, an adversary
would successfully impersonate Useri in lunchtime type attacks by temporarily accessing UsrDev.

The use of a password is also important in our case because PAKE eliminates the need for TLS for
mutually authenticating Useri and CAS. Moreover, passwords provide extra protection against an
adversary who already captured the user’s biometric information and device. In summary, com-
bining all three factors [what you know (password), what you have (device), and who you are
(biometrics)] would provide the most comprehensive secure and privacy-aware setup.

5 FULL IMPLEMENTATION

In this section, we describe our hybrid (password and keystroke dynamics), continuous, and
privacy-preserving biometric authentication system, which is illustrated in Figure 5. Both for
performance evaluation purposes and as a walk-through proof-of-concept case study, we fully
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Fig. 5. The architecture of our concrete continuous authentication system used as a case study.

deployed Wearable-Assisted Continuous Authentication framework called WACA [7, 8] as an ex-
ample continuous biometric authentication system in this study. On the other hand, we utilized
NTT-Sec-R by improving NTT-Sec [49] as a template generation and comparison algorithm, to
address the aforementioned privacy issues in continuous biometric authentication settings.

In the following sections, we first explain WACA’s design and our modifications. Then, we ex-
plain NTT-Sec-R and show how to use it in the settings of continuous authentication. Finally, we
also show how NTT-Sec-R provides security properties such as irreversibility and indistinguisha-
bility while protecting the user templates from the third parties.

5.1 Testing with a Sample Continuous Authentication System

5.1.1 Original WACA. WACA is based on the idea of sensor-based keystroke dynamics, where
the authentication data is collected and extracted from the accelerometer and gyroscope sensors
of a wearable device (e.g., smartwatch). The raw motion sensor data of the smartwatch is acquired
through an app installed on the watch, and the sensor data is transmitted to the computer. In
our protocol, the wearable device corresponds to the parameter UsrDev, while the user’s com-
puter corresponds to SerDev parameter. The raw accelerometer data is represented in the format
of �acc = < ta ,xa ,ya , za > and gyroscope data is represented as �дyro = < tд ,xд ,yд , zд >, where
t is timestamp information and x ,y, z represent three axis values of the accelerometer and gy-
roscope sensors. To remove the effect of the noise from data, M-point Moving Average Filter

(MAF) is applied. Then, for the feature extraction, statistical features (Mean, Median, Variance, Av-
erage Absolute Difference of Peaks, Range, Mode, Covariance, Mean Absolute Deviation (MAD),
Interquartile Range (IQR), correlation between axes (xy, yz, xz), Skewness, Kurtosis, Entropy,
Spectral energy) for the 6-axis data is calculated to obtain a length of 84-point feature vector. Each
feature element is calculated over a certain time window of sensor data (i.e., 5 sec, 10 sec). Then,
the feature vector is normalized to obtain a scale-invariant vector through the linear normaliza-
tion. Then, in the authentication phase of WACA, the authentication decision is made by the de-
cision module by computing a similarity score between the feature vector dispatched from the
authentication server and the freshly generated feature vector of the current user. In the end, the
decision module makes a binary authentication decision (match/no-match) by comparing the sim-
ilarity score with a predetermined threshold value. If the decision is a no-match, then the user’s
access to computing terminal is suspended, and the user is required to re-login using the initial
authentication method (e.g., password, or 2FA [10, 57]). If the decision is a match, then the user’s
access is maintained without interrupting the user. This process is repeated periodically with a
predetermined period.

ACM Transactions on Privacy and Security, Vol. 24, No. 4, Article 24. Publication date: September 2021.



24:14 A. Acar et al.

5.1.2 New Feature Extraction and Optimization. The WACA dataset consists of 6-axis accelerom-
eter and gyroscope sensor data. The data was collected from the smartwatches of 20 users when
the users were typing randomly selected text for 4 minutes (see Typing Task-1 in [8] for more
detail). The raw samples are filtered using M-point Moving Average Filter to remove the noise’s
effect and obtain more smooth sensor data. We obtained the filtered sensor data from the study in
[8] and applied the following three optimizations on the original dataset:

• Feature Extraction: In the original WACA, statistical features (Mean, Median, Variance, Av-
erage Absolute Difference of Peaks, Range, Mode, Covariance, MAD, IQR, the correlation
between axes (xy, yz, xz), Skewness, Kurtosis, Entropy, Spectral energy) for 6-axis data is
calculated to obtain a length of the 84-point feature vector. Each feature is calculated over
the constant sample number (e.g., 1,000 samples). However, we calculated the features over
10 seconds of a constant time interval as it is more intuitive and meaningful. Indeed, it does
not affect the results as WACA uses 100-Hz constant frequency during the data collection.
At the end of the feature extraction, we obtained between 20-28 samples for each user. For a
better analysis, we used 20 feature vectors for each user. In brief, we used 20 feature vectors
with 84-features from 20 users in the rest of the article.
• Evaluation Model: In the original WACA, one sample from the genuine user is used as an au-

thentication sample, and other samples from the genuine user are used as genuine samples,
while all of the samples from other users are used as impostor samples. A score is calcu-
lated for each genuine and impostor pair for a predetermined threshold. Then, the rejected
samples of the genuine user are used to calculate False Rejection Ratio (FRR), and the ac-
cepted samples of the other users’ impostor samples are used to calculate False Acceptance

Rate (FAR). This is repeated for incrementing the threshold value, and the intersection of
the FRR and the FAR plot is reported as EER value. In our paper, we used a user-based eval-
uation model with training. In particular, we pick the first 10 feature vectors of the ith user
for training. Denote this set by Traini = {[i, j] : j = 1, . . . , 10}, and the remaining 10 fea-
ture vectors by Testi = {[i, j] : j = 11, . . . , 20}. We picked a subset of 5 feature vectors
from Traini , and computed the mean of these 5 feature vectors combinations. This is also

called the gallery feature vector of a user. As a result, we generated
(

10
5

)
= 252 gallery fea-

ture vectors per user (simulating 252 different enrollments of a user) and denoted this set
by Galleryi . In our EERi calculations, we paired each vector from Galleryi and Testi . This
yielded 252 · 10 = 2520 genuine comparisons for the ith user. For the ith user, we also paired
the first 10 vectors from Galleryi with all the vectors from Testj for all j � i . This yielded
10 · 10 · 19 = 1900 imposter comparisons for the ith user. We calculated EER for both the
original WACA’s evaluation model and our optimized evaluation model. We found the orig-
inal WACA’s EER 0.0586 while our optimized evaluation model provided 0.402 EER, where
we used 84-point feature vectors for both of them. We consider the reason behind the im-
proved accuracy in our new evaluation model is the training set, which settles down the
user’s features and results in better accuracy.
• Feature Selection: In the original WACA, a feature selection algorithm is not utilized. How-

ever, we observed that the 84-point feature vector both affects the security and performance
of the system negatively. To prevent this, we improved WACA by applying a feature selec-
tion algorithm. Specifically, we applied different univariate feature selection algorithms. The
reason we chose univariate algorithms is that we did not want the final feature vector to be
dependent on the algorithms used in the decision module. Particularly, we tested three differ-
ent univariate feature selection algorithms: Chi2 [3], Mutual Information [51], and ANOVA
F-test [4]. We re-calculated the EER using the best features selected by these three different
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Fig. 6. The graph shows the result of feature selection algorithms. In the graph, shows the minimum

EER point for all feature selection algorithms, which is obtained using the ANOVA F-test algorithm with 15

feature-point. On the other hand, shows the 84-feature point, which is the number of features used in the

original WACA study.

Table 2. Fifteen Features Chosen by ANOVA F-test Algorithm and Used in Our Experiments

Feature Formula ANOVA F-test score

mean of accelerometer’s x-axis mean (accx ) 1289.51
cross-correlation between accelerometer’s x- and z-axis sum (abs (xcorr (accx , accz )))) 989.89
median of accelerometer’s x-axis median (accx ) 626.99
median of accelerometer’s y-axis median (accy ) 497.72
mean of accelerometer’s y-axis mean (accy ) 466.377
entropy of accelerometer’s y-axis entropy (accy ) 377.96
entropy of accelerometer’s x-axis entropy (accx ) 285.51
mean absolute deviation of gyroscope’s y-axis mad (дyroy ) 205.32
cross-correlation between accelerometer’s y- and z-axis sum (abs (xcorr (accy, accz )))) 175.16
range of gyroscope’s y-axis r anдe (дyroy ) 171.11
covariance of gyroscope’s y-axis cov (дyroy ) 151.62
spectral energy of gyroscope’s y-axis sum (fft(дyroy ). ∗ conj (fft(дyroy ))) 144.86
spectral energy of accelerometer’s z-axis sum (fft(accz ). ∗ conj (fft(accz ))) 136.50
mean absolute deviation of gyroscope’s z-axis mad (дyroz ) 131.15
mean of accelerometer’s z-axis mean (accz ) 122.00

feature selection algorithms. The results are plotted according to a varying number of fea-
tures in Figure 6. As can be seen in Figure 6, the result of the ANOVA F-test algorithm with
the feature vector length of 15 gives the least (average) EER, 0.0208 (shown with ), while
the original WACA’s EER was 0.040237 without a feature selection algorithm (shown with ).
This provided improved 50% performance improvement over the original WACA’s accuracy.
Moreover, as we will see in Section 5.2, the template generation and comparison function is
calculated independently for each feature. Therefore, the fewer the number of features, the
less time spent during the template generation and the feature vector’s comparison. There-
fore, with fewer features, we also obtain improved timing over the original WACA. The top
15 features selected by the ANOVA F-test algorithm are specified in Table 2. For the rest of
this article, we use these 15 features of WACA instead of the originally proposed 84 features
in WACA.
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We applied a feature selection algorithm and selected the top 15 features from WACA. These
features included the time and frequency domain statistics (e.g., mean, median, entropy) of the
raw sensor values for a certain period. As these features are generic, one could use other biometric
authentication methods instead of sensor-based keystroke dynamics, as we did in this article. For
example, it could be sensor-based authentication for the smartphone [56], or wearable [38] users.

5.2 Testing with a Secure Template Generation and Comparison Method: NTT-Sec-R

Design Rationale. As mentioned earlier (Section 2.2) that our protocol description requires secure
template generation (TempGen) and comparison (TempComp) functions. Our implementation is
based on the cryptographic primitive NTT-Sec [49]. We chose NTT-Sec because (1) the NTT-Sec

is solely based on publicly computable functions (generalizing cryptographic hash functions in a
setting with noisy measurements of data), and (2) NTT-Sec offers formal security analysis with
no known attacks to date. Overall, NTT-Sec offers certain advantages over its alternatives. More
specifically, (1) homomorphic encryption-based methods [9] are not suitable for the CA protocol
due to the requirements of the public key and the private key on the user side; (2) many of the
previously known biometric cryptosystems (e.g., fuzzy extractors [47]) are known to have security
issues for their reusability [24] and they are limited in their noise tolerance capability; (3) Cance-
lable biometrics constructions [70], in general, lack formal security analysis, and many construc-
tions have been shown to be vulnerable under false acceptance and stolen key attacks [16].

NTT-Sec consists of two algorithms called Proj (project) and Decomp (decompose). The Proj

algorithm maps a length-n binary vector (considered as the feature vector) to a finite field element
(considered as its secure template) using an a priori-fixed set of public parameters and a factor basis.
Given a pair of secure templates, the Decomp algorithm can detect whether the templates originate
from a pair of binary feature vectors that differ in at most t indices for an a priori-fixed error
threshold value t . In Decomp, the detection is achieved by checking whether a particular finite
field element can be written (decomposed) as a product of the factor basis elements in a certain
form. Computations in NTT-Sec are performed in a cyclotomic subgroup G of the multiplicative
group of a finite field. We adapt the same group structure in our modification. More specifically,
let Fq be a finite field with q elements where q = pm . Let c ∈ Fq be a non-quadratic residue with
minimal polynomial of degreem over Fp . Let Fq2 = Fq (σ ) be a degree-two extension of Fq where σ
is a root of x2−c . Fq2 has a cyclotomic subgroup G of order q and every non-identity element in G
can be represented as a+σ

a−σ
for some a ∈ Fq . Moreover, we say an element a ∈ G is k-decomposable

over Fp if it can be written as a product a =
∏k

i=1 ( ai+σ
ai−σ

) for some Fp -elements a1,a2, . . . ,ak .
The original NTT-Sec is only limited to working with binary feature vectors by its design. On

the other hand, biometric data [7], which we deal with in this article and, in most cases, such as
physiological biometrics [72] or behavioral biometrics [38], is represented through real-valued fea-
ture vectors. Therefore, we extend NTT-Sec to a new construction, NTT-Sec-R, which comprises
two algorithms called NTT-Hash-R and NTT-Match-R. We use the scale-then-round transforma-
tion in [14] to transform the real-valued feature vectors to integer-valued vectors. Moreover, we
describe NTT-Param-R for the new parameters required in NTT-Sec-R.

5.2.1 NTT-Param-R: System Parameters. We assume that n and t are some fixed values that
represent the length of feature vectors and (original) system threshold, respectively. More specif-
ically, a (non-cryptographic) biometric authentication system would declare match for an input
pair of biometric data if and only if d (x ,y) ≤ t , where d is the Manhattan distance function (�1),
and x ,y are the length-n feature vectors of the biometric data. The parameters of NTT-Sec-R are
defined as follows:
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• a scaling factor s;
• a prime number p such that p > 2n;
• an integerm such thatm ≥ 	st
;
• a set B = {д1,д2, . . . ,дn } such that 1 ≤ дi ≤ p−1

2 for each i .

We pack all of these parameters under the set SP = {n, t , s,p,m,B}and call this the system parameter

set. Note that SP can be made public, and commonly used in the NTT-Hash-R and NTT-Match-R
algorithms. SP should be determined in accordance with the desired security parameter λ in order
to make NTT-Sec-R resistant to adversarial attacks.

5.2.2 NTT-Hash-R. NTT-Hash-R corresponds to the TempGen(fi,t ) function in PACA defined
in Section 2.2. Its function is to create a secure template (ti,t1 ) from the given user biometric
(fi,t ). This template should be irreversible and indistinguishable so that the attackers can not in-
fer meaningful information even if they obtain the user templates. This algorithm maps a real-
valued feature vector to a G-element called hash3 value as follows: Assume a fixed-length real-
valued feature vector x = (x1,x2, . . . ,xn ) in [0, 1]n is given. Using the scaling factor s and the basis

B = {д1,д2, . . . ,дn }, it is mapped to a G-element, defined as

NTT-Hash-R(x ) =
n∏

i=1

(
дi + σ

дi − σ

) 	sxi 


where 	·
 is the nearest integer function and the output NTT-Hash-R(x ) is the one-way transfor-
mation of the feature vector x .

5.2.3 NTT-Match-R. NTT-Match-R corresponds to the TempComp(ti,t1 , ti,t2 ) function in
PACA defined in Section 2.2. It is used to match two given templates and decide whether they
are generated by the same user or not. For a given hash value h = NTT-Hash-R(x ) for some
x = (x1, . . . ,xn ) in [0, 1]n , a real-valued vector y = (y1, . . . ,yn ) in [0, 1]n and a positive real num-
ber t , the goal of NTT-Match-R is to decide whether

∑
i=1 |xi − yi | ≤ t or not by using their hash

values. To achieve this goal, the following process is performed.
NTT-Hash-R computes hy = NTT-Hash-R(y), and then it decides whether the G-element

h/hy is 	st
-decomposable. Furthermore, if the retreived Fp -elements belong to the basis B,
NTT-Match-R returns Match, otherwise No −Match.

5.3 A Security Analysis of NTT-Sec-R

The best strategy for an adversary to attack the new NTT-Sec-R method (with respect to both
irreversibility and indistinguishability notions) is to solve the discrete logarithm problem in the
underlying cyclotomic group, which belongs to the finite field Fp2m . Discrete logarithms in Fp2m

can be computed in time bounded by (max(p,m))O (log2 m) [19]. As analyzed in [49], an attacker
needs to solve (n + 1) discrete logarithms, and so we calculate the cost of this discrete logarithm
attack to be (n + 1) (max(p,m))log2 m .

5.3.1 Security Levels. In Section 6.1.1, we analyze the security level of our NTT-Sec-R imple-
mentations using the scalars s = 40, s = 100, and s = 400, and denoted by NTTSec40, NTTSec100,
and NTTSec400, respectively. The prime number p = 31 is chosen for all implementations. Note
that the vector length is fixed as n = 15. Using these parameters, the security levels λ, which corre-
spond to the minimum cost of the DLP attack [19] and considered as 2λ , are provided in Table 3. In
Table 3, each row represents a single user and each user in the system has a different noise profile

3We have chosen the name “hash”because the algorithm eventually satisfies randomness and irreversibility similar to the
hash functions.
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Table 3. Security Levels of NTT-Sec-R for Each user Tested Against the

Discrete Logarithm Problem (DLP) Attack [19]

User
DLP

NTTSec40 NTTSec100 NTTSec400
m λ m λ m λ

1 31 29 71 42 281 70
2 41 33 101 48 389 78
3 31 29 73 42 307 72
4 29 28 59 39 227 65
5 43 33 101 48 397 79
6 29 28 67 41 241 67
7 41 33 97 48 367 77
8 53 37 131 53 509 85
9 23 26 59 39 239 66
10 97 48 229 65 919 101

User
DLP

NTTSec40 NTTSec100 NTTSec400
m λ m λ m λ

11 37 31 89 46 347 75
12 29 28 67 41 241 67
13 37 31 89 46 337 75
14 67 41 167 59 673 92
15 79 44 191 61 739 95
16 59 39 149 56 587 89
17 19 25 43 33 173 59
18 59 39 137 54 541 86
19 37 31 97 48 359 76
20 47 35 113 51 443 81

Each row represents a single user. We calculated the minimum cost λ (i.e., bit security level) using the formula log2

((n + 1) (max(p, m))log2 m ) for given the feature length n = 15 and prime number p = 31 for each user.

in their typing pattern. For example, a user with very consistent typing patterns will introduce
less noise/variation in their profile, and will be easier to distinguish from the others . Hence, such
users’ parameters can be set with smallerm for a fixed scalar s and comparable FAR/FRR. This ex-
plains small fluctuations observed in the values ofm, whence in their security parameter λ, which
is a function ofm.

5.3.2 Remark. We note that we are rather conservative in our security analysis, and our esti-
mated bit security levels can be increased in practice at almost no-cost. For example, since a user is
already equipped with a password in the protocol, that password can be taken as part of the input
in the feature extraction process, while making attacker’s task harder in the template reversing
attack. This would also allow a legitimate user to revoke his template, and reissue a new template
by changing his password and re-enrolling to the system, and also to reuse his biometric data over
different systems by choosing different passwords.

5.4 Security Benefits of NTT-Sec-R

In this section, we show the extra security benefits of NTT-Sec-R, in addition to the security prop-
erties provided by the PAKE protocol.

• User Data Privacy. The user data is very sensitive as it contains the biometrics information so
it should be protected from any third party including the authentication server and as well as
any kind of eavesdropping. In our protocol, the data is transformed in an indistinguishable
and irreversible way before transmitted to any party from the users. Therefore, no party
sees the sensitive user data in cleartext. Our system also easily allows the choice of pseudo-
identities or user names instead of real user names or identifiers.
• No Key Required. The security of NTT-Sec-R is based on a discrete logarithm problem, where

it does not require to store any keys. Therefore, the security of NTT-Sec-R is not based on a
key.

6 PERFORMANCE EVALUATION

In this section, we evaluate our proposed system in terms of accuracy and resource consumption.

Implementation Details. To evaluate the performance of our proposed concrete privacy-aware
continuous authentication system, we implemented it on a real system. Specifically, for the timing
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results of NTT-Sec-R algorithm’s implementation, the codes were written in the C programming
language using the GCC 5.4.0 compiler. The Core i7-7700 CPU @ 3.60GHz desktop computer was
used with Ubuntu 16.04 LTS running. The CPU time of the match operation was measured using
the function clock() from the time.h library. All the timings were provided in milliseconds. For
the linear algebra and finite field computations, we used the popular FLINT C-library by William
Hart et al. [43]. In all of our implementations, we used the scalars 40, 100, and 400 and denoted by
NTTSec40, NTTSec100, and NTTSec400, respectively. Please also note that in all of the experiments
in this section, we used the selected 15-point feature vectors calculated after applying ANOVA
F-test feature selection algorithm in Section 5.1.1.

To measure the resource consumption of our proposed continuous authentication system, we
used an Apple smartwatch. The results of the resource consumption experiments are given in
Figure 8. The feature calculation was strictly done on the device. The measurements were taken
on a 38 mm Apple Watch. The feature calculation code was implemented in C. We used KissFFT
library [5] for FFT calculations in spectral entropy and cross-correlation features. It is worth noting
that we only implemented the most time-consuming parts and the computations on the relatively
constrained devices (e.g., smartwatches). The implementation of PAKE was already implemented
and analyzed in many works and languages [32, 87] before.

6.1 Accuracy Analysis

6.1.1 Implementation Results. In this section, we discuss our implementation results. Using the
same dataset, we implemented two different techniques: Manhattan Distance (MD) (i.e., no secure
template generation) and NTT-Sec-R algorithm. Unlike the MD, the NTT-Sec-R algorithm requires
the feature vector elements to be an integer; therefore, using the accuracy preserving transforma-
tion idea in [14], we transformed real-valued to the integer-valued feature vector. The selection of
scalar for scaling purposes is important, and for that reason, we analyzed the experimental results
of different (suitable) scalars.

Recall that at the end of our new evaluation model explained in Section 5.1.2, we obtained 1,900
impostor and 2,520 genuine comparison pairs for each user. One distance score for each pair is
calculated using Manhattan Distance (MD) resulting with 1,900 impostor and 2,520 genuine dis-
tance scores for each user. To decide if a distance score is accepted or not, a threshold needs to
be set. For this, we try every threshold value starting from 0 to maximum score and we calculate
FRR and FAR for each threshold value. We increment threshold value by 0.001 in each step to ob-
tain accurate FRR and FAR results. We are reporting the FRR and FAR values at the first threshold
point where FRR becomes less than or equal to FAR, implying EER. Using the same EER threshold
points from the MD results, we determined the parameters for the NTT-Sec-R algorithm. Among
the other parameters, the threshold values were computed as T = 	s · t
 where “s” is the (chosen)
scalar and “t” is the threshold value obtained from MD results. Moreover, recall that we set the
n = 15, p = 31, and m values are given Table 3. Using these parameters, we compute the secure
templates from the feature vectors. Then, we re-calculate the distance scores of 1,900 impostor
and 2,520 genuine comparison pairs for scalar value s = 40, 100, and 400. Finally, we re-calculate
the FRR and FAR values for the EER threshold values from the MD results. To show the change
of error rate accuracy, we computed |MD−NTTSeci | using the FRR and FAR values for each user
where i ∈ {40, 100, 400}. The absolute FRR and FAR differences of the NTTSec implementations
w.r.t. the MD are presented in Figures 7(a) and 7(b), respectively.

Figures 7(a) and 7(b) shows the accuracy loss in FRR and FAR, respectively, caused by the
NTT-Sec-R for the scalar values 40, 100, and 400. As shown in both figures, the scalar 40 results in
more loss of error rate accuracy than other selected scalars. However, the accuracy loss for both
FAR and FRR is less than 0.01 for 18 users out of all 20 users. On the other hand, the accuracy is
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Fig. 7. (a) The absolute FRR difference between the Manhattan distance (MD) and NTT-Sec-R implemen-

tations using the scalars 40, 100, and 400 for all the 20 users. (b) The absolute FAR difference between the

Manhattan distance (MD) and NTT-Sec-R implementations using the scalars 40, 100, and 400 for all 20 users.

Please note that in both figures, the x-axis refers to the single user.

Table 4. The Timing Results of the NTT-Hash-R Functions of NTTSec40, NTTSec100, and

NTTSec400 Algorithms in Milliseconds

User 1 2 3 4 5 6 7 8 9 10
NTTSec40 0.373 0.503 0.432 0.386 0.539 0.300 0.5222 0.748 0.241 0.937
NTTSec100 1.146 1.586 0.952 0.689 1.602 0.876 1.318 2.212 0.539 3.873
NTTSec400 7.258 11.146 7.001 5.124 9.761 3.686 8.798 16.511 4.402 35.544

User 11 12 13 14 15 16 17 18 19 20
NTTSec40 0.379 0.284 0.337 1.043 1.123 0.598 0.321 0.438 0.462 0.503
NTTSec100 1.189 0.795 1.183 2.588 3.924 2.704 0.631 2.058 1.025 1.395
NTTSec400 8.511 3.373 7.507 19.572 27.937 17.536 3.944 16.780 7.601 12.861

We calculate the average time of all users as follows: NTTSec40: 0.524 ms, NTTSec100: 1.614 ms, and NTTSec400:
11.743 ms.

well preserved using the scalar 400. Hence, in terms of accuracy, the higher the scalar is, the lesser
the accuracy loss.

6.2 Timing Results

In this section, we report the timing results of NTT-Hash-R and NTT-Match-R functions. The
NTT-Hash-R function takes the feature vector and finite field parameters as input. Then, the func-
tion computes a new field element by using the elements of the feature vector as an exponent
of the field element. Therefore, the hash function corresponds to the secure template generation
algorithm in PACA (i.e., TempGen). Similarly, the NTT-Match-R function takes the same finite
field parameters and two field elements to perform the comparison. The function outputs Match
or No-Match according to the (fixed) threshold. Similar to the hash function, the match function
corresponds to the secure template comparison algorithm in PACA (i.e., TempComp). Note that
the Match function requires the hashed values of both the query and reference vectors. The refer-
ence vectors are stored as hashed values while the query vector is required to be hashed first and
then pass to the Match function for comparison. Table 4 and 5 show the timing results of our im-
plementation of NTT-Hash-R and NTT-Match-R functions, respectively, using the feature vectors
we obtained from the WACA dataset for the scalar value 40, 100, and 400.
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Table 5. The Average Timing Results of the NTT-Match-R Functions of NTTSec100 and

NTTSec400 Algorithms in Milliseconds

User 1 2 3 4 5 6 7 8 9 10
NTTSec40 0.424 0.726 0.419 0.348 0.758 0.346 0.734 1.240 0.209 4.494
NTTSec100 2.667 5.877 2.689 1.302 5.893 2.290 4.530 9.681 1.286 39.652
NTTSec400 68.773 154.441 83.268 39.198 143.128 35.313 113.392 290.592 43.850 1408.454

User 11 12 13 14 15 16 17 18 19 20
NTTSec40 0.509 0.345 0.511 2.269 3.397 1.301 0.155 1.288 0.514 0.984
NTTSec100 4.305 2.264 4.285 15.924 27.268 14.821 0.769 12.034 4.527 6.740
NTTSec400 116.286 35.172 97.893 507.976 762.882 378.951 21.117 371.429 109.914 225.091

We calculate the average time of all users as follows: NTTSec40: 1.483 ms, NTTSec100: 8.447 ms, and NTTSec400:
256.336 ms.

Table 6. The Comparison of the Timing Performances of Our Proposed Concrete Privacy-aware

Continuous Authentication System and Its Alternatives

Authentication Time (Per Feature) Total Authentication
Time (User + Server)Ref Method Distance Metric User Server

[76] (Simple) Homomorphic Encryption
Order Preserving Encryption

Average Absolute Deviation
2326 ms 156 ms 2482 ms

[76] (Optimised) 1130 ms 48 ms 1178 ms
[41]

Homomorphic Encryption
Scaled Euclidean Distance 65 ms ≈ 0 ms 65 ms

[41] Scaled Manhattan Distance 105 ms 6 ms 111 ms
Ours NTTSec40

Manhattan Distance
0.03 ms 0.07 ms 0.10 ms

Ours NTTSec100 0.11 ms 0.56 ms 0.67 ms
Ours NTTSec400 0.78 ms 17.09 ms 17.87 ms

In Table 4, the average CPU time of NTT-Hash-R for all users are given as 0.524 ms, 1.614
ms, and 11.743 for NTTSec40, NTTSec100, and NTTSec400, respectively. On the other hand, the
average CPU time of NTT-Match-R for all users are given as 1.483 ms, 8.447 ms, and 256.336 for
NTTSec40, NTTSec100, and NTTSec400, respectively. For these results, we observe that for the same
scalar value, NTT-Match-R takes significantly longer time than NTT-Hash-R, which is similar to
the traditional hash functions used for passwords. Moreover, we also see that when the scalar is
larger, it takes a longer time to compute both NTT-Hash-R and NTT-Match-R functions. As we
mentioned in Section 5.3.1 and 6.1, increasing the scalar value was increasing the security level
significantly while also keeping the accuracy loss limited. However, we also now saw that it was
actually also increasing the computation time of the NTT-Hash-R and NTT-Match-R functions.
Therefore, we end up with the following conclusion: Smaller scalar means faster computation but

more loss of error rate accuracy and less security while larger scalar implies slower computation and

lesser loss of accuracy but a more secure system.

In the literature, there are only limited number of privacy-preserving continuous authentication
studies [6, 41, 73, 76, 88]. (Please see Section 7 for more details about these studies.) Among these
studies, only two of them [41, 76] report timing performance results. In Table 6, we compare our
results with them. To obtain feature-size independent results, we compared the authentication time
per feature for all studies. Therefore, for our study, we divide the average timing results obtained
from Tables 4 and 5 by 15 and we do the same for [41] too. Moreover, in some of the studies, all
of the computation is pushed into either side (user or server); therefore, we also compare the total
authentication time. In [76], Shahandashti et al. report two different results, where one of them
is called simple and the second one is called optimized as it is assumed that the features can be
expressed in 32 bits. Also, in [41], Govindarajan et al. report their results for both Scaled Euclidean
and Manhattan distance metrics. We include both of them separately in Table 6.
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Fig. 8. (a) CPU profile of iOS implementation on an Apple iWatch. The application cruises at 5% on the sen-

sor measurement collection phase. After this, the app calculates the features from sensor data and hashes it,

which is illustrated by the peak. The peak’s width is approximately 1.6 seconds, which corresponds to the fea-

ture extraction (i.e.,Ext) and template generation (i.e.,TempGen) in total. The measurement collection phase

follows afterward. This profile repeats until the application is stopped. (b) A screenshot of the application

used for the experiments on the Apple iWatch.

The results in [76] show 2, 482 milliseconds total authentication time for the simple design and
1, 178 milliseconds for the optimized design. On the other hand, Govindarajan et al. [41] authors
design a privacy-preserving continuous authentication system using homomorphic encryption.
They report 65 milliseconds for Scaled Euclidean and 111 milliseconds for Scaled Manhattan dis-
tance metrics. Our results of 0.10 milliseconds, 0.67 milliseconds, and 17.87 milliseconds of total
authentication time per feature show that our proposed privacy-preserving continuous authenti-
cation protocol is significantly lightweight compared to these studies.

6.3 Resource Consumption Analysis

To measure the resource consumption of our proposed continuous authentication system, we im-
plemented our proposed system on an Apple iWatch device. Figure 8 shows how the CPU was
utilized throughout the feature calculation period and a screenshot of the application used for the
experiments. For 20 seconds, the watch collects data from both the gyroscope and the accelerom-
eter. The device yields 50 measurements per second, giving us 1,000 data points in one dimension.
For both gyroscope and accelerometer, we have three dimensions; hence the total count of mea-
surements amount to 6,000. One CPU core is utilized in its complete capacity for a brief amount
of time when enough time is elapsed. The total time required for calculations, which is noted in
Figure 8 by the peak, is 1.8 seconds; the majority of this time (approximately 90%) is spent to calcu-
late the hash. However, we note that this can be reduced by sending the features to the computer
and computing the secure templates on the computer as the computer is also trusted. Therefore,
this computation time can be assumed as a lower bound. After, the device begins to collect sensor
measurements again, followed by a repeated feature calculation. This profile repeats as long as the
framework is in operation.
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The memory footprint of the implementation is minuscule and constant, coasting around 3.5 MB.
Such a memory profile is expected because upon the completion of the feature calculation period,
the previous data is discarded, and since the period and sampling rate is fixed, approximately the
same amount of data is recorded anew.

We measured the battery consumption by initiating the algorithm and sampling the overall
battery percentage every minute for more than 4 hours. We observed that the application con-
sumed 1% of the battery approximately every 4 minutes, which yields us an operational time of
400 minutes, or 6.5 hours for PACA. Note that this number is an absolute lower bound: during the
measurements, a debugger was attached to the device, the device’s screen was lit, and the maxi-
mum possible values for s and t were selected, greatly increasing computational requirements and
the battery consumption. Hence, PACA is very promising in terms of resource consumption.

7 RELATED WORK

Privacy Attacks on Keystroke Dynamics. Even though keystroke dynamics is considered as a good
candidate for continuous authentication and identification systems, the information that can leak
from the collected keystroke data raises serious privacy concerns. It has been shown that the gen-
der [35, 40], the demographics [30], he emotional state [36] or the application context [17] can be
predicted from keystroke dynamics. What the user is typing (e.g., password inference) [78, 89] can
also be effectively inferred from the keystroke dynamics. It also has been shown that aggregating
the latencies between the consecutive keystrokes does not protect against these attacks [17].

Secure and Privacy-Preserving Biometrics. There are three approaches proposed to address
security and privacy issues in biometric schemes: biometric cryptosystems (BC), cancelable

biometrics (CB), and keyed biometrics (KB). Some of the key references include [33, 46, 47] for BC,
[45, 65, 84] for CB, and [18, 20, 25, 27, 81] for KB. In addition to these three main techniques, there
are hybrid biometrics (HB), that blend BC, CB, and multi-factor authentication [28, 42]. Some of
the above methods have been used to secure multi-biometric traits simultaneously for improved
performance and security (see [59] and [61], and the references therein). These constructions can
also be considered under HB.

Several theoretical and practical attacks (record-multiplicity, hill-climbing, masquerade attacks,
and brute-force attacks) have been developed on BC and CB, many of which result in a total
break of the system with respect to irreversibility and indistinguishability. For attacks on BC and
CB, see [71], [74], [77], [82], and [86] for BC and [37] and [58] for CB. Several countermeasures
have been proposed to guard against these attacks, including hardening with secrets [24, 42, 60],
hybrid approaches and multi-biometrics [28, 68], employing encryption or signature schemes
[18, 20, 25–27], and new quantization and alignment methods [83]. Recommended safeguards
come at the cost of degrading performance and usability, increasing communication and com-
putational bandwidth to impractical ranges, and introducing secret parameters or trusted third
parties. These are also the major common problems shared over HB and KB in general. See [59]
and [61] for other drawbacks of HB and KB.

Several cryptographic primitives including Secure Multiparty Computation [23, 34], Verifiable
Computation [29], and Bloom Filters [67] have been proposed for the secure biometrics. However,
the main drawback of the cryptographic primitives is the computational overhead. Moreover, in ad-
dition to cryptographic primitives, the biometric template protection methods such as cancellable
biometrics [15, 48] and biohashing [69] have been proposed for the secure biometrics. However,
Biohashing has been shown as vulnerable to several attacks [50, 54] and even though cancellable
biometrics is more secure, they do not apply to behavioral biometrics, which is more ideal for
continuous authentication.
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We consider an extensive number of attack scenarios and strategies mounted by a powerful
adversary in Section 4.2. In particular, the adversary is given the power of capturing biometric
templates, session transcripts, and packages; delaying/modifying/replaying packages and sessions
while trying to impersonate users with a new session or taking-over a session originally initi-
ated by a genuine user. Our analysis in Section 4.2 supports that our system reasonably resists
against all of these attack scenarios with some limitations as explicitly stated in Section 4.3. More
specifically, our security analysis with respect to irreversibility and indistinguishability of biomet-
ric templates includes brute-force/exhaustive search attacks. We deduce that solving the discrete
logarithm problem is the best strategy, and we analyze the security levels of the system with
respect to this strategy, and the security estimates are summarized in Table 3 in Section 5.3. Hill-
climbing attacks can be prevented during the initial password authentication phase in our system.
A more powerful adversary can try to bypass the password authentication phase and try to run
hill-climbing during an intervened-session. However, our authentication server responds with a
binary value (continue/halt session). In addition, we argue that biometric templates deployed in
our system are computationally indistinguishable. Therefore, we expect that the attacker cannot
deduce useful information by running hill-climbing type attacks. Similarly, a masquerading attack
would try to exploit replaying or reversing templates and/or exploiting FAR/FRR of the system,
which we discuss in Section 4.2.

Secure and Privacy-Preserving Continuous Authentication. Although there is extensive literature
on the privacy-preserving biometrics, most of the work is on physiological biometrics such as fin-
gerprints, iris, and the like. However, the physiological biometrics are not feasible for a continuous
authentication mechanism [79]. A potential solution is to use homomorphic systems [9] to address
privacy issues in template matching. A solution using a homomorphic system can be implemented
with two main approaches. In the first approach, the user generates a public key-private key pair
for HE; the user encrypts his biometric data using his public key, registers it with the server. At
the time of verification, the user queries the server with his fresh biometric data encrypted under
the same public key. The server uses the public key of the user and computes the encrypted and
randomized distance between the template and the queried biometric, and sends it to the user. The
user decrypts using his private key and sends the randomized distance back to the server. The
server de-randomizes to recover the actual distance and outputs the result (accept or reject). This
approach requires users to maintain long-term and individual secret keys, highly interactive with
non-trivial computation and bandwidth requirements. See [73] and [76] for some recent imple-
mentations of this approach. In the second approach, the server generates public-private key pair
for HE, and users encrypt their biometric data under the server’s public key during registration
and authentication. Even though the key generation/storage/decryption and computations on the
encrypted data are performed on two separated independent components of the server, the server
has the ability to decrypt and recover the users’ biometric data, whence it has to be trusted by all
users in the system; see [88] for some recent implementations of this approach. Indeed, it has also
been shown that the proposed protocol is vulnerable to biometric template recovery attacks under
the presence of even a malicious computational server, which is only one of two servers [6].

To the best of our knowledge, our work is the first lightweight and efficient protocol for privacy-

aware continuous biometric authentication methods, which extensively tested for its security and
overhead on a real system.

8 CONCLUSION

Unlike the one-time authentication systems, the continuous authentication systems are more
suitable and better suited to the contemporary threats in cyberspace. Due to its sensitivity and
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uniqueness, the biometric data requires proper security and privacy mechanisms in place. Existing
solutions like the password-hash-matching systems do not work in noise-tolerant biometric
authentication systems, while the privacy-preserving homomorphic encryption constructs are
not feasible for continuous authentication due to its performance limitations. In this work, we
constructed a lightweight, privacy-aware, and secure continuous authentication protocol and a
comprehensive system under the protocol. Formally proving its security and privacy guarantees
against eight different attacks, we further deployed our system with NTT-Sec-R and a continuous
biometric authentication system using an Apple smartwatch. We evaluated our protocol’s
efficiency with data collected from real users and validated that it incurs a minimal overhead. The
proposed novel scheme and results can be easily generalized to other biometric authentication
mechanisms for both continuous and traditional noncontinuous settings with real-valued feature
vectors. Hence, the proposed protocol enables privacy-aware continuous biometric authentication,
which can fundamentally improve the security in cyberspace. An interesting future work of our
study would be to test PACA with other continuous authentication systems such as touch-based
continuous authentication system for smartphone users.
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