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Abstract—Modern electronic devices have become “smart” as
well as omnipresent in our day-to-day lives. From small house-
hold devices to large industrial machines, smart devices have
become very popular in every possible application domain. Smart
devices in our homes, offices, buildings, and cities can connect
with other devices as well as with the physical world around
them. This increasing popularity has also placed smart devices
as the center of attention among attackers. Already, several types
of malicious activities exist that attempt to compromise the secu-
rity and privacy of smart devices. One interesting and noteworthy
emerging threat vector is the attacks that abuse the use of sensors
on smart devices. Smart devices are vulnerable to sensor-based
threats and attacks due to the lack of proper security mecha-
nisms available to control the use of sensors by installed apps.
By exploiting the sensors (e.g., accelerometer, gyroscope, micro-
phone, light sensor, etc.) on a smart device, attackers can extract
information from the device, transfer malware to a device, or
trigger a malicious activity to compromise the device. In this
paper, we explore various threats and attacks abusing sensors of
smart devices for malicious purposes. Specifically, we present a
detailed survey about existing sensor-based threats and attacks
to smart devices and countermeasures that have been developed
to secure smart devices from sensor-based threats. Furthermore,
we discuss security and privacy issues of smart devices in the
context of sensor-based threats and attacks and conclude with
future research directions.

Index Terms—Sensor-based threats, smart devices, Internet-of-
Things, security, sensors.

I. INTRODUCTION

SMART devices such as smartphones, smart watches, smart
lights, smart locks, etc. have become very popular in

recent years. With the tremendous growth of Internet of
Things (IoT), smart devices now have advanced capabilities
to interact with other devices and also with human beings
and its surrounding physical world to perform a myriad of
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tasks [1]. In this context, the use of sensors on smart devices
enables a seamless connection between the devices and the
physical world. Indeed, modern smart devices come with
a wide range of sensors (e.g., accelerometer, gyroscope,
microphone, light sensor, etc.) that enable more efficient and
user-friendly applications [2]. These sensors introduce fea-
tures such as context-awareness, self-learning, and automation
which improve the applicability of smart devices in various
application domains [3], [4]. From personal healthcare to home
appliances, from big industrial applications to smart cities,
smart devices are in every possible application domain. The
increasing popularity and utility of these devices in diverse
application domains made the device industry grow at a
tremendous rate. According to a report by Statista and Forbes,
there will be 3.5 billion smart devices by 2024 with a penetra-
tion rate of 52.4% and more than 152,000 smart devices will
be connected to the Internet every minute in 2025 [5], [6].

The use of sensors in smart devices inevitably increases the
functionality of the devices; however, the sensors can also be
used as vehicles to launch attacks on the devices or applica-
tions. Recently, there have been several attempts to exploit the
security of smart devices via their sensors [7]–[9]. Attackers
can use the sensors to transfer malicious code or a trigger
message to activate malware planted in a device [10], [11],
capture sensitive personal information shared between devices
(e.g., smartwatches, smart home devices, etc.) [12]–[15], or
even extract encrypted information by capturing encryption
and decryption keys [16]. Moreover, attackers can use the sen-
sors of one device as an attack platform to abuse or interrupt
normal functionalities of connected devices [17]. These sensor-
based threats pose a significant risk to the smart devices as
manufacturers are not fully aware yet [18]. Indeed, sensor-
based threats are becoming more prevalent because of the easy
access to the sensors and the limited security measures that
consider these threats [19]–[22].

Furthermore, attackers do not need any complicated tools
to access the sensors, which make sensor-based threats eas-
ier to execute [13], [23]. Existing studies have verified that
it is possible to execute sensor-based attacks without imped-
ing the normal functions of devices. Also, there have been
several real-life malware reported recently which use sen-
sors as a means of performing malicious activities on smart
devices [24]. For example, TrendMicro, a renowned security
company, reported in 2019 three publicly available Android
apps in Google Playstore used the motion sensor to evade mal-
ware scanners in the smartphone [25]. When a user performs
any task such as making calls or texting in the smartphone, it
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creates deviation in the motion sensor. These malicious apps
check the motion sensor data to determine whether the app
is running in a real environment or in a sandbox environ-
ment of a malware scanner. Based on the detected sandbox
environment, the malware stop executing malicious code and
perform the normal operation. On the contrary, the malware
inject malicious banking trojan such as Anubis and Cerberus
upon detecting a real-life environment with user interaction.
Hence, trivial execution, easy access to the sensors, and lack of
knowledge about the sensor-based threats constitute significant
risks for the smart devices.

Researchers have proposed several countermeasures such
as enhancing permissions for sensor access, information flow
analysis, etc. to improve the security of smart devices against
sensor-based threats [26], [27]. However, these proposed solu-
tion depend on either user decision or availability of the source
code of the apps. Moreover, the majority of these app-specific
solutions cannot envision the passive sensor-based threats such
as eavesdropping, triggering and transferring malware using
sensors, abusing sensors using interference, etc. For instance, a
specific on/off pattern of a smart light can trick a smart camera
to capture and leak pictures containing sensitive information
in a smart home environment [28]. Thus, understanding these
sensor-based threats and attacks in the literature is necessary
for researchers and the community to design reliable solutions
to detect and prevent these threats efficiently.

Contributions—In this paper, we present a detailed sur-
vey of threats that can be exploited to attack sensors in
smart devices. Several prior works have mentioned sensor-
based threats as one of the emerging threat vectors to the
smart devices [29], [30]. In particular, previous works have
included sensor-based threats in the threat taxonomy as a gen-
eral threats to specific smart devices such as smartphones [31]
and discussed major drawbacks on the operating system (OS)
level [32]. However, no taxonomy and impact analysis of
sensor-based threats and attacks is provided in these works.
Compared to the prior works, we conduct a detailed sur-
vey of the existing sensor-based threats to smart devices and
provide a formal taxonomy of sensor-based threats to under-
stand the attack mechanisms and effects on smart devices.
We also introduce common vulnerability metrics to perform
impact analysis of sensor-based threats to smart devices.
Furthermore, we present a taxonomy of existing solutions
that specifically focus on mitigating sensor-based threats and
outline future research directions in terms of sensor secu-
rity in smart devices. In summary, the contributions of this
paper are:

• First, we present a detailed discussion regarding the
security goals and requirements to protect smart devices
from sensor-based threats and identify the important
shortcomings of the existing systems.

• Second, we provide a detailed taxonomy of sensor-based
threats and attacks to smart devices and discuss the mech-
anisms and effectiveness of the attacks in a detailed way.
We also summarize the effectiveness of the threats and
attacks based on known vulnerability metrics.

• Third, we discuss the proposed security solutions by the
research community and developers for smart devices and

their shortcomings in the context of sensor-based threats
and attacks.

• Fourth, we identify several open issues and discuss future
research that could contribute to secure smart devices
against emerging sensor-based threats.

Organization—The rest of the paper is organized as follows.
We discuss related works in Section II. In Section III, we give
the definition and general architecture of smart devices. In
Section IV, we briefly discuss the security goals and require-
ments to protect sensors in smart devices and how existing
systems address these goals. We also summarize the short-
comings of existing systems in detecting sensor-based threats.
In Section V, we classify the sensor-based threats and attacks
based on key security principles and explain our scope of
work. We present existing sensor-based threats and attacks in
Section VI and summarize attack methods and impact of the
threats based on different vulnerability metrics. In Section VII,
we articulate approaches that have been proposed to secure
sensors of smart devices and their shortcomings to detect
reported sensor-based threats and attacks. Future research in
the area of sensor-based threats and security of smart devices
are described in Section VIII. Finally, we conclude this paper
in Section IX.

II. RELATED WORK

In recent years, several surveys and tutorials have been
published covering different threats and defense mechanisms
of smart devices and applications [31], [33]. However, these
works either focus on traditional network-based threats or
system vulnerabilities generated from flawed frameworks. In
addition, prior works investigate security and privacy issues
of wireless sensor networks focusing on communication level
threats [34].

The majority of existing surveys and tutorials focus on
explaining the security and privacy issues of smart devices
in a generalized way overlooking the detail explanation of
sensor-based threats. However, the generalized discussion and
categorization of security and privacy issues presented in prior
works cannot illustrate the detailed attack surface of sensor-
based threats including attack methods, attack types, targeted
sensors, and attack impacts. Suarez-Tangil et al. investigated
malware evolution in smart devices and categorized the exist-
ing malware detection techniques in seven broad categories
including the type of detection, type of analysis, targeted mal-
ware, etc., [31]. Yang et al. surveyed the general security and
privacy issues of IoT devices and categorized the threats to
four categories - physical/perception, network, software, and
encryption attacks [35]. The authors categorized sensor-based
threats under physical/perception attacks and discussed threats
arising from tampered sensors and unencrypted communica-
tions only. Ammar et al. presented a tutorial work on security
and privacy issues of IoT programming platforms such as
AWS IoT, Azure, etc. and explained how security features
on programming platforms are adapted in smart apps [36].
The authors mainly focused on security issues arising from
authentication, access control, and secure communication in
IoT layers. Khan and Shah surveyed different threats to smart-
phones in IoT ecosystem [37]. Cao et al. presented a detailed

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 14:04:42 UTC from IEEE Xplore.  Restrictions apply. 



SIKDER et al.: SURVEY ON SENSOR-BASED THREATS AND ATTACKS TO SMART DEVICES AND APPLICATIONS 1127

survey of network-based threats to cyber-physical systems
and discussed threats on perception and sensing layer aris-
ing from malicious communication between CPS devices [38].
Hassija et al. summarized security threats to IoT devices
and categorizes the threats based on working layers [39].
Bhat and Dutta reviewed existing threats and mitigation tech-
niques in Android-operated smart devices and listed several
sensor-based threats that exploits OS-level authorization [32].
In a recent work, Li et al. surveyed adversarial threats to CPS
and IoT devices and categorizes adversarial threats to sensors
of smart devices [29]. The authors only considered adversar-
ial examples that exploit sensors in IoT and CPS devices and
discussed how adversarial inputs can manipulate sensor data
in machine learning-based models.

Security and privacy issues arising from communication
protocols in smart devices have been highlighted in several
surveys and tutorials. However, these works only cover sensor-
based threats targeting the communication medium overlook-
ing other sensor-based threats (e.g., keystroke inference, false
sensor data, etc., [15], [40]). Dragomir et al. reviewed several
security threats of communication protocols for IoT systems
and summarized several network vulnerabilities of IoT sen-
sor networks [41]. Tomic and McCann surveyed protocol
level vulnerabilities in wireless sensor networks including
eavesdropping, node tampering, and hardware threats [42].
Ngu et al. reviewed different aspects and issues of IoT mid-
dleware and summarized threats to sensor communication in
IoT ecosystem [43]. The authors discussed various threats to
sensors that emerged from IoT middleware communication
such as sensor to cloud communication, sensor computing in
the cloud, Web services connected with sensors, etc. Another
interesting work was presented by Polla et al. where authors
mentioned sensor sniffing as a severe threat to mobile devices
(e.g., smartphone, smart watch, etc.) [44]. Caprolu et al. inves-
tigated security and privacy aspects of short-ranged audio
channel and considered sensor eavesdropping as one of the
major threats to smart devices [45]. Neshenko et al. out-
lined security requirements in IoT network by introducing a
layer and security-based attack taxonomy [30]. Authors dis-
cussed existing flaws in IoT devices and platforms and pointed
out several key challenges to improve the security of IoT
devices. Hamad et al. conducted a survey to discuss secu-
rity flaws in IoT devices and architecture and summarized
recent advancements in security services in IoT cloud [46]. In
another work, Sengupta et al. summarized blockchain-based
security solutions to address security and privacy threats in IoT
devices [47]. Newaz et al. surveyed security and privacy issues
in emerging health IoT devices and applications [48]. Recently,
Yan et al. presented a generalized approach to analyze security
of analog sensors and presented existing vulnerabilities [49].
Besides these works, several prior works have summarized
the security and privacy issues of smart devices and discussed
future research directions to resolve these issues [50]–[54].

Several prior works have also surveyed existing security
solutions proposed by the research community and devel-
opers to address the security and privacy issues of smart
devices. However, there is no survey exploring security
solutions addressing sensor-based threats to smart devices.

Yan et al. surveyed trust management frameworks for IoT
devices and discussed several approaches for sensor enriched
networks [55]. Chaabouni et al. summarized existing network-
based intrusion detection methods for IoT devices including
detection methods for sensor-based threats using network
traffic [56]. Butun et al. presented a detailed overview of
intrusion detection systems (host-based and network-based)
for wireless sensor networks for traditional network-based
attacks [57]. Another recent work updated the aforementioned
work with current trends of intrusion detection systems in
wireless sensor networks [58]. In addition, Butun et al. sur-
veyed existing issues of wireless sensor networks in IoT
devices and categorized network layer threats emerging from
sensor nodes [59]. Al-garadi et al. surveyed machine learning-
based security mechanisms for IoT devices and discussed
challenges regarding security of IoT devices [60].

Differences From the Existing Works: All the aforemen-
tioned surveys and tutorials are very useful to review the
security of smart devices from the network and operating
system level. While several prior works [7], [10], [18] men-
tioned sensor-based threats as a security issue, no prior work
investigated the sensor-based threats and attacks in-depth
as in this paper. We acknowledge that several prior works
included sensor-based threats as a variant of network-based
and side-channel attacks in the attack taxonomy of mobile
or IoT devices overlooking several existing sensor-based
attacks [29], [30], [39], [45]. However, these prior works lack
a method to organize these sensor-based attacks to help
researchers understand the diverse attack surface and the
effects of these threats on smart devices as shown in
Table I. For instance, several existing surveys explored
defense mechanisms for mobile and IoT devices to address
network-based threats and platform-specific security inad-
equacies that fail to assess the specific requirements for
securing sensors [30], [32], [37]. Instead, our work identi-
fies the diverse sensor functionalities in smart devices (both
mobile and IoT devices) and provides a detailed taxonomy
of sensor-based threats to explain how each type of attack
can be performed by targeting sensors in smart devices.
We also introduce common vulnerability scoring metrics that
provide a systematic approach to assess the severity of exist-
ing and future sensor-based threats based on the nature of
the attacks, the attacker’s capabilities, the privilege require-
ments, and their success rate in different smart devices. In
summary, we have the following key differences from prior
works-

• Sensor Security Requirements: In this survey, we identify
shortcomings of existing smart device platforms in secur-
ing sensors and summarize key security requirements to
enhance sensor security in smart devices.

• Threat Taxonomy and Modeling: Prior works have
included sensor-based threats in the threat taxonomy and
explained the attacks from network and OS-perspective.
Compared to prior works, we introduce a formal threat
model of sensor-based threats considering attack meth-
ods, effects, and capabilities.

• Impact Analysis: We introduce vulnerability metrics to
analyze the impact of sensor-based threats on smart
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TABLE I
COMPARISON BETWEEN EXISTING SURVEYS AND OUR SURVEY

devices. We consider seven vulnerability metrics includ-
ing attack method, device access, attack complexity,
privilege, user interaction, security impact, and success
rate to understand the overall impact of each reported
sensor-based attack.

• Taxonomy of Existing Security Mechanisms: Several prior
works have explored existing security mechanisms avail-
able for smart devices and summarized how they enhance
the overall security of smart devices. Compared to these
works, we provide a taxonomy of existing security mech-
anisms that explicitly address sensor-based threats to
smart devices. We explain how each security mech-
anism enhances sensor security in smart devices and
outlines their shortcomings based on reported sensor-
based threats. We also report solution types, device
platforms, dependencies, and overhead to discuss short-
comings of existing solutions in detecting sensor-based
threats.

• Future Research Directions: Prior works have outlined
future research directions to enhance the security of
smart devices which includes general recommendations
for improving sensor security. However, a detailed guide-
line is needed to address sensor-based threats on smart
devices and develop effective security measures. In this
work, we outline the key open issues in smart device
platforms that have triggered the growth of sensor-based
threats in recent years and summarize the futures research
direction to enhance sensor security in smart devices.

The differences between existing surveys and our work are
summarized in Table I.

III. BACKGROUND: COMPONENTS OF SMART DEVICES

In this section, we introduce the components of smart
devices as they are relevant to understand the significance of
sensor-based threats and attacks.

In general, a smart device is an electronic device which
has the capability to connect, share, and interact with its user,
peripheral, and other smart devices using their sensors and

communication protocols [31], [62], [63]. These devices in
general have the following salient features:

• Sensing - Smart devices use sensors to sense the sur-
rounding environment and perform different tasks based
on measured events.1

• Automation - Automation is the ability of a smart device
to perform a task automatically based on specific events.
For example, the user presence in a room can cause a
sensor to turn a light on and off.

• Accessibility - Smart devices offer easy and remote acces-
sibility to the users. Users can control and monitor a smart
device from a remote location. For example, users can
lock or unlock a smart lock from a remote location using
a smartphone.

• Context-Awareness - Context-awareness refers to the abil-
ity of a device to understand and analyze its surroundings.
A smart device can understand what is happening around
the device and perform different tasks accordingly. For
example, a smart lock can automatically unlock as a spe-
cific person approaches the door. Here, the smart lock is
aware of the user’s presence in its proximity and unlocks
the door.

• Self-Learning - Smart devices can learn usage patterns
and change responses to perform different tasks without
any manual instruction from the users. For example, a
smart thermostat can learn the usage pattern of a user
and adjust the temperature automatically to save power.

A smart device can have all or a subset of the afore-
mentioned features. These features of smart devices are
linked together with one common component- sensors in
smart devices. For instance, an embedded temperature sen-
sor can be used to trigger a smart thermostat at a pre-defined
temperature which represents sensing, automation, and self-
learning features of smart devices. Again, external sensors
can be connected with smart devices using different commu-
nication protocols (e.g., ZigBee, Z-Wave, BLE, etc.) or via

1In some cases, sensors may be using or connected to actuators to perform
tasks.
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Fig. 1. Smart device architecture layers and components. Some smart devices may have all the layers (e.g., smart thermostat) or a subset of these layers
(e.g., smart sensors).

cloud [64]. An external presence sensor can be configured with
a smart thermostat to turn on whenever a user enters a room
which depicts context-awareness. Users can also control smart
devices remotely that can be associated with the embedded
sensors to automate on-going tasks. Hence, sensors in smart
devices are the key components that enable aforementioned
salient features in smart devices.

Moreover, it is important to understand the smart device
architecture to better visualize the threats and attacks. We
illustrate the smart device architecture in four working lay-
ers (sensing, communication, data processing, and application)
as shown in Figure 1. One unique feature of smart device
architecture is the presence of sensing layer that connects
surrounding environment with traditional computing layers
(communication, data processing, and application layers) to
automate different tasks [65]. Based on the functionalities,
distinct smart devices may combine the sensing layer and
the computing layers (network, processing, application) differ-
ently. For instance, a smart sensor can have sensing layer that
combines with communication and data processing layer [66]
to capture and analyze sensed data. However, a device with
only sensing layer cannot be considered as a smart device since
only sensing layer without any computing capabilities can-
not provide any functionalities of smart devices (automation,
context-awareness, self-learning, etc.) [63].

A. Sensing Layer

The main purpose of the sensing layer is to identify any
phenomena in the devices’ peripheral and obtain data from
the real world. This layer consists of several sensors, where
multiple sensors are typically used together by applications to
collect various data [67]. The sensing layer of smart device
ecosystem can consist of both on-device sensors and exter-
nal independent sensors. In both cases, sensors are usually
integrated through sensor hubs [68]. A sensor hub is a com-
mon connection point for multiple sensors that accumulate
and forward sensor data to the processing unit of a device. A
sensor hub may use several transport mechanisms (e.g., Inter-
Integrated Circuit (I2C) or Serial Peripheral Interface (SPI))
for data flow between sensors and applications. For on-device
sensors, the sensor hub uses Inter-Integrated Circuit (I2C) or
Serial Peripheral Interface (SPI) to forward sensor data to the

data processing layer. For external independent sensors, sen-
sor data are forwarded to the cloud server from the sensor hub
and smart devices can accumulate these data from the cloud
server using the network layer. Sensors in smart devices can
be classified into three broad categories (A detailed description
of different sensors is given in Table II):

1) Motion Sensors: Motion sensors measure the change in
motion as well as the orientation of the devices. There are
two types of motions one can observe in a device: linear and
angular motions. The linear motion refers to the linear dis-
placement of a smart device while the angular motion refers
to the rotational displacement of the device.

2) Environmental Sensors: Sensors such as light, pressure,
etc. are used to sense the change in environmental parameters
in the device’s peripheral. The primary purpose of using envi-
ronmental sensors is to help the devices to take autonomous
decisions according to the changes in a device’s peripheral. For
instance, environment sensors are used in many applications
to improve user experience (e.g., home automation systems,
smart locks, smart lights, etc.).

3) Position Sensors: Position sensors deal with the phys-
ical position and location of the device. The most common
position sensors used in smart devices are magnetic sensors
and Global Positioning System (GPS). Magnetic sensors are
usually used as a digital compass and help fix the orienta-
tion of a device’s display. On the other hand, GPS is used for
navigation purposes.

B. Communication Layer

The communication layer acts as a channel to transfer data
collected in the sensing layer to other connected devices.
In addition, the communication layer also establishes a con-
nection between the device and cloud server to accumulate
data from the external independent sensors [31], [69]. In
smart devices, the communication layer is realized by using
diverse communication technologies (e.g., Wi-Fi, Bluetooth,
Zigbee, Z-Wave, LoRa, cellular network, etc.) to allow data
flow between other devices within the same network. The
Communication layer also simplifies remote access to smart
devices. For example, a user can control a smart light from
different locations using an app on a smartphone. For on-
board sensors, data communication from the sensor to the
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TABLE II
SENSORS AVAILABLE IN SMART DEVICES

processing unit is performed by different serial and parallel
communication protocols such as Serial Port Interface (SPI),
Inter-Integrated Circuit (I2C) protocol, Peripheral Component
Interconnect (PCI), etc.

C. Data Processing Layer

The data processing layer takes data collected in the sensing
layer and analyses it to make data-driven decisions. This layer
provides processed data to installed applications to perform
different tasks. Also, in some smart devices (e.g., smartwatch,
smart home hub, etc.), the data processing layer saves the
results from previous analysis to improve the user experience.
For instance, the data processing layer can learn the contexts
and patterns during the user interactions to take autonomous
decisions. This layer may share the result with other connected
devices via the network layer.

D. Application Layer

The application layer presents and renders the results of
the data processing to the user. In other words, the applica-
tion layer is a user-centric layer which executes various tasks
for the users. There exist diverse applications, which include
smart transportation, smart home, personal care, healthcare,
etc., [70]. Application layer also provides user interface to the

users where users can select, control, and monitor different
applications of the smart devices.

IV. EXISTING SENSOR MANAGEMENT SYSTEMS AND

SECURITY NEEDS IN SMART DEVICES

Modern smart devices create a many-to-many relationship
between apps and sensors that OSes manage. Managing this
relation is a hard task and smart device OSes need effective
and practical sensor management schemes to ensure secure
data flow from the sensors to the apps. In addition, the sen-
sor management in several smart devices (e.g., smart light,
thermostat, etc.) also needs to assure a secure and seamless
connection with external sensors to perform multiple tasks.
Hence, an effective sensor management system is required
to manage and ensure the security of all the sensors in the
smart devices. In this section, we discuss different security
requirements and goals of smart devices and how the exist-
ing sensor management systems address these requirements.
Furthermore, we also articulate the shortcomings of existing
sensor management systems.

To understand the security needs in smart devices, we
consider the following smart device use cases. Assume a
user, Bob, has several smart devices and sensors installed
in his smart home system including smart lock, thermostat,
motion sensor, temperature sensor, and presence sensor. Here,
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temperature and presence sensors are embedded in smart ther-
mostat while the motion sensors are external sensors connected
with smart devices using different communication protocols
(e.g., ZigBee, Z-Wave, BLE, etc.) or via cloud [64]. We
assume all the smart devices and sensors are in the same
network. Bob installed several smart apps to automate and
control tasks in smart devices. For instance, Bob installed an
app in the thermostat to automate temperature control using the
embedded temperature sensor. Also, Bob configured the exter-
nal motion sensor with the smart lock to unlock the door with
the users’ motion. Based on the configurations and installed
apps, the following scenarios can happen-

Case 1: An attacker having access to the same network
installs a malicious motion sensor without alerting Bob. How
can Bob identify the legitimate sensor while configuring the
smart lock with the external motion sensor?

Case 2: Bob unknowingly installs a malicious app for the
smart thermostat that is trying to access all the embedded sen-
sors (both temperature and presence sensor). How can Bob
limit the sensor access of the installed app?

Case 3: An attacker with the access of device peripheral
captures the network packets between external sensors and the
smart lock using a sniffing device. Additionally, the attacker
is trying to change environment parameters (e.g., temperature)
to change sensor reading and switch on the thermostat mali-
ciously. How can Bob ensure that the attacker fails to extract
any sensitive information from captured sensor-device commu-
nication and verify whether the sensor reading is legitimate or
not?

Case 4: An attacker having access to the network sends
malicious connection requests to the external motion sensor to
make it unavailable for performing pre-defined tasks. How can
Bob confirm sensor availability while configuring the smart
lock with an external motion sensor?

To address these questions, current smart device ecosys-
tem needs, (1) a sensor authentication system to identify
fake or compromised sensors, (2) a sensor authorization
framework to limit malicious sensor access, (3) Secure data
sharing to confirm data confidentiality and integrity in sen-
sors, (4) seamless connectivity to ensure sensor availability.
In the following sub-sections, we briefly discuss existing sen-
sor management systems and their shortcoming in addressing
the aforementioned security needs.

A. Sensor Authentication

Smart devices can connect with each other to perform tasks
collectively. Although this may increase the functionalities of
smart devices, device authentication is needed to ensure secure
communication among devices. The network layer of smart
devices should have an authentication framework to connect
with trusted devices and sensors. Similarly, the sensing layer
of smart devices should also have an authentication framework
to detect tampered sensors in the device ecosystem.

Although sensor authentication has not been a big concern
for on-device sensors, an unauthenticated external sensor can
perform malicious activities in connected smart devices [71].
To authenticate an external sensor in a smart device ecosystem,

Listing 1. An example device handler of Fibaro Motion Sensor.

device fingerprinting can be utilized at the time of pair-
ing between a smart device and an external sensor. Here,
we discuss how sensor fingerprinting is implemented in the
Samsung SmartThings platform. Samsung SmartThings offers
a capability-based sensor management system which can con-
trol sensors of several devices from one common platform (a
hub or smartphone). When a new external sensor is installed in
the system, a pre-defined device handler is used to pair the sen-
sor which specifies the capabilities of the sensor. This device
handler also contains the fingerprint of the sensor. A sample
device handler snippet is given in Listing 1. Here, a Fibaro
motion sensor device handler for the Samsung SmartThings
platform is shown. From line 4 to 11 capabilities of the sensor
are defined and after initial installation, the sensor can provide
these pre-defined functions. From line 13 to line 17, differ-
ent benign commands are defined which allowed for Fibaro
motion sensor in Samsung SmartThings ecosystem. In lines 19
and 20, the fingerprint of the sensor is defined which allows
the smart device ecosystem to understand the device type and
authenticate the sensor at the time of installation. This finger-
print is hard-coded in the device handler and can be manually
modified to create new handler.

Although capability-based sensor management provides
automatic authentication of the connected external sensor at
the installation time, the hard-coded capabilities and finger-
print in the device handler can be easily altered. The device
handler can be changed manually and an attacker can eas-
ily create a fake device handler to trick smart device user
to install a compromised sensor in the smart device ecosys-
tem. Attackers can also exploit the sensors by mimicking the
hard-coded fingerprint in a compromised or fake sensor [72].
Furthermore, after initial authentication, all the sensor from the
same vendor is visible to any connected users to add automa-
tion rules [73]. Hence, an adversary with access to the smart
environment can use any installed sensors to add malicious
automation rules. Figure 2 shows the app installation process
in the Samsung SmartThings platform. Here, three different
Fibaro motion sensors are available to the users and users can
choose any of these sensors to create new automation rules.
The current ecosystem does not allow any security measure
to restrict specific sensors after initial authentication. Again,
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Fig. 2. Sensor authentication and automation in Samsung SmartThings.

if any of these three sensors is compromised, it can be used
as a platform to attack connected devices sharing the smart
environment.

B. Sensor Authorization

Modern smart devices use different apps to perform multiple
tasks. These apps use multiple sensors to execute a task effi-
ciently. At run-time, installed apps can ask for sensor access
and it is necessary to check whether the requested access is
legitimate as apps can use sensors for malicious purposes. For
example, a simple flashlight app in the smartphone can access
the motion sensor data which is irrelevant to the function of the
app and can leak the information surreptitiously [40]. Smart
devices should have a robust authorization framework to limit
these unauthorized sensor accesses. Sensor authorization can
be implemented in both the sensing and application layers.
The sensing layer authorization can bind sensors with the apps
while the application layer authorization can offer user control
over sensors [22], [74].

Current smart device OSes offer a permission-based sensor
management system to control on-device sensor authoriza-
tion at app installation time and run-time [75], [76]. Here,
we briefly discuss the Android sensor management system as
Android OS holds the highest market share in the smart device
domain (approximately 37%) [77]. Whenever an application
wants to access a sensor in the OS, it has to communicate
via a sensor manager framework (Figure 3). An application
first sends a request to the sensor manager to register the
desired sensor which invokes ListenerService service for the
application. After receiving the request, the sensor manager
creates a ListenerService for the application and maps the
request with the designed sensor driver to acquire sensor data.
If more than one App requests access for the same sensor, the
sensor management system runs a multiplexing process to reg-
ister one sensor to multiple Apps. This data acquisition path
from the application to the sensor driver is initiated by the
Hardware Abstraction Layer (HAL) which binds the sensor

Fig. 3. Example Sensor Management System for Android.

hardware with the device driver. The sensor driver then acti-
vates the requested sensor and creates a data flow path from
the sensor to the app [78]. On the other hand, Windows and
Blackberry OSes use Sensor Class Extension to connect sen-
sor hardware with the device driver [79], [80]. Windows OS
also uses the User Mode Driver Framework to detect sensor
access request and create a data acquisition path between sen-
sor API and the APP. In iOS, the sensor management system
is divided into four core services: Core Motion, Core Audio,
Core Location, and Core Video [81]. The Core Motion service
provides access to the motion sensors and some of the envi-
ronmental sensors (e.g., barometer, light, proximity, etc.). The
audio sensors (microphone and speakers), GPS, and the cam-
era can be accessed via the Core Audio, the Core Location,
and the Core Video services, respectively. These services pro-
vide data flow between the sensors and their apps according
to the requests.

However, the main shortcoming of the permission-based
sensor authorization is the dependence on the user’s consent
for sensor access. In most smart devices, permission-based
sensor authorization is implemented for a subset of the sup-
ported sensors (e.g., GPS, camera, audio sensor). Whenever
an application is installed in a smart device, it asks the users
to grant permission to access various sensors. Thus, malicious
applications may trick the user into allowing access to sen-
sitive sensors to launch sensor-based attacks [7], [13], [23].
Users are typically unaware of what the malicious applica-
tions actually do with the sensed data [19], [21]. Furthermore,
permissions are imposed on selected on-device sensors only
(e.g., camera, microphone, and GPS) and other sensors are
automatically included without any explicit permission. Thus,
applications can easily access other no-permission-imposed
sensors such as accelerometer, gyroscope, light sensor, etc.,
as discussed in the following sections in further detail. These
sensors can be exploited maliciously and various sensor-based
threats (e.g., information leakage, denial-of-service, etc.) can
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be launched on smart devices [82]–[84]. Additionally, for
external sensors, the smart device ecosystem offers one-time
sensor authorization at the time of sensor installation. After
the initial installation, any connected smart device in the same
network can access the external sensor without any additional
authorization step.

C. Data Confidentiality and Integrity

One major concern is to keep the collected sensor data
secure in smart devices. Smart devices use multiple sensors
to perform a task and recent studies have shown that user
activities on a smart device can be inferred using the sen-
sor data [40]. The current smart device ecosystem implements
different encryption methods in the network layer to encrypt
sensor data before sharing with the devices. For example,
Azure IoT suite, Amazon AWS, and Weave use SSL/TLS pro-
tocol to ensure secure communication [36]. Moreover, smart
devices using ZigBee protocol use 128-bit AES encryption
for secure communication [85]. However, most of the existing
encryption schemes are available for communication between
external sensors and smart devices or cloud communication.
Some smart device platforms (e.g., Apple HomeKit, Weave)
allows disk encryption to secure saved sensor data. But any
app running in the smart devices can access these encrypted
data, even collect unencrypted data from the on-device sen-
sors [44]. These sensor data can be further processed to gain
sensitive user information such as PIN code for the devices,
typed information, even on-going tasks on a device [7].

D. Sensor Availability

To perform sensor-dependent tasks, smart devices should
have uninterrupted sensor access. This requires sensor avail-
ability to the application layer of the devices from the sensing
layer. Sensor availability is more important in external sen-
sors than on-device sensors as attackers can target the network
layer to perform a Denial-of-Service attack. The current smart
device ecosystem offers firewall rules to filter unauthorized and
malicious service requests to avoid unauthorized sensor access
and avoid buffer overflow [86]. One possible solution can be
fine-grained access control systems in the application layer
to ensure continuous data availability to legit app requests.
However, the existing schemes cannot detect sensor unavail-
ability caused by forced changes in the sensors (e.g., hacking
gyroscope using acoustic signals [8]).

E. Summary of Existing Sensor Management Systems and
Their Shortcomings

Although existing sensor management systems in smart
devices acknowledge the needs of securing sensors by address-
ing sensor authentication, authorization, and availability, there
are several shortcomings that can be easily exploited by
sensor-based threats.

(1) User Dependency: Existing sensor authorizations
depend on user permission where users are asked to allow or
deny sensor access permission to an app at installation time or
run-time. However, no information about the nature of sensor
usage is presented to the users. Hence, an app can easily trick

the users to get desired sensor authorization and abuse sensors
for malicious purposes [13], [87].

(2) Selective Sensor Authorization: Existing sensor manage-
ment systems impose permission-based sensor authorization
for selective sensors such as microphone, camera, and GPS.
However, any installed app can access other sensors such as
motion, light, magnetic, and proximity sensors without any
explicit user permission. Attackers can exploit this limita-
tion to get access to sensors and perform malicious activities
including keystroke inference [88], eavesdropping [89], etc.

(3) Passive Sensor Sniffing: As smart devices allow exter-
nal sensor integration to perform various tasks, it is possible to
capture the network traffic between sensors and smart devices
without interrupting normal operation. Also, both embedded
and external sensors in a smart device are sensitive to environ-
mental parameters which can be captured by a nearby smart
device. For instance, typing in a keyboard creates a tap noise
which can be captured by the microphone of a nearby smart-
phone [14], [90]. Attackers can extract sensitive information
from captured traffic and sensor data even if proper encryp-
tion schemes are used to protect confidentiality [28], [85].
Hence, current sensor management systems cannot protect
sensor abuse from passive sniffing.

(4) Transitive Access: Smart devices create a network of
devices or smart environment where several devices are con-
nected with each other to perform multiple tasks. Here, a
newly installed smart device becomes automatically visible
and can access other devices and sensors without any explicit
privilege. As current sensor management systems use hard-
coded capabilities and fingerprint to authenticate devices and
sensors, attackers can introduce a compromised or fake device
to capture sensitive sensor information and inject false data in
the system to perform malicious activities [71], [91].

(5) Indirect Sensor Data Injection: Current sensor man-
agement systems do not offer any verification method to
check whether a sensor input is valid or not. As a result,
an attacker can target to maliciously change or control envi-
ronment parameters such as light intensity or magnetic field
to spoof sensor data, trigger malicious activities, or interrupt
normal device activities. For instance, an attacker can use
inaudible acoustic signals to trigger a voice command in
voice-assisted devices and interrupt drone operations [8], [92].

V. THREAT MODEL

In this section, we first categorize sensor-based threats in
smart devices based on different security requirements and
present the threat model.

A. Types of Sensor-Based Threats

A sensor-based threat exploits on-device or external sen-
sors in a smart device ecosystem to perform attacks such as
false data injection, eavesdropping, information leakage, etc.
to jeopardize the proper operation of the device. Based on the
nature of the threats, sensor-based threats can be categorized
in two categories.

• Passive Threats: Passive sensor-based threats refer to
the malicious sensor activities in smart devices without
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obstructing the normal operation of the device. For exam-
ple, a malicious app installed in a smart device can run
in the background and observe the sensor behavior to
infer the ongoing task in the device [93]. Passive sensor-
based threats can accomplish its malicious intents by
performing malicious activities within a smart device or
by utilizing another near-by smart device.

• Active Threats: Active sensor-based threats obstruct
the normal operation of the smart device to perform
malicious activities. An active sensor-based threats can
directly abuse an on-board or external connected sensor
by spoofing the sensor reading [91] or obstructing sensor
signals using external device [8].

B. Attacker’s Capabilities

To perform sensor attacks, we consider adversaries have
the following capabilities in terms of device access, security
privilege, and processing capabilities.

• Device Access: An adversary may need device access
to perform malicious sensor activities in a smart device.
Based on the type of access needed for an adversary, we
categorized three different access types - direct access,
transitive access, and peripheral access. In direct access,
an adversary can directly access the sensors in a smart
device to perform malicious activities. For example, a
malicious app installed in a smartphone can directly
access on-board sensors and collect data to infer sen-
sitive information [7]. For transitive access, an adversary
uses access to a smart device or sensor to perform mali-
cious sensor activities in a targeted smart device. For
example, in a smart home environment, an adversary can
get access and strobe a smart light to change the out-
put of the light sensor and a targeted smart light [91].
In peripheral access, an adversary implanted in a device
(affected device) can perform malicious sensor activities
in any smart device in its peripheral. Here, the affected
device and the targeted device share the same environ-
ment, but are not connected with each other. For example,
an adversary can use the audio sensor of a smartphone
to eavesdrop to another smartphone in close proximity to
infer keystrokes.

• Security Privilege: An adversary needs different levels of
security privileges to perform malicious sensor activities
in a smart device. For instance, to perform eavesdropping,
an adversary needs minimum (low) privileges in the tar-
geted device while for false data injection in a sensor, an
adversary needs maximum privileges to access the sen-
sor. In this work, we consider an adversary can have both
privileges to classify the sensor-based threats and attacks
correctly.

• Processing Capability: In smart devices, sensors mostly
act as a triggering component to initiate automated appli-
cations. The sensed information in the smart device
sensors often needs further processing to extract impor-
tant information. Hence, an adversary needs processing
capabilities to perform malicious sensor activities in

smart devices. Based on the adversary’s goal, the pro-
cessing capacity may vary. For example, an adversary
extracting keystrokes from motion sensors needs higher
processing capabilities than an adversary recording phone
conversation secretly off the device [40].

C. Threat Model

In this paper, we consider sensor-based threats and attacks in
four working layers (sensing, communication, data processing,
and application) of the smart devices. We consider adversaries
that try to abuse the sensors to perform malicious tasks as a
sensor-based threat. Additionally, this work considers passive
threats to the sensors that do not disrupt normal functionalities
of the smart devices. An adversary can be installed in a smart
device to get access to the embedded sensors of the device or
external sensors connected to the smart device. An adversary
that has access to the peripheral of a targeted smart device
to sniff the sensor data and network traffic is also within the
scope of this work. Furthermore, we consider an adversary that
can have direct or indirect access to the sensors of the smart
devices to capture sensor data for further analysis. Specifically,
we consider the following threats in our threat model.

• Information Leakage: An active or passive adversary may
try to access the sensor data to steal sensitive information
such as typing information, unlock code, PIN code, etc.

• Transmitting Malicious Sensor Command: An adversary
may try to abuse sensors to transmit malicious sensor
command to trigger malicious activities in a smart device.

• False Sensor Data Injection: An adversary may try to
inject false sensor data to disrupt the normal functional-
ities of the smart devices.

• Denial-of-Service: An adversary may establish a sensory
channel between on-device sensors and external entities
(e.g., device, signal generator, etc.) to impede normal sen-
sor operation which eventually leads to obstructing an
on-going task in the smart device.

We consider these threats based on the impact of the attacks
on smart devices. We expand the threat model in several
sub-categories (e.g., information leakage includes keystroke
inference, task inference, location inference, and eavesdrop-
ping) based on the final impact of sensor-based threats in
Section VI. Each category includes other sub-threats based on
how they are executed and targeted sensors in smart devices.
Indeed, in total, we cover 89 different sensor-based threats
reported by developers and researchers. Note that a physical
sensor abuse or sensor tampering that could lead to physical
damage to the smart devices is not considered and outside
the scope of this work. Also, we do not consider threats aris-
ing from wireless sensor networks (WSNs) and cyber-physical
systems (e.g., smart grid, industrial control systems, robotics
systems, etc.) in the threat model. However, we do acknowl-
edge that there are several interesting threats reported by the
research community related to sensor exploitation in WSNs
and CPSs. For instance, sensor impersonation attack in a wire-
less sensor network is an emerging threat where attackers
implant a compromised sensor node to impersonate as valid
components and perform malicious tasks such as false data
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injection and eavesdropping [94]–[96]. The readers are advised
to check these useful studies for more information.

VI. TAXONOMY OF THREATS, ATTACK METHODS, AND

THEIR IMPACT

As existing sensor management systems and security
schemes cannot provide adequate security to the sensors,
attackers can exploit these sensors in various ways. In this
section, we provide a detailed discussion about sensor-based
threats and attacks to smart devices and survey the existing
malicious attacks confirmed by the research community and
developers [13], [19]–[23].

To understand the severity of sensor-based threats and
attacks, we considered several common vulnerability scoring
metrics for sensor-based threats in our discussion [97]. These
scoring metrics give insights of the characteristics and impact
of the threats. Detailed of these metrics are given below.

• Attack Method (AM): Attack method reflects how the
threats penetrate the smart device to perform malicious
sensor events. For sensor-based threats, we consider three
methods to assess the severity of the threat- active,
passive, and combination.

• Device Access (DA): To initiate a malicious sensor activ-
ity in a smart device, sensor-based threats need to access
the device directly or indirectly. Based on the nature of
the threat, we categorize the device access of sensor-
based threats in three categories - direct access, transitive
access, and peripheral access. Direct access refers to the
threats that need access to the targeted device. In transi-
tive access, a sensor-based threat can preform malicious
sensor activities by accessing a device that is connected
with the targeted device. For example, a sensor-based
threat can perform malicious activities in a smart light
by accessing a connected light sensor [28]. A sensor-
based threat can also execute malicious sensor-activities
by accessing the peripheral of the targeted device. For
instance, keystrokes in a smartphone can be captured by
a nearby smart speaker or smart watch [98].

• Attack Complexity (AC): Sensor-based threats and attacks
can target one single sensor or multiple sensors to per-
form malicious tasks in smart devices. As abusing more
than one sensor at a time may require immense effort
from the attacker side, we consider two different levels
(high and low) of complexity for sensor-based threats.

• Required Privilege (RP): To get access to the sensors for
initiating malicious activities, sensor-based threats need
to exploit existing security mechanisms of smart devices.
As we explained in Section IV, sensors in a smart device
can be categorized in two categories based on access
permission: no-permission imposed sensor and permis-
sion imposed sensor. To access the no-permission based
sensors, an adversary needs no excessive privilege while
an adversary targeting permission imposed sensors needs
high privilege. Hence, based on permission needed for
accessing sensors in a smart device we consider two cate-
gories - high privilege threats (need excessive permission)
and low privilege threats (need no permission).

• User Interaction (UI): This scoring metric portrays the
need of user interaction other than the attacker to compro-
mise the sensor functionalities in smart devices. Low user
interaction indicates the higher impact of the sensor-based
threats to smart devices.

• Attack Impact (AI): This scoring metric represents the
impact of the sensor-based threats to various secu-
rity requirements of the smart device. For sensor-based
threats, we choose three important security features that
might get affected - confidentiality, integrity, and avail-
ability.

• Success Rate (SR): Success rate of the sensor-based
attacks is the fraction or percentage of success of an
attack to perform malicious activities in a smart device
among a number of attempts. We categorize this metric
in three categories - high (success rate >90%), medium
(success rate 70-90%), and low (success rate < 70%).

In the following sub-sections, we summarize existing
sensor-based threats and attacks in four broad categories
based on the purpose and nature of the threats (presented in
Section V).

A. Information Leakage

Information leakage is the most common sensor-based threat
for smart devices and their applications. Sensors on smart
devices can reveal sensitive data like passwords, secret keys
of a cryptographic system, credit card information, etc. This
information can be used directly to violate user privacy or to
build a database for future attacks. An adversary (e.g., mali-
cious app) can get access to the sensor data by exploit-
ing vulnerabilities of existing sensor managements systems
such as selective sensor authorization and user dependency
(Section IV: use case 2). Only one sensor can be enough
for information leakage (e.g., eavesdropping using micro-
phone [13]) or multiple sensors can be exploited to create a
more complex attack (e.g., keystroke inference using the gyro-
scope and audio sensors [99]). Moreover, sensors of one smart
device can be used to leak information from a nearby device
(passive information leakage) (Section IV: use case 3). In
general, information leakage can be accomplished for the pur-
pose of (1) keystroke inference, (2) task inference, (3) location
inference, or (4) eavesdropping as explained below.

1) Keystroke Inference: Keystroke inference is a generic
threat to smart devices. Most of the smart devices provide
input medium such as the touchscreen, touchpad, keyboard
(external or built-in virtual or real). Whenever a user types or
gives input to a device, the device tilts and turns which creates
deviations in data recorded by sensors (e.g., accelerometer,
gyroscope, microphone, light sensor, etc.). These deviations
in sensor data can be used to infer keystrokes in a smart
device. Keystroke inference can be performed on the device
itself or on a nearby device using sensors of the smart device.
Keystroke inference can be performed actively (using on-board
sensors) or passively (using external sensors). Here, we sum-
marize different keystroke inferences based on the targeted
sensors in the smart devices.
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Keystroke Inference With Light Sensors: Light sensors in
smart devices are usually associated with the display unit. In
general, the display unit of the smart devices is touch-sensitive
and provides a user interface to take inputs. For a constant state
and unchangeable ambiance, the readings of the light sensor
are constant. Each time a user touches and uses the touch-
screen to interact with the device, he/she tilts and changes the
orientation of the device, which causes changes in the read-
ings of the light sensor. Each input may have a dissimilar
light intensity recorded by the sensor. These changes in the
readings of the light sensor of a device can be utilized to infer
keystrokes of that particular device. An attacker can derive the
various light intensities recorded by the light sensor by trying
several keystrokes in a device and then construct a database.
When users put their PINs or type something in the touch-
pad, attackers can capture the data maliciously from the device
and collate these data with the database to decode keystroke
information. As an example, some researchers developed a
method named PIN Skimming to use the data from an ambi-
ent light sensor and RGBW (red, green, blue and white) sensor
to extract PIN input of the smartphone [100].

Keystroke Inference with Motion Sensors: The main purpose
of using the embedded motion sensors (e.g., accelerometer,
gyroscope, linear acceleration sensor) in smart devices is to
detect changes in motion of the devices such as shake, tilt,
etc.. Accelerometer and linear acceleration sensor measure
acceleration force that is applied to a device while gyroscope
measures the rate of rotation in the devices. In smart devices
with user interface (e.g., smartphone, smart watch, tablet, etc.),
the value given by the motion sensors depends on the orien-
tation of the device and user interactions (striking force of
the finger on the device display, resistance force of the hand,
the location of the finger on the touchpad of the device, etc.).
Thus, when a user gives inputs to a device, the motion sen-
sors’ data changes accordingly. Generally, smart devices use
two types of user interface to take user input – on-screen user
interface (e.g., touchpad) and external user interface (e.g., key-
board, keypad, etc.). For both user interfaces, input keys are in
a fixed position and for a single keystroke, the motion sensors
give a specific value [101]. As attackers do not need any user
permission to access the motion sensors, it is easy to access
the motion sensor data.

One common keystroke inference attack can be performed
by exploiting accelerometer. As mentioned above, accelerom-
eter gives a specific reading for each user input on a smart
device, thus, attackers can build a database of pre-processed
accelerometer readings with diverse input scenarios and make
a matching vector of sensor data and keystrokes to extract
users’ input [88], [102]. The data extracted from these attacks
vary from text inputs to PINs and numbers typed in the touch-
pad which is much more serious as attackers can acquire
the PIN or credit card information [82], [103]. Owusu et al.
developed an app named ACCessory which can identify the
area of the touchscreen by analyzing accelerometer data of
smart devices [83]. ACCessory can infer PIN input on smart
devices based on the detected area from accelerometer data.
Accelerometer data can also be used to infer keystroke from a
nearby keyboard. Marquardt et al. presented an attack scenario

where accelerometer data of a smart device can be used to
guess input on a nearby keyboard [84]. Whenever a user types
on the keyboard, a vibration occurs and the accelerometer of
the smart devices can catch this vibration and keystrokes can
be identified correctly by analyzing this data [104].

Another method of keystroke inference can be achieved by
analyzing the gyroscope data of a smart device. Gyroscope
measures the angles of rotation in all the three axes which
vary based on the specific area of the touch on the screen.
Many smart devices such as smartphones, tablets, etc. have a
feature when users input something on the touchpad the device
vibrates and gyroscope is also sensitive to this vibrational
force. The orientation angle recorded in the gyroscope and the
vibration caused by the input can be used to distinguish inputs
given by the users. Moreover, the data of the gyroscope can
be combined with the tap sound of each key recorded via the
microphone which can increase the success rate of inferring
keystrokes [99], [105], [106]. The combination of accelerome-
ter and gyroscope data can also be used for keystroke inference
which yields more accurate results [107]–[112]. Additionally,
the use of pattern recognition and deep learning algorithms
can improve the success rate of keystroke inference attacks to
smart devices [113].

In most wearables (smart bands, smartwatches, etc.), the
motion sensors are utilized for monitoring the movement of
the devices. A smartwatch, which is one of the most common
wearables, maintains constant connectivity with smartphones
via Bluetooth. While wearing a smartwatch, if a user moves
his/her hands from an initial position, the motion sensor calcu-
lates the deviation and provides the data regarding the change
of the position of the smartwatch [114]. Typing in the touch-
pad of a smart device while wearing a smartwatch will change
the data recorded by the motion sensors of the smartwatch
depending on user gestures. For a specific user input interface
such as QWERTY keyboard of smartphones which has a spe-
cific distance between keys, the motion sensors’ data of the
smartwatch can be used to infer the keystrokes [15], [90],
[115], [116]. Modern wearable devices (e.g., Apple Watch 5,
Samsung Gear VR, etc.) also provide a user interface where
users can provide inputs to the devices. Researchers showed
that it is possible to infer the user input in wearables by
observing hand movements [117]. A recent work showed it
is possible to infer the unlock code of a smart lock from the
gyroscope data of a smart watch [118].

Keystroke Inference With Audio Sensors: High precision
microphones used in smart devices can sense the acoustic sig-
nals emanating from keyboards (built-in or nearby) which can
be used to infer the keystrokes on a smart device. Asonov and
Agrawal proposed an experiment to record the sound of key
tapping and infer the correct key from it [119]. In this exper-
iment, the attacker is assumed to record the acoustic signal
emanating from the device while the user types on the key-
board. Then, the attacker matches this signal with a training
dataset recorded stealthily while the same user was typing in
the training period.

Zhuang et al. showed that it would be possible to infer
keystrokes by just analyzing the acoustic emanation with-
out having a training data set [14]. In this attack scenario,
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a specific key is assigned to a pre-defined class according to
the frequency of the acoustic signal it generates while being
typed. The attacker then takes a ten-minute of recording of
the acoustic signal of typing on a keyboard. This recorded
signal is analyzed using machine learning and speech recog-
nition feature named Cepstrum to match with the previously
defined key classes and infer the input of a keyboard.

In another work, Halevi and Saxena introduced a new
technique named Time-Frequency Decoding to improve the
accuracy of keystroke inference from the acoustic signal [120].
In this technique, machine learning and the frequency-based
calculations are combined to match the recorded acoustic sig-
nal data from a smart device with a training dataset and
increase the success rate of the attack scenario. This tech-
nique also considers the typing style of users to minimize the
error rate of keystroke inference.

Berger et al. divided a PC keyboard in regions based
on tap sound generated by keys and modeled a dictionary
attack [121]. This attack utilizes signal processing and cross-
correlation functions to process acoustic signal emanations
from a nearby keyboard. Kune and Kim proposed a timing
attack on a number pad used in smartphone and ATMs using
the audio feedback beeps generated while entering PIN [122].
Inter-keystroke timing and distance between the numbers on
the keypad are the main two features which are used to
infer the input PIN in this attack. By analyzing the audio
feedback recorded using the microphone of a nearby smart
device, these two features are extracted and using Hidden
Markov Model, the input numbers and PINs are inferred.
Lu et al. proposed KeyListener, a context-aware inference
method to predict the keystroke in QWERTY keyboard of
smartphones and tablets using embedded microphones [123].
KeyListener uses a binary search tree algorithm to predict
the typed information and achieves over 90% success rate.
Similar to KeyListener, Shumailov et al. presented an acoustic
side-channel attack which uses the tap noises of a virtual key-
board to infer the typed information in a smartphone [124].
Kim et al. further improved this work by capturing tap noises
using multiple embedded microphones and combining the pat-
terns of the acoustic signals [125]. Here, researchers developed
a tapstroke detection and localization algorithms which can
infer the typed information with 85.4% accuracy. In a recent
work, Zhou et al. presented PatternListener+, an inference
attack to predict the unlock patterns on an Android device
using acoustic signal [126]. PatternListener+ uses the speaker
of a smartphone to play an inaudible sound and capture the
reflected signal from users’ fingertips using the embedded
microphone. The reflected signal contains information of the
hand movement which is further analyzed with a tree struc-
ture to infer the pattern of the lock. Backes et al. showed
that acoustic signal emanated from a dot matrix printer which
was collected by a nearby microphone of a smart device can
be analyzed to predict the text printed on a paper [127]. In
the training phase of this attack, words from a list are being
printed, the acoustic signal is recorded and the data is stored.
The audio signal processing and speech recognition techniques
are used to extract the features of the acoustic signal to cre-
ate a correlation between the number of needles used in the

printer and the intensity of the audio signal. In the real attack
scenario, the audio signal is captured by a nearby audio sensor
and matched with the previous dataset to infer the printed text.

Zhu et al. showed a context-free attack scenario using the
keyboard’s acoustic emanation recorded in a smartphone to
infer keystrokes [128]. In this attack scenario, the acoustic
signals emanated from the keyboards are recorded by two or
more smartphones. For each pair of microphones of smart-
phones, the recorded acoustic signal strength will depend on
the distance between the typed key and the smartphones. By
calculating the time-difference of the arrival of the acoustic
signal, the position of the key can be inferred.

In a similar attack, Chhetri et al. introduced a method to
reconstruct the design source code sent to a 3-D printer [129].
In this attack scenario, the acoustic signal emanated the 3-D
printer is being recorded by a recorder placed in close prox-
imity of a 3-D printer and the recorded file is processed for
extracting time and frequency domain features. These features
are then cross-matched with a training dataset collected in a
learning phase to infer the correct design. Song et al. improved
this attack by adding magnetic sensor data to accurately
reconstruct the physical prints and their G-code [130].

Keystroke Inference With Video Sensors: Modern smart
devices come with powerful cameras which can both take still
pictures and record high definition videos. By applying image
processing techniques in captured images, keystroke inference
can be done. Simon and Anderson developed a malware named
PIN skimmer which uses the front camera of a smartphone
and microphone to infer PIN input in a smartphone [87].
PIN skimmer records the tap sound on the touchpad of a
smartphone and records video using the front camera of the
phone. The movement recorded in the video is then analyzed to
detect which part of the touchscreen is used. This information
is then combined with the tap sound to infer the inputs
correctly.

Another potential malware attack on the smart devices using
the camera is Juice Filming Attack [131]. In this attack sce-
nario, a malicious app uses the camera to take screenshots
when any user-input is given in the touchpad and save the
images on the storage unit (internal ROM or external memory
card) of the device. Most of the smart devices use USB for
heterogeneous applications (e.g., charging, data transfer, etc.)
and when the compromised device is connected to the laptop
or any other device with a storage unit, the app transfers the
stored pictures to the storage device from which attackers can
easily extract the information.

Shukla et al. showed a method to infer the PIN input by
analyzing the hand position using the recorded video [132].
In this method, a background application gets access to the
camera of the smartphone and records a video when a user
starts typing in a touchpad. Then, analyzing the hand position
and the position of the smartphone, an attacker can extract the
inputs given in a touchpad. Another version of this attack is
to record the typing scenario using an external camera. In this
scenario, a camera of a smart device (e.g., smartphone, smart
glass, smart surveillance system, etc.) is used to record the
video of typing the PIN. In both cases, the input PIN can be
inferred with high accuracy.
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Aviv introduced another type of attack named Smudge
Attack using an external camera to infer pattern lock of a
smart device [133]. In this attack scenario, a smart device is
placed in between two cameras of other smart devices (smart-
phone or smart glass) and high definition pictures are taken.
Whenever the user gives the unlock pattern in the touchpad,
some smudge marks are left on the screen, and captured by
the cameras, which leak information about the unlock pattern
to an attacker.

Raguram et al. developed a process named iSpy which can
reconstruct the typed text by analyzing the reflection of the
touchscreen in a reflective surface such as sunglass or smart
glass [134]. The experimental setup of iSpy includes a high
definition camera which can capture the video of the reflec-
tive surface while a user types in the touchpad of a phone.
The reflection of the phone is being extracted from the video
and consecutive frames are analyzed to extract stable pictures
of the phone screen. Features (hand position, motion in the
screen, etc.) are extracted from stable pictures extracted from
the video and by using machine learning techniques, key press
detection is done and typed text can be inferred successfully.
In more recent work, Wang et al. proposed GazeRevealer, a
novel side-channel attack to infer keystrokes in a smart device
using the eye movement of the users [135]. GazeRevealer
uses the front camera to capture video and analyzes to extract
multiple features such as eye movement, head position, etc.
These features are used to train a classifier which can predict
the keystroke in real-time with high accuracy.

Keystroke Inference With Magnetic Sensors: Besides the
aforementioned attack scenarios, electromagnetic emanations
from the keyboard can be used to infer the input of a computer.
As magnetic sensors of smart devices are sensitive to electro-
magnetic emanations, they can be used as the attack medium.
Vuagnoux and Pasini showed that both wired and wireless
keyboards emit electromagnetic signals when a user types and
this signal can be further processed to infer keystroke [136].
In this method, electromagnetic radiation is measured by the
magnetic sensor of a smart device when a key is pressed and
using the falling edge transition technique, an attacker can
infer the keystrokes.

Lessons Learned for Keystroke Inference: We summarize the
aforementioned threats and attacks in Table III with common
vulnerability metrics. We can see smart devices with user input
module (touchscreen, keypad, numeric keypad) are mostly
the targeted device for keystroke inference. These threats and
attacks affect the confidentiality of the sensor data. Another
interesting fact we observe is the majority of the threats and
attacks targets motion sensor (22 out of 42 reported threats
and attacks) which does not require any permission to access
in current smart device security schemes. Thus, these threats
and attacks can easily access sensor data and extract keystroke
information easily. For the targeted layer, we can notice the
keystroke inference in smart devices only targets sensing (34
out of 42) and application (8 out of 42) layer. We can also
observe a trade-off between attack complexity and required
privilege in sensor-based threats targeting sensors in smart
devices. For example, keystroke inference from the motion
sensor (e.g., accelerometer) does not require any privilege

to perform while keystroke inference from the audio sensor
needs permission to access the microphone. However, access-
ing the motion sensor needs active vulnerability which may
disrupt the on-going task in the smart device. On the other
hand, capturing keystroke using the audio sensor can be both
active and passive which increases the severity of the threat or
attack. The outcomes of keystroke inference also have diverse
effects on smart devices and users. As keystroke inference is
directly related to user activities in smart devices, it impacts
sensitive user information. Attackers can infer various typed
information including device unlock code, password, banking
information, typed and printed information, etc. These inferred
information can be used to initiate another attack or directly
used for malicious purposes such as ransom, data hijacking,
identity theft, etc. In summary, passive keystroke inference
with minimum required privilege (e.g., [15], [116], [136])
can severely affect the confidentiality of the smart devices.

2) Task Inference: Task inference refers to a type of attack
which reveals the information of an on-going task or an appli-
cation in a smart device. Task inference reveals information
about the state of the device and attackers can replicate this
device state to launch an attack without alerting security poli-
cies implemented in the device. Sensors associated with smart
devices show deviation in the reading for various tasks run-
ning on the devices. This deviation in the reading can be used
to infer the running process inside a device and application of
the device.

Task Inference With Light Sensor: Light sensor of a smart
device can be used to infer an on-going task on a device.
Smart devices with display emit lights with distinct intensity
for different tasks. For example, playing separate videos in
a smart TV will change the emitted light intensity based on
the background and video quality. This change in light inten-
sity can be used to infer an on-going task on the display.
Chakraborty et al. showed that light intensity changed in a
flat panel display (e.g., smart TV, smart monitor, etc.) can be
used to infer what is written on the screen by a light sen-
sor of a smartphone [137]. In this attack, an Android-powered
smartphone is placed in front of the display to capture the
light intensity emitted from the screen. These captured light
signals can be sampled and deconvoluted to infer the task on
the monitor such as on-going videos, specific Web pages, etc.
Celik et al. used a smart light to passively leak the status
of a smart home [72]. In this attack, if no user is present
inside the home, a smart light will maliciously trigger an on-
off pattern to notify the user. Maiti and Jadliwala proposed a
new attack vector to infer the audio and video of a smart
TV using the light emitted from a smart light [93]. Here,
researchers used the multimedia-visualization feature of smart
light which creates a vibrant lighting effect in conjunction with
audio and video playing nearby. Based on the light intensity
emitted in audio frequencies, researchers successfully inferred
an on-going audio or video.

Task Inference With Magnetic Sensors: Magnetic sensors in
smart devices has the role to fix the orientation of the device
with respect to Earth’s magnetic field. Data recorded by a
magnetic sensor change in the presence of an external mag-
netic field in the device’s peripheral. This deviation in data
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TABLE III
SUMMARY OF KEYSTROKE INFERENCE VIA SENSORS IN SMART DEVICES

can be used to identify the tasks running on a device. Many
smart devices have a storage unit and whenever data is writ-
ten or read from this storage unit, a change in the reading
of the magnetic sensor can be observed. Magnetic sensors of
a smart device can be used not only to infer information of
the device itself, but can also be used as a medium to fetch
information from a nearby device. Biedermann et al. showed
that the magnetic sensor of a smartphone could be used to
infer on-going tasks in a storage unit like the hard drives of
the computers and servers [138]. When an application is run-
ning on a computer, the hard drives generate a magnetic field
which can be sensed by a magnetic sensor of a smartphone.
Various actions cause distinct readings on the magnetic sen-
sor which can be used to track the users’ action. This can
be considered as a serious threat to the device and attack-
ers can fetch valuable information in this way. Ning et al.
proposed DeepMag+, a side-channel attack to exploit on-
board magnetic sensor for inferring smart apps installed in

a smart device [139]. DeepMag+ captures the on-board mag-
netic sensor data while executing installed apps in a smart
device and uses convolutional neural network to fingerprint
the apps. Additionally, DeepMag+ can combine motion sensor
data with magnetic sensor to increase the inference accuracy
up to 98%. Similar to this work, Matyunin et al. presented
MagneticSpy, a novel website and application fingerprinting
method exploiting magnetic sensors of a smart device [140].
MagneticSpy analyzes the electromagnetic disturbances caused
by the mobile processors which are proportional to the CPU
workload. By analyzing the deviance in different working con-
ditions, MagneticSpy can infer the on-going CPU activity with
high accuracy (up to 90%).

An electromagnetic (EM) emanation is a common phe-
nomenon for smart devices. Electromagnetic emanations occur
whenever current passes through a device and a task is
running on a device. EM emanation attacks can also be
observed in FPGA-based (Field-programmable gate array)
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TABLE IV
SUMMARY OF TASK INFERENCE, LOCATION INFERENCE, AND EAVESDROPPING VIA SENSORS IN SMART DEVICES

smart devices [141]–[143]. Attackers can record electromag-
netic emission data generated from the FPGA-based smart
devices to deduct which kind of application is running in
the system and also the states of logic blocks of the devices.
Such information leakages make the system vulnerable to the
user. Smart cards also emit EM waves while performing var-
ious tasks which can be captured by a radio frequency (RF)
antenna and the task can be inferred from the radiation [144].
Cheng et al. proposed MagAttack, a side-channel attack to
abuse the magnetic sensor of smart mobile devices [145]. User
activities such as application launching and operation has a
slight but significant effect on CPU’s power consumption, and
hence in the EM emissions. An attacker can capture this EM
emission using the magnetic sensors of a smart device and
infer the on-going user activities in a laptop or workstation.

Task Inference With Power Analysis: Power analysis is a
form of sensor-based threat where an attacker studies the
power consumption and power traces of the sensors for extract-
ing information from the devices [146]. O’Flynn and Chen
introduced an attack scenario where the power analysis attack
is launched against IEEE 802.15.4 nodes [147], which is a
standard low power wireless protocol used in smart devices.
Low power smart devices use this protocol standard for vari-
ous communication purposes such as connecting to a network,
communicating with other devices, etc.. In this attack scenario,
an attacker uses differential power analysis in the sensors.
As packets transmitted from the smart devices are encrypted,
power analysis on the sensors can infer which encryption
process is running in the device. Again, diverse encryption
process leads to diverse power profiles which reveal associated
information (e.g., key size, block size, etc.) about the encryp-
tion process. Encryption process also depends on the packet
size which can be observed in the power profile and attackers
can infer what type of information is being transmitted based
on the packet size.

Task Inference From Sniffing Sensor Data: In a connected
environment such as smart home, several smart devices are
connected with each other and with multiple sensors. These
sensors communicate with the devices using various proto-
cols (e.g., WiFi, ZigBee, Z-Wave, etc.) and work as triggering
devices for several automated tasks. An attacker can sniff the
communication traffics in the smart environment and infer user
and device actions which can be considered as a privacy vio-
lation [148]. Acar et al. showed that it is possible to infer
user activities and devices states by capturing the commu-
nication packets and extracting sensor data in a smart home
environment [85]. In this attack scenario, an adversary in close
proximity of the smart environment can sniff the communica-
tion packets and infer the states of the devices (active/inactive).
In addition, authors showed that the attacker could deduce
the actions of the users (e.g., walking, presence, etc.) using
machine learning techniques in captured traffics.

Lessons Learned for Task Inference: Similar to keystroke
inference, task inference in smart devices also affect the con-
fidentiality of the devices. From Table IV, we can observe
the majority of the task inference threats (6 out of 10 reported
threats and attacks) are passive which indicates the high impact
on the smart devices. Another interesting fact is the majority
of these threats does not need any additional privilege (9 out
of 10) to bypass existing security schemes. Also, task infer-
ence threats target sensing (6 reported threats), application (3
reported threats), and communication (1 reported threat) which
indicates a broad attack surface of these threats. One limita-
tion of reported task inference attacks is the lack of extensive
evaluation of the attacks. To understand the effectiveness of a
sensor-based attack, it is necessary to check the success rate of
the attack on real-life smart devices. The majority of the task
inference attacks are not appropriately evaluated with known
evaluation metrics such as success rate, error rate, precision,
etc.. Without proper evaluation metrics, especially without
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reported success rate, it is hard to understand the effectiveness
and feasibility of task inference attacks on a smart device.
Task inference directly impacts the confidentiality and pri-
vacy of the smart device users by leaking sensitive information
such as user activity, installed security measures, installed apps
on smart devices, etc. Attackers can profile a user based on
task inference attacks to perform diverse types of malicious
activities such as gaining access to the smart device and envi-
ronment, bypassing security measures to leak data, manipulate
or obstruct on-going tasks, etc., [85].

3) Location Inference: Researchers developed a novel
location-privacy attack based on acoustic side-channels [149].
The attack is based on acoustic information embedded within
foreground-audio disseminated in a closed environment (i.e.,
conference room). The researchers studied how audio, gen-
erated by secure messaging clients in voice-call mode, can
be abused to generate a location fingerprint. The attack lever-
ages the pattern of acoustic reflections of the human voice at
the user’s location and does not depend on any characteris-
tic background sounds. The attack can be used to compromise
location privacy of participants of an anonymous VoIP session,
or even to carry out confirmation attacks that verify if a pair of
audio recordings originated from the same location regardless
of the speakers. Other researchers have also shown that sev-
eral heuristics can be used to identify sensitive locations (i.e.,
home and work locations) of a victim whose personal device
is under an adversary control [20]. Han et al. showed that it
is possible to infer the location of a user using the accelerom-
eter of a smartphone [150]. Here, researchers first derived an
approximate motion trajectory from accelerometer reading and
correlated the trajectory with the map to infer the exact loca-
tion of the user. Zhou et al. showed that it is possible to infer
the location of the user by analyzing verbal directions pro-
vided by navigation apps of a smart device [151]. Researchers
measured the on/off times of the speaker controlled by the
navigation app to leak the driving instructions to the attacker.
In a more recent work, Block and Noubir introduced a new
location inference technique using the smartphone’s mag-
netometer [152]. Here, researchers used small fluctuations
originated by nearby magnetic fields while the smartphone is
in motion to build a trajectory path of the user. Narain et al.
proposed a combination of sensor data (accelerometer, gyro-
scope, and magnetometer) to further improve the accuracy of
the inferred location [153]. In a recent work, Zheng and Hu
proposed a location eavesdropping attack using the mobile
inertia/motion sensors [154]. Here, researchers showed that
in the presence of specific indoor structures (e.g., elevators,
fire stop doors, etc.), motion sensors display specific patterns
which can be utilized to infer the location correctly. Similar to
this work, Fyke et al. used the motion sensors data to recre-
ate user’s movement and plot maps and landmarks in private
spaces (e.g., home, workplace, etc.) [155].

Lessons Learned for Location Inference: Although location
inference attacks impact the confidentiality of smart devices,
all of the threats (7 reported threats and attacks) are active
which limits the consequences (Table IV). Also, to execute
malicious sensor activities, these threats need direct access
to the devices which affect the easy deployability of these

threats in real-life smart devices. One can also observe from
Table IV that the success rate of these attacks is low to medium
range. Compared to keystroke and task inference attacks, loca-
tion inference poses less effects on the security of the smart
devices. However, leaking location information can violate
user’s privacy and propagate other attacks including a targeted
physical attack on the user’s vehicle [161].

4) Eavesdropping: Many smart devices such as voice-
enabled speakers use audio sensors for making calls,
recording audio messages, receiving voice commands, etc.
Eavesdropping refers to a type of attack where a malicious
app records a conversation stealthily by exploiting audio sen-
sors and extract information from the conversation. An attacker
can save the recorded conversation on a device or listen
to the conversation in real-time. One of the recent exam-
ples of eavesdropping via the microphone of a smartphone is
Soundcomber [13]. In this example, a malicious app covertly
records when a conversation is initiated from the device. As
the recording is done in the background, a user does not have
any idea about the recording. Several companies like banks,
social security offices, credit card companies, etc. have auto-
mated voice messaging systems and users have to say their
private information such as credit card numbers or social secu-
rity numbers at the beginning of the call. Thus, Soundcomber
does not have to record all the conversations to extract data.
Only the beginning part of the conversations will be enough for
extracting private information of the user. Moreover, a specific
conversation can also be recorded by identifying the dialed
number on a smartphone. The touchpad of the smartphone cre-
ates corresponding tones when any number is dialed. This tone
can be recorded and processed to identify the dialed number.
After that, when the desired number is dialed, the conversation
can be recorded and then processed to extract information.

Another way to exploit microphones is to attack through
voice assistant apps, e.g., Apple’s Siri and Google Voice
Search. Most of the smart devices nowadays have built-in
voice search apps. Diao et al. developed a malware named
VoicEmployer which can be installed on the device to record
the voice command given in a smartphone [156]. This mal-
ware can use the recorded command for various malicious
activities such as replicate malicious voice command, transfer
information to paired devices, etc. Cyber Physical Voice pri-
vacy Theft Trojan horse (CPVT) is another malware which uses
the microphone of smartphones to record conversations [157].
The recording of the conversation can be controlled by external
control channels like SMS, Wi-Fi, or Sensory channels [18].
An attacker can trigger CPVT and create command about when
to start recording and when to stop recording using SMS,
Wi-FI, or even sensors. Recorded conversations are stored in
the device and the attacker can gain the stored files using
e-mail, SMS, or connecting via USB. Carlini et al. showed
that it is possible to exploit voice assistant apps by insert-
ing hidden voice commands [158]. In this attack, the attacker
first records voice commands of the user and extracts features
from the recorded audio clips. From the extracted features,
a new command is generated which is not understandable
by humans, but recognized by the voice assistant apps. In
a recent work, Kennedy et al. showed that it is possible to
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infer the voice command given to a voice assistant device
(e.g., Amazon Alexa) by capturing the network packet and
using natural language processing [160].

The gyroscope on smart devices is also sensitive to an
acoustic signal. The typical sampling rate of gyroscope cov-
ers some frequency of audible range which can be used to
reconstruct the speech of a user. Michalevsky et al. proposed
a new way of eavesdropping by analyzing vibrational noise
in gyroscope caused by an acoustic signal [89]. As the gyro-
scope does not cover the full audible range, this new process
can distinguish speakers and one-syllable words by using sig-
nal processing and machine learning techniques. In a recent
work, Anand et al. showed that the on-board accelerometer
could be used to eavesdrop and reconstruct the speech of a
user [159]. While a user talks on a smartphone, the loud-
speaker of a smartphone shows some reverberations which
impact the accelerometer reading. This deviation in accelerom-
eter can be further analyzed to extract sensitive information
such as speaker identification and gender classification.

Lessons Learned for Eavesdropping: Eavesdropping mostly
affects smart devices with audio sensors and impacts the con-
fidentiality of the devices. From Table IV, it is visible that the
majority of the eavesdropping are active attacks (4 out of 5
reported threats and attacks) and require additional privileges
(4 out of 5 threats and attacks) to bypass the existing secu-
rity schemes. These threats also need users to interact with
the system to perform malicious tasks that limit the impact
of these threats. For performing eavesdropping, the majority
of the threats and attacks also need direct access (4 reported
threats) on a targeted smart device. Because of these depen-
dencies, the impact of eavesdropping is lower than other types
of information leakage attacks. Nevertheless, the information
captured in the eavesdropping attack can be used to perform
various malicious activities such as leaking private conver-
sation, gaining physical access to a secured environment,
etc., [161].

B. Transmitting Malicious Sensor Commands

Sensors available in the smart devices can be used to
transmit malicious sensor patterns or triggering commands to
activate malware that may have been implanted in a victim’s
device [18]. Sensors may be employed to create unexpected
communication channels between device peripherals. Such
channels can be used to exchange critical sensor parameters
(e.g., devices’ motion, light intensity, magnetic field, etc.) or
to transmit malicious commands (Section IV: use case 3).

Transmitting via Light Sensors: Light sensors can be used
as a potential method of transmitting signals and malicious
commands [177]. It is easier to transfer a bit stream via a
light source by turning it on and off. Since the light sensor of
a smart device can distinguish the intensity of the light source,
the light intensity change can be decoded as a bit stream in
the device. By controlling the voltage of a light source, an
attacker can easily transfer trigger messages and can activate
malware implanted in a device. Hasan et al. showed that TV
screen or laptop monitor could also be used to transfer trigger
messages to a compromised smart device by changing the light

intensity of the monitor [11]. Fernandes et al. showed that a
smart light could be maliciously programmed to strobe the
light at a high rate and if the user has the health problem of
seizure, this action will trigger the user’s seizures which is
really dangerous [33]. Celik et al. showed that a smart light
could be programmed to operate in a specific pattern to trigger
a smart camera and take pictures surreptitiously [72].

Transmitting via Magnetic Sensors: As mentioned earlier,
magnetic sensors of a smart device are sensitive to the mag-
netic fields of the device’s peripherals. By changing the
magnetic field of the device ambiance, one can easily change
the readings of the magnetic sensor which can be used as a
triggering message of malware. Triggering messages encoded
by an electromagnet can be sent to a smart device and there
will be some deviations in the magnetic sensor’s readings of
the device due to this message. These deviations can be cal-
culated and the triggering message can be extracted from this
electro-magnetic signal. Moreover, the magnetic field devia-
tions can be calculated in x, y, and z-axis and divergent values
of the magnetic field deviations can be interpreted as disparate
triggering messages [11].

Transmitting via Audio Sensors: Audio sensors can be used
to transmit malicious commands to activate a malicious appli-
cation in a smart device. Hasan et al. showed that a triggering
message embedded in an audio song can be detected by
the microphone and can trigger a malicious app in a smart-
phone [11]. Moreover, microphones used in modern smart
devices can detect audio signals with a frequency lower than
the audible range. Malware can be transferred using this audio
channel as a covert channel to bypass the security measures of
the device. Deshotels showed that the ultrasonic sound could
be used to send information to smartphones without alerting
the user or any security measurement implemented on the
device [162]. Subramanian et al. showed that a trojan can be
transferred by encoding it in an audio signal and transferring
it using a buzzer [10]. In a recent work, Zhang et al. showed
that it is possible to transmit an inaudible acoustic signal to
smart speakers to trigger malicious activities [164]. Yan et al.
performed a feasibility study of previous work and concluded
that it is possible to trigger several malicious events in smart
devices including making a phone call, changing state of con-
nected devices, etc., [92]. Kumar et al. showed that valid voice
commands could be used to trick smart speakers (e.g., Amazon
Alexa, Amazon Echo, etc.) to perform malicious activities in
skill squatting attack [163]. Here, researchers used misinter-
pretations of valid commands made by the smart speaker to
trigger a malicious activity. For example, “test your luck” can
be misinterpreted by the smart speaker as “test your lock”
which can unlock the door. In a recent work, Zhang et al.
proposed Vaspy, a malicious app installed in the smart device
to exploit voice assistant devices [165]. Vaspy silently observes
smartphone activities and captures the phone call conversations
to extract the voice activation commands. Upon extracting the
voice command, Vaspy uses a machine learning model to ana-
lyze user behavior and choose a specific time to launch an
attack surreptitiously.

Lessons Learned for Transmitting Malicious Sensor
Commands: The threat of transmitting malicious sensor
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TABLE V
SUMMARY OF OTHER SENSOR-BASED ATTACKS IN SMART DEVICES

commands mostly affects the integrity of smart devices
(Table V). The majority of the threats and attacks (9 out of 11
reported) needs an additional privilege to bypass the existing
security schemes. Also, upon successful attack, malicious sen-
sor commands trigger malicious activities in the smart devices
which obstruct normal operations. Thus, transmitting mali-
cious sensor commands (all reported threats and attacks) act
as active attacks to the smart devices. Another interesting fact
we observe transmitting malicious sensor commands do not
need any direct connection to the device. Only transitive (2
out of 11 threats) or peripheral access (9 out of 11) is enough
to transmit malicious commands to the targeted smart devices.
However, the success rate of most of the threats and attacks is
high, indicating the high impact on smart devices. This trade-
off between excessive privilege and success rate determines
the effects of the threats and attacks.

C. False Sensor Data Injection

The applications of smart devices largely depend on data
collected by sensors available on the devices. By altering the
sensor data, one can control the applications of smart devices.
False sensor data injection refers to an attack where the sensor
data used in the smart applications is forged or intentionally
changed to perform malicious activities. The false sensor data
can be injected in the devices by accessing the device physi-
cally or by using various communication mediums (Bluetooth,
ZigBee, Z-Wave, Wi-Fi, cellular network, etc.) covertly. An
attacker can also introduce fake sensors in the IoT environment
to inject false generated data and initiate malicious activities
(Section IV: use cases - 1 and 3) [72], [178]. Moreover, the
sensors of smart devices can also be used to alter data typed
or stored on the devices.

Tu et al. presented a spoof attack, where an out-of-band
signal is inserted in smart devices via motion sensor [169].
This signal injection results in deviation in sensor output

which disrupts the normal functionality of the smart devices.
Park et al. used infrared light to disrupt normal operation of a
smart medical device [170]. Here, researchers used a medical
infusion pump to inject the spoof light signal and change the
dose of the medicine in the device. In another recent work,
Shin et al. exploited the light sensor of a smart car to change
the output of the automatic obstruction detection system [171].
Petit et al. improved this attack by combining camera reading
of a smart car to change the output of autonomous vehi-
cle [172]. In a recent work, Zhou et al. proposed an attack
to exploit the voice assistant of a smart car [161]. In this
attack, the adversary inserts malicious commands in an audio
or video file which can inject malicious commands to the voice
assistant apps upon playing.

The smart voice assistant is deployed in several smart
devices such as smartphone, smart speaker, smart home hub,
etc. These smart assistants usually triggered with a specific
command such as “Hi Google”, “Hey Siri”, or “Alexa”. Recent
researches showed that it is possible to inject malicious com-
mands to smart voice assistants by exploiting the microphone
of the smart devices. As smart voice assistants constantly
scan for desired a triggering command, an adversary needs
no additional privilege to inject malicious audio signals to
the device. Yuan et al. proposed REEVE, a stealthy voice
manipulation attack to smart voice assistant [173]. REEVE
uses benign audio signals such as TV or radio as a medium
and insert malicious trigger commands which can be detected
by a nearby voice assistant device. The researchers tested this
attack on consumer voice assistant devices (Amazon Echo)
and achieved high success rate. Zhang et al. improved this
attack by eliminating the need of external audio signals [174].
Here, researchers developed a spyware which can abuse the
microphone of a smartphone to record phone conversations
and detect the trigger messages. Later, the spyware replays the
recorded command using the speaker of the same smartphone
to inject false commands to the voice assistant service.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 14:04:42 UTC from IEEE Xplore.  Restrictions apply. 



1144 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 2, SECOND QUARTER 2021

Tippenhauer et al. showed another attack scenario in GPS-
enabled devices to change the real location of the device [166].
In this attack scenario, a vehicle with a GPS enabled device is
used. The attacker transmits a forged GPS signal to the device
to alter the location of the vehicle. In this way, the real location
of the vehicle is disguised and the attacker can perform any
physical attack on the disguised vehicle. The GPS data used
in the smartwatches can expose the location of a user and this
GPS data can then be forged and a new location can be given
as a false input in the GPS [167].

The power analysis attack on smart devices can also be used
for injecting false data. The power analysis on smart devices
running an encryption algorithm can reveal information about
the encryption process including the block size, key size, even
the actual encryption key [179]. This information can be used
to encrypt a false data and replace the original data on the
device. Thus, attackers can inject false encrypted data in the
communication channel to change the action of a device for
specific commands. Giannetsos and Dimitriou introduced a
malicious app named Spy-sense, which monitors the behav-
ior of the sensors in a device and can manipulate data by
deleting or modifying it [168]. Spy-sense exploits the active
memory region of a device and alters the data structure and
reports back important data to a server covertly.

Lessons Learned for False Data Injection: False data injec-
tion impacts the integrity of the smart devices as these threats
and attacks disrupt the output of an on-going task. From
Table V, it is evident that the majority of the threats and
attacks are simple and do not need any user interaction (8
out of 11 reported threats and attacks) to perform malicious
tasks. Also, false data injection attacks are passive by nature
(6 out of 11 threats) and do not need any excessive priv-
ilege (7 out of 11 threats) to perform the attack. Another
interesting fact we observe is the effect of the successful attack
directly impact the on-going activities of the smart devices.
Hence, false data injection attacks are method-wise passive,
but effect-wise active. However, the majority of the exist-
ing false data injection attacks did not report any success
rate. Without proper evaluation, it is hard to understand the
effectiveness of the reported attacks in real-life smart devices.
Hence, further investigation is needed to properly evaluate the
effectiveness of these attacks on real-life smart devices. The
effects of false data injection are diverse as it can manipu-
late the targeted smart device to perform numerous malicious
activities. For instance, false data injected in smart voice assis-
tant can give the attacker access to any connected device in
a smart environment which can cause device theft, undesired
physical access to properties, unauthorized bank transactions
and online shopping, etc., [173], [174].

D. Denial-of-Service

Denial-of-Service (DoS), by definition, is a type of attack
where the normal operation of a device or application is denied
maliciously. DoS attacks can be active attacks where an appli-
cation or task is refused forcefully or passive attacks where
attacking one application can stop another on-going task on
the device. An adversary with access to smart device network

and peripheral can send unauthorized access request or mali-
cious signals to interrupt an ongoing task in smart devices
(Section IV: use case 4). Indeed, recently, ICS-CERT pub-
lished an active alert for a list of accelerometers used in smart
devices which can be exploited using vibrational force [17].
Every accelerometer has a working frequency and if an exter-
nal vibrational force can match this frequency, it is possible
to turn off the devices forcefully. This reported threat is appli-
cable for 20 different types of MEMS accelerometer which
are used in multiple commercial and consumer smart devices.
Hence, the impact of this threat is severe in real-life smart
devices. Son et al. showed that it is possible to obstruct the
flight control of a drone by exploiting gyroscope using a sound
signal [8]. The MEMS Gyroscopes deployed in drones have a
sensing mass inside of the sensor which is constantly vibrating.
The gyroscope measures the rotational motion of the device
with respect to the sensing mass. When the resonant frequency
of the gyroscope is matched by an audio signal, an attacker can
obstruct the normal performance of the gyroscope and change
the course of the drone, or even turn it off. In a recent work,
Mao et al. presented Pairjam, a DoS attack that uses inaudi-
ble noises to disrupt pairing between smart devices [176]. In
a smart environment, multiple smart devices are connected
with each other to perform various tasks. The interconnection
between the devices follows a device authentication/pairing
method to ensure secure communication. Pairjam abuses the
audio sensor of smart devices the inject inaudible noise signal
in the smart environment which disrupts the normal pairing
method and makes a targeted smart device unavailable for
pairing.

Lessons Learned for DoS: Denial-of-Service impacts the
availability of the targeted sensor and disrupts an on-going task
immediately in a smart device. There are only two reported
DoS attack on smart devices which are passive and achieves
high success rate (Table V). However, one of the reported DoS
attack [8] uses the MEMS accelerometer and gyroscope which
is used by a vast number of smart devices [17]. This increases
the impact of DoS attacks on smart devices. Moreover, both of
these DoS attacks are applicable to both standalone and con-
nected smart devices which widens the attack surface. Hence,
DoS attacks have a high impact on smart devices.

E. Summary of the Threats and Attacks

We categorize 89 reported sensor-based threats and attacks
by the research community and industry in four categories.
Additionally, we explain the attack methods and discuss the
impacts of the sensor-based attacks based on common vulner-
ability metrics (attack impact, attack method, attack complex-
ity, required privilege, user interaction, success rate). Some
interesting findings of aforementioned sensor-based threats and
attacks are listed below-

• Type of Sensors Targeted: Existing threats and attacks tar-
get nine different sensors including both permission and
no-permission imposed sensors discussed in Section IV.
One interesting fact we observe that the majority of the
threats and attacks target no-permission imposed sen-
sors which make the existing permission-based sensor
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Fig. 4. Overview of sensor-based threats and attacks to smart devices.

management system ineffective. From Figure 4(a), one
can notice that 60% of the total threats and attacks tar-
get no-permission imposed sensors whereas only 40%
of the reported threats and attacks target permission-
imposed sensor which needs to bypass existing sensor
management systems.

• Active vs. Passive: As previously mentioned, sensor-
based threats and attacks can be active or passive depend-
ing on the attack method. From Figure 4(b), one can
notice the high percentage of active sensor-based threats
and attacks on smart devices. While the majority of
these are active, passive attacks and threats are also a
point of interest to the attackers. As passive threats or
attacks do not affect the normal functionalities of the
devices, these may remain unnoticed to the implemented
security mechanisms and perform malicious activities
surreptitiously.

• Targeted Security Mechanisms: Sensor-based threats and
attacks target various security mechanisms of the devices
(e.g., confidentiality, integrity, availability) which make
them hard to detect. Figure 4(c) shows different secu-
rity mechanisms targeted by the sensor-based threats and
attacks. One can notice that most of these threats and
attacks aim to violate data confidentiality (74%) followed
by integrity (24%) and availability (2%) of the sensors.

• Device Access Needs: To perform malicious sensor activ-
ities, sensor-based threats and attacks need device access
(direct or transitive). Figure 4(d) illustrates the device
access needs of sensor-based threats. While approxi-
mately 54% of the threats need direct or transitive access
(42% direct and 12% transitive), 47% of the threats do
not need any access to execute the malicious activity. As
a sensor-based threat without any need of device access
can easily bypass any security mechanism, the impact
of the threats is high. Additionally, the exclusiveness

of device access needs of sensor-based threats manifests
the shortcomings of the existing permission-based sensor
management system.

• Affected Layers: As discussed in Section III, smart
devices typically have four architectural layers and attack-
ers can target any of these layers to initiate a sensor-based
attack. From Figure 4(e), it is evident that the most
affected layer is the sensing layer followed by the applica-
tion layer. As modern smart devices offer diverse sets of
apps that use sensors for enhanced functionalities, attack-
ers target these layers to modify and perform malicious
activities in smart devices. The apps in smart devices
directly bind the sensing and application layer which is
the main reason for increasing threats to these layers.

• Interest of the Attackers: From the discussion above,
we can infer the most common sensor-based threats and
attacks to smart devices is keystroke inferences followed
by task inference and transmitting malicious sensor com-
mands. As keystroke inference attacks typically target
smart devices with user interfaces, we can observe higher
number of sensor-based attacks in smartphones and smart
watches. Figure 4(f) shows the common sensor-based
threats and attacks to the smart devices.

• Effect of the Sensor-Based Threats and Attacks: In
Table VI, we summarize the effects of sensor-based
threats and attacks on smart devices. One can notice
that keystroke inference attacks can leak diverse typing
information such as passwords, PIN input, hand gestures,
printed texts, etc. by exploiting a smart device directly
or using a smart device to extract information from a
nearby device. Task inference attacks reveal the nature
of on-going tasks on smart devices either in the user
interface of the device or in a connected smart environ-
ment. Sensor-based threats can also infer the geo-location
of a smart device user as well as create a location map
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TABLE VI
EFFECT OF SENSOR-BASED ATTACKS ON SMART DEVICES

of users’ route. By performing an eavesdropping attack
using sensors, an adversary can capture users’ conversa-
tions and smart device commands to extract information
and accessing a targeted device. An adversary transmit-
ting malicious sensor commands can trigger malicious
events on a smart device which can be propagated to
nearby smart devices. Additionally, introducing false sen-
sor data in a smart device can change the output of a smart
device and make a device or sensor unavailable for per-
forming a task (DoS). Also, external signal can interrupt
an on-going task in smart devices by obstructing benign
sensor activities.

F. Attack Comparison and Our Findings

Sensor-based threats are emerging attack vectors and have
diverse malicious effects on smart devices. In this survey, we
surveyed 89 directly reported threats and observed that the

majority of the threats aim to extract sensor readings to infer
sensitive user information. The selective sensor authorization
in existing smart devices is the main reason for increasing
number of information leakage attacks on smart devices’ sen-
sors. Besides, embedded sensors in smart devices are prune
to passive sniffing which also leads to several information
leakage attacks, including keystroke inference and eavesdrop-
ping. Compared to the information leakage, other types of
sensor-based threats such as false data injection and trans-
mitting malicious sensor commands are mostly active attacks
which need to bypass implemented security measures. Hence,
these active attacks are harder to execute in real-life smart
devices.

Another interesting observation is the correlation of success
rate and attack method in sensor-based threats and attacks. We
observed that passive sensor-based attacks are easy to exe-
cute. However, the average success rate of passive attacks
is lower than the active attacks as attackers need efficient
analytical tools to perform the attack. For instance, passive
information leakage attack uses sniffing techniques to cap-
ture sensor data. But, to extract information from passively
captured data, attackers need extra analytical tools that can
learn the sensor patterns and decode sensitive information
from raw sensor data. On the contrary, active attacks on
smart device sensors have higher success rate as attackers
usually exploit the sensors by directly accessing the device.
For instance, in an active eavesdropping attack, attackers can
directly capture and record users’ conversation by exploiting
audio sensors [13], [157]. Here, no analytical tool is usually
needed to extract information from the captured data.

As smart devices allow third-party app installation, the
majority of the reported threats utilize third-party apps to
exploit the sensors. We found several cases where a benign app
source code is altered to capture sensitive sensor information
from smart devices. In these cases, the installed third-party
apps with malicious code snippets can directly capture sen-
sitive information or raw sensor data which needs further
analysis to extract information. We also observe a correla-
tion between attack type and targeted sensors. As existing
smart device platforms offer selective authorization for sen-
sors such as GPS, microphone, and camera, threats targeting
these sensors need to bypass the sensor authorization mecha-
nism. Hence, sensor-based threats targeting GPS, microphone,
and camera are usually active in nature and need excessive
privilege to perform an attack. In contrast, threats targeting
motion sensors and light sensors are relatively easy to execute
and do not need any user interaction and excessive privileges.

In conclusion, our study show that passive sensor-based
threats targeting no-permission imposed sensors can easily
bypass existing security mechanisms in smart devices and can
cause severe effect in terms of security and privacy of smart
devices. However, while the issue of sensor-based threats have
received attention from the developer and research communi-
ties, an additional investigation is needed to understand the
diverse effect of sensor-based threats on smart devices. Also,
researchers should study the existing sensor-based threats in
detail to learn the future trends of zero-day sensor threats and
enhance sensor security on smart devices accordingly.
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VII. EXISTING SECURITY MECHANISMS TO PREVENT

SENSOR-BASED THREATS AND ATTACKS

Researchers have identified a diverse set of sensor-based
threats to smart devices. Tables III, IV, and V lists a sum-
mary of the existing sensor-based threats to smart devices.
Although there are several threats, no comprehensive security
mechanism to prevent such threats has been developed yet.
Indeed, the use of a wide range of sensors in smart devices
and applications has made it hard to secure all the sensors
by one effective framework. Moreover, with the rise of IoT,
securing sensors of a single smart device does not guaran-
tee the security of all the connected devices. Furthermore, the
lack of knowledge of the existing sensor-based threats and dif-
ferences in sensor characteristics make it hard to establish a
complete and comprehensive security measure to secure all the
sensors of smart devices against the sensor-based threats [7].
In this section, we discuss three main approaches proposed
by researchers in an attempt to design security mechanisms
for sensor-based threats on smart devices. A summary of the
existing solutions is given in Table VII.

A. Enhancing Existing Sensor Management Systems

One approach toward securing the sensors in smart devices
is to enhance existing sensor management systems of smart
device OSes. For instance, Xu and Zhu proposed an extension
of the Android sensor management system named SemaDroid,
which provides users with a monitoring and logging feature
to make the usage of sensors by apps explicit [26]. Also, with
Semadroid, users can specify policies to control whether and
with what level of precision third-party apps can access to
sensed data. Moreover, SemaDroid creates mock data to verify
how applications, from unknown vendors, use sensed data and,
thus, prevents malicious behaviors.

Furthermore, system designers have long struggled with the
challenge of determining how to let the user control when
applications may perform operations using privacy-sensitive
sensors securely and effectively. Current commercial systems
request that users authorize such operations once (i.e., on
install or first use), but malicious apps may abuse such autho-
rizations to collect data stealthily using such sensors. Proposed
research methods enable systems to infer the operations asso-
ciated with user input events [187]–[189], but malicious appli-
cations may still trick users into allowing unexpected, stealthy
operations. To prevent users from being tricked, Petracca et al.
proposed to bind applications’ operation requests to the asso-
ciated user input events and how such events are obtained
explicitly, enabling users to authorize operations on privacy-
sensitive sensors unambiguously [19], [21]. To demonstrate
this solution, they implemented the AWare authorization frame-
work for Android, extending the Android Middleware to
control access to privacy-sensitive sensors. They evaluated the
effectiveness of AWare in: (1) a laboratory-based user study,
finding that at most 7% of the users were tricked by examples
of four types of attacks when using AWare, instead of 85% on
average for prior approaches; (2) a field study, showing that the
user authorization effort increases by only 2.28 decisions on
average per application; (3) a compatibility study with 1,000 of

the most downloaded Android apps, demonstrating that such
applications can operate effectively under AWare. A similar
work is presented in EnTrust, where researchers implemented
an improved authorization framework in Android to regu-
late sensor authorization based on input events and delegation
graphs generated from co-operating programs [180]. EnTrust
user authorization for any sensor authorization requests and
remember the user’s decision for similar requests for future
authorization. Another recent work, ContexIoT, proposed an
enhanced permission model for smart home devices [71].
ContexIoT observes the inter-procedure control and data flow
in an app to determine the context of the app and forward the
detail information to the users before allowing sensor access
to the apps. Although, the context-aware approach gives users
more information before allowing permissions, ContexIoT still
depends on user decisions and an app can trick the user by
obfuscating the code.

Lessons Learned for Enhancing Sensor Management
Systems: Existing permission-based sensor management
system lacks in securing all the sensors in smart devices and
the aforementioned solutions enhance the existing system to be
more robust and secure in terms of sensor security. However,
permission-based sensor management still relies on user per-
missions which can be easily tricked as users may not be aware
of the threats. Additionally, in a smart environment, sensor-
based threats can use transitive permissions to access a smart
device using the sensors of a connected device. In this case,
permission-based sensor management systems may fail to pro-
tect the sensors from malicious attacks. In summary, enhanced
sensor management systems improve the sensor security in
smart devices significantly, but not comprehensively.

B. Intrusion Detection System

One common approach to secure a system from external
attacks is to install an intrusion detection system (IDS). An
IDS monitors the device and sensor states to detect suspicious
activity and alert the system upon finding any vulnerabil-
ity. In recent years, several prior works have proposed IDSs
specifically to detect sensor-based threats to smart devices. A
sensor-based threat detection method is proposed in 6thSense,
where researchers proposed a context-aware framework to
detect the sensor-based threats in IoT devices [7], [40]. This
framework is built upon the observation that for any user
activity on an IoT device, a specific set of sensors becomes
active. 6thSense builds a comprehensive context-aware model
for each user activity based on this observation. Different
from other works, 6thSense utilizes all the sensor data in
real-time and determines whether the present context of the
sensors is malicious or not using various machine learning-
based approaches. Researchers tested the proposed framework
with 50 real-life user data and confirmed that 6thSense can
detect various sensor-based threats with approximately 98%
accuracy and F-score. In a later version of this work, the
researchers implemented 6thSense in a smartwatch and tested
against several sensor-based threats [40]. Here, researchers
collected user activity data from 100 real-life smartwatch users
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TABLE VII
SUMMARY OF EXISTING SECURITY MECHANISMS TO PREVENT SENSOR-BASED THREATS

and achieved approximately 97% accuracy in detecting differ-
ent sensor-based threats. In another recent work, researchers
proposed Aegis, a context-aware intrusion detection system

(IDS) for the smart connected environment [28], [181]. Aegis
observes on-going user activities in a smart environment to
learn how the state of smart devices change. Based on that,
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Aegis builds a context-aware model to detect malicious sensor
activities in a smart environment. Researchers tested Aegis in
several smart environment configurations and achieved over
97% accuracy in detecting different sensor-based threats.

Lessons Learned for IDS: With context-aware IDS proposed
in [7] and [28], security of sensors in smart devices can
be improved. However, to build the context-aware model,
the system needs a higher number of sensors to correctly
understand the user and device behavior model (the ground
truth) [190]. Thus, proposed context-aware solutions are suit-
able for sensor-riched smart devices and the environment.
Monitoring sensor data continuously can also increase the
overhead in terms of power and CPU usage. For the real-life
implementation of proposed IDSs, researchers should per-
form overhead analysis and proposed possible solutions to
reduce the resource usage. In summary, context-aware sensor-
based IDSs ensure comprehensive security to the smart device
sensors, but introduce overhead in the system.

C. Protecting Sensed Data

Another approach toward securing smart devices against the
sensor-based threats is to protect the sensed data in transfer
and at rest. Indeed, malicious applications record sensor data
and transmit it later when the device is locked or when security
mechanisms are turned off. For instance, sensed location data
may be subject to inference attacks by cyber-criminals that
aim to obtain sensitive locations such as the victim’s home
and work locations to launch a variety of attacks.

Location-Privacy Preserving Mechanisms (LPPMs) exist to
reduce the probability of success of inference attacks on loca-
tion data. However, such mechanisms have been shown to be
less effective when the adversary is informed of the protec-
tion mechanism adopted, also known as white-box attacks.
Petracca et al. proposed a novel approach that makes use of
targeted maneuvers to augment real sensors’ data with syn-
thetic data and obtain a uniform distribution of data points,
which creates a robust defense against white-box attacks [20].
Such maneuvers are systematically activated in response to
specific system events (i.e., internal state of sensors) to rapidly
and continuously control the rate of change in system con-
figurations and increase diversity in the space of readings,
which would decrease the probability of success of inference
attacks by an adversary. For instance, in the event of stationary
states, devices leak more information about the location of the
users such as stop position, home location, etc. The proposed
solution activates random obfuscation as a maneuver which
selects one protection mechanism from a set of mechanisms
to increase the number of required guesses of an adversary.
This ends up in reducing success rate of the adversary to leak
location information. Proposed technique also implements two
other maneuvers (spatial and temporal distribution) to deceit
the adversary if there is no new data point over a longer period.
Experimental results performed on a real data set showed that
the adoption of such maneuvers reduces the probability of suc-
cess of white-box attacks to 3% on average compared to 57%
when using the state-of-the-art LPPMs. Acar et al. proposed a
new approach to inject false packet in network traffic to protect

sensor information from network sniffing. Here, the authors
showed that it is possible to prevent sensor information leak-
age by modifying the feature vectors of the network packets
and protect the sensor data.

Furthermore, power analysis attacks and electromagnetic
emanation attacks exploit information from the power con-
sumption and electromagnetic emissions of active sensors from
the device. One proposed countermeasure to immune electro-
magnetic emanation attacks is to use a single inverter ring
oscillator (SIRO) [182]. In this proposed system, a multi-
clock system with cipher embodiment is used with SIRO-based
synchronization. The absence of external oscillator and unsyn-
chronized nature of SIRO makes the system more immune to
electromagnetic emission. Again, the SIRO-based system pro-
vides a frequency hopping scheme in cipher which increases
immunity to timing and power analysis attacks. Standaert et al.
proposed an approach to minimize the effect of power analy-
sis attack which is based on the correlation between the power
consumption measurements and a simple prediction developed
on the number of bit transitions within the devices [183]. The
use of random pre-charges in the devices can minimize the
probability of power analysis attack on the FPGA-based smart
devices.

More general solutions to address the protection of
the sensed data have also been proposed. For example,
Roman et al. proposed the use of public-key encryption
to secure sensor data from devices [191]. They proposed
the encryption of sensor data collected and stored it in the
device before sharing it with third-party apps or other devices.
Devices connected to each other can share their public key
through a key management system and use their assigned pri-
vate key to decrypt the sensor data. Third-party apps installed
in the device can also use a public key encryption scheme to
use sensor data for various applications.

Trust management frameworks can also be leveraged for
secure information flow among sensors, secure communica-
tion of sensor data with other devices, and to certify authorized
access of sensors by trusted software and apps in the system.
Trust management frameworks can detect over-access requests
on sensors and take decisions based on whether the requests
are legitimate or not. For instance, a framework named
AuDroid was proposed to secure communications via audio
channels when applications make use of the device’s micro-
phones and speakers [22]. AuDroid leverages the SELinux
kernel module to build a reference monitor which enforces
access control policies over dynamically created audio chan-
nels. It controls information flows over audio channels and
notifies users whenever an audio channel is created between
processes at runtime. Mirzamohammadi et al. developed Ditio,
a trustworthy auditing framework to capture and verify sen-
sor activities with pre-defined policies [185]. Ditio uses an
authentication protocol to connect with a secured server and
log sensor activity to check compliance with enforced usage
policies. It detects any untrusted sensor activity at a specified
time by analyzing the logged data. Babun et al. proposed a
forensic analysis tool to detect malicious user and app behav-
ior on sensors in a smart environment. Authors considered the
state of smart devices and sensors to build a state model of
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a smart environment and use machine learning algorithms to
detect malicious behaviors on sensors.

Lessons Learned for Protecting Sensed Data: One
interesting difference between existing sensor management
systems and protecting sensed data is that many of the
enhanced sensor management systems prevent sensor access
to prevent sensor-based threats before executing whereas pro-
tecting sensed data schemes target to secure sensed data
at run-time. Protecting sensed data can ensure sensor secu-
rity against specific types of sensor-based threats and attacks
(active information leakage, eavesdropping, etc.). However,
passive sensor-based threats can still bypass the aforemen-
tioned solutions and execute malicious sensor activities. In
addition, encrypting sensor data in a sensor-rich smart device
can introduce overhead in terms of resource usage and latency.

D. App Analysis for Security and Privacy Invasion

Smart devices such as smartphones, smartwatches, smart
home devices, etc. support different apps to provide multiple
functions to the users. These apps can use the embedded
sensors of the smart devices or external connected sensors
(e.g., motion sensors in smart home systems) to perform var-
ious tasks. As current sensor management systems in smart
devices offer selective restrictions on sensors, a malicious
app can abuse the sensors to perform malicious activities in
a device. One effective way to prevent sensor-based threats
and attacks is to perform app analysis to detect malicious
apps in the devices. There are two approaches to perform
app analysis for smart devices – static analysis and dynamic
analysis. In static analysis, the source code of the apps is
analyzed to detect any malicious activity such as information
leakage, transferring malicious codes, etc. One common static
analysis approach is taint analysis where data entry points
(source) and exit points (sink) are tainted to observe the
information flow inside the app. In a smart device app, sen-
sors are considered as sources and any communication method
such as the Internet, text messaging, Bluetooth, etc. are con-
sidered as sinks. The taint analysis observes how the collected
sensor data from the sources link to the sinks and any sen-
sitive sensor information leakage via the sinks is revealed.
Fernandes et al. proposed a static analysis framework named,
FlowFence, which offers a language-independent taint analy-
sis approach to detect information leakage in IoT apps [186].
FlowFence takes the source code of an untrusted IoT app,
inserts code snippets to track sensitive data flow between
the sources and sinks, and runs the app in a sandbox to
detect malicious sensor data flow in the apps. FlowFence is
tested with different IoT apps to determine its effectiveness
against information leakage. However, FlowFence can only
detect information leakage from the apps and fails to protect
the sensors from side-channel attacks. Another static analysis
tool, SaINT, is proposed by Celik et al. for the smart home
platform [72]. SaINT specifically performs static analysis of
smart home apps and detects sensitive information leakage
by performing the taint analysis of the source code. SaINT
analyzed a total of 230 smart home apps and reported sensi-
tive information flow including sensor data leakage in smart

home systems. However, SaINT fails to detect passive attacks
such as trigger malware or transferring malicious codes using
sensors.

Lessons Learned for app Analysis: As smart devices often
use different smart apps to perform various tasks, app analy-
sis can be an effective solution to detect sensor-based threats
in the application layer. However, the majority of the sensor-
based threats target the sensing layer (Section VI) and app
analysis techniques often cannot detect these anomalies in
source code [7]. Existing app analysis techniques are mostly
static analysis [72] which needs the source code of an app to
perform the analysis. This is a major drawback as the source
code of the app may not be available to the users. Unlike
enhanced sensor management systems and IDS, performing
app analysis depends on user interaction (interacting with the
tools) which requires technical knowledge. As users may not
have required technical expertise, performing app analysis to
detect sensor-based threats can be ineffective in real-life.

E. Shortcomings of Proposed Security Mechanisms

Although the aforementioned solutions address sensor-based
threats and attacks, there are still limitations that need to be
overcome.

(1) Most of the proposed security mechanisms for smart
devices are anomaly detection frameworks at the application
level which are not suitable for detecting sensor-based threats
or attacks at the system level [90], [192]–[194]. Sikder et al.
analyzed the performance of several sensor-based threats with
respect to real-life malicious software scanners available in
VirusTotal website and observed that no scanner can recog-
nize sensor-based threats [7]. Celik et al. showed that Apps
with malicious sensor logic in smart home devices cannot be
detected via static analysis [72].

(2) With the growing popularity of the IoT concept, more
and more smart devices are being interconnected with each
other and the security of these devices becomes difficult to
manage. Many smart devices are severely resource-limited,
small devices and it is hard to implement a complex secu-
rity mechanism considering the limited resources of the
devices [195].

(3) Proposed security mechanisms only target a subset
of sensitive sensors available in smart devices nowadays.
For instance, commercial sensor management systems use an
explicit permission-based security model for only some of
the sensors (e.g., camera, GPS, and microphone). Similarly,
AuDroid provides a policy-enforced framework to secure the
audio sensors of smart devices explicitly [22]; however, such
framework was not designed to protect other sensitive sen-
sors. Other proposed solutions only provide protection against
power analysis and electromagnetic emanation-based attacks,
respectively [182], [183]. A step forward was made with
AWare and 6thSense that covered a wider set of privacy-
sensitive sensors available in current smart devices to build
a context-aware model and determine whether a sensor usage
scenario is malicious.

(4) In solutions where users’ decisions are utilized to build
the sensor use policy for third-party apps, such as in Semadroid
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TABLE VIII
COMPARISON BETWEEN EXISTING SECURITY MECHANISMS TO PREVENT SENSOR-BASED THREATS IN SMART DEVICES

and AWare, if a user allows an application to use a sensor
without any restriction, then the application is blindly treated
as secure by the system.

(5) Encrypting sensor data using public key encryption
schemes provides protection to sensor data, but it also con-
sumes high power to run in smaller smart devices [191].
This power-performance trade-off is impractical for resource-
limited smart devices. In conclusion, a complete and
comprehensive solution for autonomous policy enforcement,
comprehensive coverage of all the sensors, and an efficient
power-performance trade-off are yet to be designed.

F. Comparison of Security Mechanisms and Our Findings

While existing security mechanisms address sensor-based
threats to some extent, further research is needed to develop
comprehensive and efficient security mechanisms and tools
to prevent sensor-based threats effectively. A comparison
between existing security mechanisms is given in Table VIII.
We notice that the majority of the existing security mech-
anisms only address information leakage by enhancing OS
sensor management system and encrypting sensor data. Hence,
threats such as transmitting malicious sensor command and
false data injection can easily bypass these security mecha-
nisms and exploit sensors in smart devices. Compared to a
sensor management and authorization framework, an intru-
sion detection system can perform efficiently as it can address
several sensor-based threats at run-time [7], [28]. However,
the existing intrusion detection systems for smart devices
use supervised learning which are ineffective for zero-day
threats.

Another interesting observation is the user dependency in
existing sensor management, authorization, and static analysis
tools [72]. As attackers can easily trick the users to bypass
installed sensor management systems and authorization rules,
user dependency in security mechanisms may become ineffec-
tive against sensor-based threats. Again, static analysis tools
require app source code and user interaction which can be

undesirable to novice smart device users. Hence, compared
to intrusion detection systems, the existing sensor manage-
ment, authorization, and static analysis techniques perform
ineffectively against sensor-based threats.

To protect sensor data, several prior works have proposed
data encryption and spoofing mechanisms. While the proposed
mechanisms effectively address information leakage at sensor
level, the majority of the encryption and spoofing methods
are sensor-specific and OS-dependent solutions. Also, data
encryption at sensor level introduces high overhead which
can affect the normal operation of smart devices. Researchers
may study efficient end-to-end and sensor-independent encryp-
tion schemes to protect sensor data at rest and run-time. We
also notice that there is no effective security mechanism that
address denial-of-service (DoS) attacks in standalone smart
devices (e.g., smartphones, smart watches, etc.). Although
there are only two reported threats that perform DoS attacks
in smart devices, lack of security measures may encourage
attackers to develop novel DoS attacks targeting sensors.

In conclusion, while several prior works have proposed var-
ious security mechanisms to protect sensors in smart devices,
we notice the absence of comprehensive understandings and
security mechanisms to protect sensors from diverse sensor-
based threats reported by research community and industry.
Also, we observe the OS and user dependency in existing
security mechanisms which impact the effectiveness in detect-
ing sensor-based threats. Hence, further investigation is needed
to understand the robustness of existing security mechanisms
in different smart devices and platforms which would pro-
vide valuable insights to develop comprehensive mitigation
techniques against sensor-based threats.

VIII. OPEN ISSUES, FUTURE DIRECTIONS, AND

RECOMMENDATIONS

The concept of making devices “smart” is no longer in
the developing stage and new research ideas related to smart
devices are emerging these days. In this section, we discuss
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open issues and future research directions in the context of
sensor-based threats and attacks to smart devices.

A. Open Issues and Future Directions

Due to the lack of knowledge among users and research
communities, sensor-based threats become compelling to the
attackers to exploit the security of smart devices and perform
malicious activities. There are several open issues that exist in
smart devices that need attention from developers, researchers,
and users. These open issues can be categorized in three
major areas - (1) Smart device architectures and platforms,
(2) Further investigation of existing threats, and (3) Solutions
to detect sensor-based threats. In the following discussion,
we briefly explain these open issues and summarize future
research directions needed to counter sensor-based threats.

Smart Device Architectures and Platforms: The smart device
industry is growing rapidly and these smart devices are dif-
ferent from each other in terms of hardware, software, imple-
mentation, and functionalities. To understand the sensor-based
threats, it is important to understand the smart device architec-
ture and functionalities properly. Researchers and developers
can investigate the following open issues in smart device archi-
tecture to understand the consequences of sensor-based threats
properly.

Study of Smart Device Architectures and Sensor Operations:
With the introduction of IoT, the number of smart devices in
different domains is increasing rapidly. The smart devices have
several internal architectures (i.e., software and hardware) with
less knowledge available, which is an obstacle to secure sen-
sors in these devices. For instance, there are several operating
systems (e.g., Linux, Android, Contiki, TinyOS, etc.) avail-
able for smart devices which vary in terms of functionalities,
operations, and integrated security features. Moreover, smart
devices can connect with each other and create a network of
smart devices to perform various tasks. The lack of knowledge
of device architectures can affect the security of the devices
as security flaws in one smart device can cause the compro-
mise of other connected smart devices. Additionally, in a smart
connected environment, multiple smart devices use one sen-
sor to automate various tasks [28]. Hence, compromising one
sensor can trigger malicious activities in several connected
smart devices. Researchers and developers should study the
smart device architectures (both standalone and connected
smart devices) and functionalities to understand the sensor
mechanism which will help to understand the consequences
of emerging sensor-based threats.

Adoption of Standard Security Mechanisms: Currently, there
exist several operating systems for smart devices that manage
their on-board and external connected sensors in distinctive
ways (Section IV). These dissimilarities make it hard to con-
verge for a general security scheme to protect sensors of the
smart devices [196]. For example, in a smart environment,
several smart devices from different vendors can share the
same sensors and physical environment. Any sensor-based
threats compromising normal functionalities of a sensor can
propagate to several connected smart devices. In this sce-
nario, installing vendor-specific sensor security schemes surely

increase the security of smart devices from a specific ven-
dor. However, sensor-based threats targeting smart devices
from another vendor can compromise connected smart devices
even with an installed vendor-specific security scheme [28].
Moreover, installing different security schemes in different
smart devices can lead to high resource usage and introduce
overhead in the smart environment. Hence, a comprehensive
vendor-independent sensor security scheme is needed to secure
sensors of smart devices in a connected smart environment.
One of the future research efforts should be the standardization
of development platforms for smart devices which will make
it easier for researchers to come up with universal security
measures to defend against sensor-based threats and attacks.
Therefore, researchers should investigate the possibility of a
common security mechanism for authentication of sensor data
as well as authorization of legitimate sensor access.

Fine-grained Control of Sensors: Existing sensor manage-
ment systems of smart devices offer permission-based sensor
management which completely depends on user consent. Apps
generally ask for permission to access specific sensors on
installation time and once the permissions are granted, users
have less control over the sensors’ usage by the apps. Again,
the user permission is enforced only to secure a limited num-
ber of the on-board sensors (e.g., microphone, camera, GPS).
Granting permission to these sensors automatically grant per-
mission for other sensors such as accelerometer, gyroscope,
light sensor, etc. In recent years, researchers have also shown
that both permission-enforced (microphone, camera, GPS)
and no permission-enforced (accelerometer, gyroscope, etc.)
sensors are vulnerable to sensor-based threats and attacks.
Therefore, a fine-grained sensor management system is needed
to verify compliance between sensor access and user intent.

Further Investigation of Sensor-Based Threats: Several prior
works have reported many sensor-based threats to smart
devices in recent years. However, these sensor-based threats
are unique from one another in terms of attack methods,
targeted devices, and attack consequences. To understand
sensor-based threats, it is important to study the existing
threats and use the knowledge to enhance the security of smart
devices to tackle new sensor-based threats.

Study of Malicious Sensor Behavior and User Perspectives:
Sensor-based threats are relatively new and there are only a
few comprehensive studies available to understand the threats
properly. This lack of knowledge is lucrative for attackers
to target and trick smart device users to install malicious
apps and perform malicious sensor activities [197]. Users
carelessly install any third-party apps with illegitimate sensor
permissions which can compromise smart devices [74], [198].
Therefore, to secure sensors in smart devices, it is important
to understand how users, smart devices, and apps are using
sensors to perform and automate various tasks and what their
views of sensor-based threats are. Researchers may perform
additional usability studies to better understand how users can
contribute to improving sensor access control via their inputs
in smart devices.

Prevent Leakage of Sensor Data: Smart devices can
autonomously sense their surrounding environment which can
be used to prevent information leakage from the devices.
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Sensors in smart devices can anticipate an on-going task and
detect the pattern of information accessed by the task. These
sensor patterns vary for different activities and by observing
these sensor behaviors, it is possible to prevent information
leakage in smart devices [7].

Control Sharing of Data among Sensors: Communication
on smart devices become more sensor-to-sensor (i.e., machine-
to-machine) compared to human-to-sensor or sensor-to-human
(human-to-machine or machine-to-human) and the introduc-
tion of a huge number of sensors in smart devices is
speeding up this shift. As smart devices deal with sensi-
tive personal data, sensor-to-sensor communication channels
should be secured, which helps in end-to-end security for the
devices. Secure end-to-end communication from sensors to
the devices and among devices is vital to avoid information
leakage [199], [200]. Devices should share encrypted sensor
data to avoid any information leakage via packet sniffing [85].
Sensor data should also be available to all the connected
devices continuously to ensure unimpeded performance.

Privacy Concerns in Smart Device Sensors: Sensors in
smart devices are associated with several tasks on smart
devices that capture sensitive user inputs including user cre-
dentials, typed information, PIN code, etc. Hence, raw sensor
data leaked from smart devices can lead to privacy violations
in smart devices [201]. Attackers can utilize advanced tech-
niques and analytical engines to learn sensitive information
from sensor data and emulate user inputs to perform mali-
cious activities such as accessing the device, alter device
settings, etc. For instance, a malware installed in a smart
device can capture keystrokes from sensor input and start
injecting false keystrokes to perform malicious tasks while
the device is on sleep mode [202]. Hence, it is important
to ensure sensor data confidentiality in ongoing tasks of
a smart device to protect user privacy. One effective solu-
tion can be run-time encryption of sensor data which can
prevent information leakage from raw sensor data. Another
possible solution can be sensor-assisted continuous authen-
tication in connected smart devices to detect emulated user
input [201], [203]. Further investigation is needed from the
research community to develop emulated user input detec-
tion techniques and sensor encryption schemes to ensure user
privacy at the sensor level.

Sensor-based Threats in Other Domains: Sensors have
become ubiquitous not only in modern smart devices, but
also sensor-assisted technologies are gaining popularity in
various application domains. The diverse use of sensors in
smart devices opens up the possibility of new security threats
adopted from different application domains. For instance, sen-
sor impersonation attack is a common threat vector in wireless
sensor networks which can be easily adapted to exploit sen-
sors in a multi-device smart environment [204], [205]. Also,
a compromised sensor node is an interesting security issue
in cyber-physical systems such as smart grid which can be
modified to exploit sensors in smart devices [206], [207]. To
address such adopted sensor-based threats, researchers may
study OS-level and user-level sensor behavior to differenti-
ate benign and compromised sensors in smart devices [208].
Another interesting research direction to address such threats

can be to investigate correlation between user behavior and
sensor behavior to identify compromised sensor nodes in smart
devices. Hence, the study of adopted sensor-based threats
in interconnected application domains can be an emerging
research topic for both industry and research communities.

Security Measures for Sensor-Based Threats: As mentioned
in Section VII, there are no comprehensive solutions to detect
sensor-based threats in smart devices. The existing solutions
focus on specific threats or sensors which are ineffective
in addressing sensor-based threats extensively. Researchers
and developers should focus on the following open issues
to develop effective security measures to detect sensor-based
threats properly.

Device Independent Security Measure: The majority of the
existing solutions to secure sensors in smart devices focus
on smartphone overlooking the security needs of other smart
devices [31]. However, the number of different smart devices
are also increasing rapidly. Several prior works have verified
that not only smartphones but all the smart devices (e.g., smart
watch, smart home devices, etc.) are vulnerable to emerg-
ing sensor-based threats [28], [209]. Additionally, smartphones
can be used as a platform to launch sensor-based threats to
other smart devices as smartphones act as controller device
for several smart devices such as smart lock, smart camera,
etc., [37]. Hence, researchers should consider sensor-based
threat as a general threat to smart devices to develop device
independent security measures.

Protect Sensor Data When at Rest: Smart device applica-
tions deal with multiple sensor data at a time and tampered
data in the smart devices can impact the normal behavior of
applications. To ensure the authenticity of sensor data, various
end-to-end encryption mechanisms may be applied from the
sensors to the program requesting it. Various security features
of the hardware such as ARM TrustZone may be adopted to
achieve secure data flow inside the devices [210]. Researchers
may also invest their effort in studying the adoption of the
blockchain technology as a way of designing highly distributed
systems able to provide attestation and verification among mul-
tiparty and heterogeneous components part of a larger smart
device ecosystem.

Protect Integrity of Sensor Operations: The research com-
munity has not invested enough effort in studying the design
and development of tools for automated detection and analy-
sis of sensors-based threats. For instance, no tool is available
to automatically identify and analyze adversary-controlled sen-
sors that would compromise the integrity of sensor operations,
as well as the integrity of the data generated or modified
by such operations. Also, no tool is available to automat-
ically identify dangerous configurations in enforced access
control policies, which may lead to risky operations by trusted
programs that may compromise the integrity of the entire
connected smart device environment.

Adoption of Intrusion Mechanisms to Detect Attacks: In
recent years, multiple efficient techniques (e.g., machine learn-
ing (ML) and neural network (NN)) were applied to detect
threats in various application domains. These detection tech-
niques should be explored in detail to design novel intrusion
detection mechanism, for smart devices and applications, able
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to identify when unsafe operations are authorized. Therefore,
researchers should investigate NN and ML classification
algorithms as viable solutions to identify and differentiate
legitimate from illegal sensing activities. Another interesting
approach is to study adversarial effects on sensor-based threat
detection. Prior works showed ML-based intrusion detection
can be pruned to adversarial attacks [211]. Hence, researchers
and industry practitioners should investigate and develop
mitigation strategies against adversarial attacks on sensors.

B. Recommendations

Vendors: Vendors have to consider the emerging sensor-
based threats and attacks and get the security requirements
right for every embedded and connected sensors. With the
introduction of IoT, sensors can be external devices and con-
nected via different communication means. Hence, vendors
need to consider sensors as embedded components as well
as independent before implementing security measures. Smart
device vendors also should have a strong research strategy
to understand the sensor-based threats and attacks and its
consequences to secure the devices.

End-users: The main victims of the sensor-based threats and
attacks are end-users. Attackers mostly target end-users with
less technical knowledge of sensor-based threats to perform
malicious activities such as information leakage, task infer-
ence, etc. Although it is hard to understand the technical part
of different sensor-based threats and attacks, end-users should
know the consequences of these threats and attacks and be cau-
tious before using any risky apps in the devices. Additionally,
end-users can follow good security practices such as rejecting
any suspicious sensor access, disabling automatic data shar-
ing between apps, etc. to secure their devices and information.
Users can also raise their concerns to the vendors regarding
sensor-based threats and attacks.

Developers: Developers can play an important role in secur-
ing smart devices against sensor-based threats and attacks.
Modern app-based platforms increase the popularity of smart
devices rapidly and developers can build numerous apps and
publish them in app markets. To secure the devices from the
sensor-based threats and attacks, developers can follow the
guidelines published by the vendors to minimize the sensor
data abuse in the apps [212]. Developers can also follow good
app developing practices such as the use of encrypted sensor
data in the app, trusted data flow path, use of only essential
sensor permission, etc. Developers can also help the vendors
to build specific security measures against the sensor-based
threats and attacks.

Research community: Several on-going research efforts have
already confirmed the necessity of securing sensors in smart
devices [7], [163]. The research community can help the indus-
try to address the sensor-based threats and attacks efficiently
and propose various solutions. Researchers along with the
industry experts should jointly propose a standard practice
in app development to minimize the sensor abuses in smart
devices. Furthermore, researchers should report newly found
sensor-based threats to the vendors immediately to reduce the
consequences.

Summary: In summary, there are several interesting research
problems that may be tackled by the research community
toward improving the security of sensors in smart devices and
applications. While following the above directions toward bet-
ter protection mechanisms against the sensor-based threats and
attacks, researchers have to identify the key characteristics that
differentiate IoT security from the commodity system security.
Such unique characteristics will guide toward the design of
innovative mechanisms that will be robust against the sensor
attacks.

IX. CONCLUSION

The growing popularity of topics like smart home, smart
office, smart city is increasing attention towards security issues
in smart devices and applications. In this paper, we surveyed
a lesser-known yet serious family of sensor-based threats and
attacks to smart devices. To the best of our knowledge, this sur-
vey is the first one to address sensor-based threats and attacks
as a major security issue to smart devices and classify these
emerging threats and attacks formally. We presented a com-
prehensive overview of sensors in smart devices and existing
sensor management systems used in commodity smart devices.
We provided a detailed analysis of recent sensor-based threats
and attacks and discussed how these threats and attacks can be
used to exploits various sensors in smart devices. We also sum-
marized several security approaches proposed by researchers
in the attempt to address critical shortcomings for the security
of these devices, and discussed some of the challenges for
future research work in this area. In conclusion, we believe
this survey will have a positive impact in the research commu-
nity by documenting recent sensor-based threats and attacks
to smart devices and motivating researchers to develop fur-
ther comprehensive security schemes to secure these devices
against sensor-based threats and attacks.
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