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Abstract—Sensors (e.g., light, gyroscope, and accelerometer) and sensing-enabled applications on a smart device make the

applications more user-friendly and efficient. However, the current permission-based sensor management systems of smart devices

only focus on certain sensors and any App can get access to other sensors by just accessing the generic sensor Application

Programming Interface (API). In this way, attackers can exploit these sensors in numerous ways: they can extract or leak users’

sensitive information, transfer malware, or record or steal sensitive information from other nearby devices. In this paper, we propose

6thSense, a context-aware intrusion detection system which enhances the security of smart devices by observing changes in sensor

data for different tasks of users and creating a contextual model to distinguish benign and malicious behavior of sensors. 6thSense

utilizes three different Machine Learning-based detection mechanisms (i.e., Markov Chain, Naive Bayes, and LMT). We implemented

6thSense on several sensor-rich Android-based smart devices (i.e., smart watch and smartphone) and collected data from typical daily

activities of 100 real users. Furthermore, we evaluated the performance of 6thSense against three sensor-based threats: (1) a

malicious App that can be triggered via a sensor, (2) a malicious App that can leak information via a sensor, and (3) a malicious App

that can steal data using sensors. Our extensive evaluations show that the 6thSense framework is an effective and practical approach

to defeat growing sensor-based threats with an accuracy above 96 percent without compromising the normal functionality of the device.

Moreover, our framework reveals minimal overhead.

Index Terms—Sensor-based threats, smart devices, Internet of Things, machine learning, intrusion detection
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1 INTRODUCTION

SMART devices such as smartphones and smartwatches
have become omnipresent in every aspect of human life.

Nowadays, the role of smart devices is not limited to mak-
ing phone calls and messaging only. They are integrated
into various applications from home security to health care
to military to smart city [1], [2], [3]. Since smart devices
seamlessly integrate the physical world with the cyber
world via their sensors (e.g., light, accelerometer, gyro-
scope, etc.), they provide more efficient and user-friendly
applications [3], [4], [5]. In a way, sensors are eyes, ears,
skin of the device to the physical world as five sensing
organs are to the human beings.

While the number of applications using different sensors
is increasing and new devices offer more sensors, the pres-
ence of sensors have opened novel ways to exploit the smart
devices [6]. Attackers can exploit the sensors in multiple
ways [6]: They can trigger an existing malware on a device
with a simple flashlight [7]; they can use a sensor (e.g., light
sensor) to leak sensitive information; using motion sensors,
attackers can record or steal sensitive information from
other nearby devices (e.g., computers, keyboards) or peo-
ple [8], [9]. They can even transfer a specific malware using
sensors as a communication channel [6]. Such sensor-based

threats become more serious with the rapid growth of Apps
utilizing many sensors [10].

In fact, these sensor-based threats highlight the flaws of
existing sensor management systems used by smart devices.
Specifically, Android sensor management system relies on
permission-based access control, which considers only a
few sensors (i.e., microphone, camera, and GPS).1 Android
asks for access permission (i.e., with a list of permissions)
only while an App is being installed for the first time. Once
this permission is granted, the user has no control over how
the listed sensors and other sensors (not listed) will be used
by the specific App. Moreover, using non-listed sensors is
not considered as a violation of security and privacy in
Android. For instance, any App is permitted to access to
motion sensors by just accessing the sensor API. Access to
motion sensors is not controlled in Android.

Existing studies have proposed enhanced access control
mechanisms for some of the sensors, but these enhance-
ments do not cover all the sensors of a smart device [12],
[13]. Some proposed solutions introduced trusted paths on
top of the existing security mechanisms for controlling
information flow between sensors and Apps, but these are
also App-specific solutions and depend upon explicit user
consent. Thus, introducing additional permission controls
for sensors of a smart device will not mitigate the risk
of all sensor-based threats as they are App-specific and
address only data leakage risks. Some attacks may not
abuse sensors directly; instead, they may use sensors as
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1. IOS, Windows, and Blackberry also have similar permission-
based sensor management systems. In this work, we focus on Android
due to its open-source nature and high market share [11].
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side-channels to activate another malware [6]. Albeit use-
ful, existing security schemes overlook these critical threats
which directly impact the security and privacy of the smart
device ecosystem. Moreover, although sensors on smart
devices seem to work independently from each other, a
task or activity on a smart device may activate more than
one sensor to accomplish the task. Hence, it is necessary to
secure all the different sensors on a smart device and con-
sider the context of the sensors in building any solution
against the sensor-based threats.

In order to address the sensor-based threats, in this
paper, we present a novel intrusion detection (IDS) frame-
work called 6thSense, as a comprehensive security solution
for sensor-based threats for smart devices. The proposed
framework is a context-aware IDS and is built upon the obser-
vation that for any user activity or task (e.g., texting, making
calls, browsing, driving, etc.), a different, but a specific set of
sensors becomes active. In a context-aware setting, the
6thSense framework is aware of the sensors activated by
each activity or task. 6thSense observes sensors data in real
time and determines the current use context of the device
according to whether the current sensor use is malicious or
not. 6thSense is context-aware and correlates the sensor data
for different user activities (e.g., texting, making calls, brows-
ing, etc.) on the smart devices and learns how sensors’ data
correlates with different activities. As a detection mecha-
nism, 6thSense observes sensors’ data and checks against the
learned behavior of the sensors. In 6thSense, the framework
utilizes several Machine Learning-based detection mecha-
nisms to catch sensor-based threats includingMarkovChain,
Naive Bayes, and a set of other ML algorithms (e.g., PART,
Logistic Function, J48, LMT, Hoeffding Tree, and Multilayer
Perception). In this paper, we present the design of 6thSense
on different Android devices (smartphone and smart watch)
because of its open-source nature, large market share [11],
and rich set of sensors. To evaluate the efficiency of the
framework, we tested it with data collected from real users
(100 different users, 16 different typical daily activities for
smartphone and smart watch [14] including 153,600 and
307,200 different event-state information, respectively). We
also evaluated the performance of 6thSense against three dif-
ferent sensor-based threats and finally analyzed its over-
head. Our evaluation shows that 6thSense can detect sensor-
based attacks with an accuracy and F-Score over 96 percent.
Also, our evaluation shows a minimal overhead on the utili-
zation of the system resources. Note that, this work is an
extension of our previous work [12]. We significantly
improved the framework from our prior work and imple-
mented 6thSense on smart watch and smart phone. We also
evaluated the performance with new user data and analyzed
the performance overhead in further detail.

Contributions. In summary, the main contributions of this
paper are threefold—

� First, the design of 6thSense, a context-aware IDS
to detect sensor-based threats utilizing multiple
machine learning based models from Markov Chain
to Naive Bayes to LMT.

� Second, the extensive performance evaluation of
6thSense with real user experiments over 100 users
for different smart devices (smartphone and smart
watch).

� Third, testing of 6thSense against three different
sensor-based threats.

Organization. The rest of the paper is organized as follows:
we give an overview of sensor-based threats and existing
solutions in Section 2. In Section 3, we briefly discuss the
Android’s sensor management system. Adversary model,
design features, and assumptions for 6thSense are briefly
discussed in Section 4. Different detection techniques used
in our framework are described in Section 5. In Section 6,
we provide a detailed overview of 6thSense including its
different components and in Section 7, we evaluate its
effectiveness by analyzing different performance metrics.
Finally, we conclude this paper in Section 8.

2 RELATED WORK

Sensor-based threats [6] on smart devices have become more
prevalent than before with the use of different sensors such
as user’s location, keystroke information, etc. Several works
[15], [16] have investigated the possibility of these threats
and presented different potential threats in recent years.
Some interesting sensor-based threats are explained below.

One of the most common threats is keystroke inference in
smart devices. When a user types in the keyboard, motion
sensor readings (i.e., accelerometer and gyroscope) change
accordingly [17]. As different keystrokes yield different, but
specific values in motion sensors, typing information on on-
screen keyboard can be inferred from an unauthorized sen-
sor such as motion sensor data or its patterns collected
either in the device or from a nearby device can be used to
extract users’ input in smart devices [18], [19], [20], [21]. The
motion sensor data can be analyzed using different techni-
ques (e.g., machine learning, frequency domain analysis,
shared-memory access, etc.) to improve the accuracy of
inference techniques such as [9], [22], [23], [24], [25].
Another form of keystroke inference threat can be per-
formed by observing only gyroscope data. Smart devices
have a feature of creating vibrations while a user types on
the touchpad. The gyroscope is sensitive to this vibrational
force and it can be used to distinguish different inputs given
by the users on the touchpad [26], [27], [28]. Recently, ICS-
CERT also issued an alert for accelerometer-based attacks
that can deactivate any device by matching vibration fre-
quency of the accelerometer [10], [29].

Light sensor readings also change while a user types on
smart devices; hence, the user input in a smart device can be
inferred by differentiating the light sensor data in normal and
typing modes [30]. The light sensor can also be used as a
medium to transfer malicious code and trigger message to
activate a malware [7]. The audio sensor of a smart device can
also be exploited to launch different malicious attacks (e.g.,
information leakage, eavesdropping, etc.) on the device.
Attackers can infer keystrokes by recording tap noises on
touchpad [31], record conversation of users [32], transfermali-
cious code to the device [15], or even replicate voice com-
mands used in voice-enabled different Apps like Siri, Google
Voice Search, Amazon echo, Google Smart Home etc. [33]. Cam-
eras of different smart devices can also be used to covertly
capture screenshot or video and to infer information about
surroundings or user activities [34], [35], [36]. GPS of a smart
device can be exploited to perform a false data injection attack
on smart devices and infer the location of a specific device.

Solutions for Sensor-Based Threats. Although researchers
identified different sensor-based threats in recent years, no
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complete security mechanism has been proposed that can
secure sensors of a smart device. Most of the proposed secu-
rity mechanisms for smart devices are related to anomaly
detection at the application level which are not built with
any protection against sensor-based threats [37]. On the other
hand, different methods of intrusion detection have been
proposed for wireless sensor networks (WSN) [38], but they
are not compatible with smart devices. Xu et al. proposed a
privacy-aware sensor management framework for smart-
phones named Semadroid [13], an extension to the existing
Android sensor management system where users could
monitor sensor usage of different Apps and invoke different
policies to control sensor access by active Apps on a smart-
phone. Maiti et al. proposed a real-time activity detection
framework to identify user activity on a smart device using
motion sensor and allow motion sensor access based on the
detected activity [9]. Petracca et al. introduced AuDroid, a
SELinux-based policy framework for Android smartphones
by performing behavior analysis of microphones and speak-
ers [39]. AuDroid controls the flow of information in the
audio channel and notifies users whenever an audio channel
is requested for access. An extension of this work is AWARE,
an authorization framework to secure privacy-sensitive sen-
sors from malicious applications [40]. AWARE considers
both application requests and user interface to identify mali-
cious user inputs in operation bindings for microphone and
camera. Jana et al. proposed DARKLY, a trust management
framework for smartphones which audits applications of dif-
ferent trust levels with different sensor access permissions
[41]. Darkly scans for vulnerability in the source code of an
application and tries to modify the run-time environment of
the device to ensure the privacy of sensor data.

Differences from the Existing Solutions. Though there is no
direct comparable work to compare 6thSense with, differences
between existing solutions and our framework can be noted as
follows: The main limitation of Semadroid [13] is that the pro-
posed solution is only tested against a similar type of attack
scenario (information leakage by a background application).
Semadroid also does not provide any extensive performance
evaluation for the proposed scheme. Finally, this work
depends on user permissions to fully enforce an updated pol-
icy on the sensor usage which is vulnerable as users might
unknowingly approve the sensor permissions for malicious
Apps. Real-time activity detection proposed byMaiti et al. con-
sidersmotion sensors to identify user activity on a smart device
which is only effective against keystroke inference [9]. In
Darkly [41], the proposed framework is not tested against any
sensor-based threats. Audroid presented a policy enforced
framework to secure only the audio channels of a smart device.
Albeit useful, similar to the others, this work does not consider
other sensor-based threats, either. More recent work AWARE
also considers selective sensors (e.g., camera and microphone)
to identify malicious sensor accesses of the applications [40].
Compared to these prior works, 6thSense provides a comprehensive
coverage to all the sensors in a smart device and ensures security
against different types of sensor-based threats with high accuracy.

3 SENSOR MANAGEMENT IN SMART DEVICES

Modern smart devices perform app-based operations which
create a many-to-many relationship between sensors and
Apps. Smart devices use more than one sensor to perform a
task and hence, it is impractical to install an independent
management system for each sensor. Smart device

operating systems (OS) address this requirement by imple-
menting centralized sensor management systems to manage
and ensure secure data acquisition from all the sensors. In
this section, we discuss sensor management systems of
smart device OSes and articulate important deficiencies of
the existed sensor management systems.

Sensors in Smart Devices. Most of the current smart device
OSes offer permission-based sensor management system to
control sensor access and data flow. According to the associ-
ated permissions imposed by the OSes, sensors in smart
devices can be categorized in two groups - permission-
imposed and no permission-imposed sensors.

� Permission-imposed Sensor (PS): Permission-imposed
sensors are those which need explicit user permis-
sion to be accessed by an App. In smart devices,
GPS, camera, and microphone are considered as
permission-imposed sensor.

� No Permission-imposed sensors (NPS): No-permission-
imposed sensors can be defined as sensors that do
not need any user permission explicitly to be accessed
by an App. Smart devices can have a wide range of
no permission-imposed sensors such as accelerome-
ter, gyroscope, proximity sensor, light sensor, etc.

Sensor Management Systems in Smart Devices. To under-
stand sensor management systems in smart devices, we
briefly explain sensor management in Android OS. In Fig. 1,
we present how Android handles access to different sensors
by Apps (installed by the user) and system Apps (installed
automatically by Android). Whenever an App wants to
access sensors, it sends a request to SensorManager via Soft-
ware Development Kit (SDK) API which then registers the
App to a corresponding sensor [42]. If more than one App
tries to access the same sensor, the SDK API runs a multi-
plexing process which enables different Apps to be regis-
tered in the same sensor. Hardware Abstraction Layer
(HAL) works as an interface to bind the sensor hardware
with the device drivers in Android. HAL has two parts:
Sensors.h works as HAL interface and Sensors.cpp works as

Fig. 1. Android sensor management architecture.
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the HAL implementation. Through the HAL library, differ-
ent applications can communicate with the underlying
Linux kernel to read and write files associated with sensors.
Also, the user permission for sensor access permission is
declared inside the AndroidManifest.xml file of an App and
once the user accepts the permission, that App can have
access to the corresponding permission-imposed sensors
and other no-permission imposed sensors even without any
explicit approval from the users.

Limitations of Current Sensor Management Systems. Present
versions of different smart device OSes (i.e., Android, iOS,
Windows OS, Blackberry OS, etc.) do not comprise of any
security mechanism to manage the information flow from
sensors or among them. Most of the OSes offer a permis-
sion-based sensor management system to control sensor
access and data flow between the application and sensor.
OSes ask for user-permission for only selective set of sen-
sors (e.g., GPS, camera, and microphone) at the time of
installation or first use of an App. Users may grant access to
sensitive sensors implicitly without knowing the actual
intents of the App. Moreover, an App can get access to any
no permission-imposed sensors by just accessing the sensor
API. Also, one task may need more than one sensor, but
protecting only one sensor is not a viable design. The lack of
ability to secure the information flow between the sensors
and Apps and a holistic view into the utilization of sensors
can lead to different malicious scenarios like information
leakage, eavesdropping, etc.

4 ADVERSARY MODEL AND ASSUMPTIONS

In this section, we discuss different threats that may abuse
sensors to execute malicious activities on a smart device.
Different design features and assumptions are also
explained in this section.

Adversary Model. For this work, we consider the following
sensor-based threats similar to [6]:

� Threat 1-Triggering a malicious App via a sensor. A
malicious App can exist in the smart device which
can be triggered by sending a specific sensory pat-
tern or message via sensors.

� Threat 2-Information leakage via a sensor. A malicious
App can exist in the device which can leak informa-
tion to any third party using sensors.

� Threat 3-Stealing information via a sensor. A mali-
cious App can exist in the device which can
exploit the sensors of a smart device and start
stealing information after inferring a specific
device mode (e.g., sleeping).

In this paper, we cover these three types of malicious
sensor-based threats. To build our adversary model, we
consider any component on a smart device that interacts
with the physical world as a sensor [39]. We designed spe-
cific malware to represent above-mentioned threats and test
our proposed framework against these malware.

Design Assumptions and Features. In designing a comprehen-
sive security scheme like 6thSense for sensor-based threats,
we note the following design assumptions and features:

� Context Awareness: The main feature of 6thSense is
context awareness which refers to the ability to sense
the physical environment and adapt its operations
accordingly in realistic cases [43]. 6thSense builds a

context-aware model by observing the sensors’
behaviors on a smart device in different usage sce-
narios. When a user is performing a task on a smart
device, several sensors (i.e., accelerometer, gyro-
scope, light sensor, etc.) may remain active. This
active state of different sensors is not constant and
can change over time. This shifting in sensor’s state
over time should be considered correctly to under-
stand the context of an activity. 6thSense divides the
total execution time of an activity into smaller times
and observes the sensors’ states (on/off) over a short
time span. Thus, whenever a sensor state is changed,
6thSense can understand the context and take a deci-
sion according to the context. For example, while a
user is walking with a smartphone on his hand, sev-
eral sensors (i.e., accelerometer, gyroscope, light sen-
sor, etc.) remain active. If we divide the time of the
activity in smaller times, we can see different sets of
sensors active for different sensor states (Fig. 2). In
this way, 6thSense considers all device states to
understand the context of the activity and differenti-
ate between benign and malicious activities.

� Sensor co-dependence:A sensor in a smart device is nor-
mally considered as an independent entity on the
device. Thus, one sensor does not know what is hap-
pening in another sensor. However, in this work,
given an activity, we consider sensors as co-dependent
entities on a device instead of independent entities.
The reason for this stems from the fact that for each
user activity or task on a smart device, a specific set
of sensors remains active. For example, if a user is
walking with a phone in hand, motion sensors (i.e.,
gyroscope, accelerometer), the light sensor, GPS will
be active. On the contrary, if the user is walking with
the phone in the pocket or bag, instead of the light sen-
sor, the proximity sensor will remain active. Thus, a
co-dependent relationship exists between sensors
while performing a specific task. Each activity uses
different, but specific set of sensors to perform the task
efficiently. Hence, one can distinguish the user activity
by observing the context of the sensors for a specific
task. 6thSense uses the context of all the sensors to
distinguish between normal user activities and
malicious activities. In summary, sensors in a smart
device are individually independent, but per activity-wise
dependent and 6thSense considers the context of the
activities in its design.

� Adaptive sensor sampling: Different sensors have dif-
ferent sampling frequencies. To monitor all the sen-
sor data for a specific time, a developed solution
must consider and sample the sensor data correctly.

Fig. 2. Context-aware model for 6thSense.
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6thSense considers sampling the sensor data over a
certain time period instead of individual sensor fre-
quencies which mitigates any possible error in proc-
essing of data from different sensors. 6thSense
collects each sensor data separately and samples the
data according to their corresponding frequencies.
These sample data are merged together to build con-
texts of different user activities in smart devices.

� Faster computation: Modern high precision sensors on
smart devices have high resolution and sampling
rate. As a result, sensors provide large volume of
data even for a small time interval. A solution for
sensor-based threats should quickly process any
large data from different sensors in real time while
ensuring a high detection rate. To address this, we
use different machine learning algorithms as detec-
tion techniques of 6thSense which are proven simple
and fast techniques.

� Real-time monitoring: 6thSense provides real-time
monitoring to all the sensors which mitigates the
possibility of data tempering or false data injection
on the device.

� Configurability: 6thSense is configurable to provide
different needs and flexible deployments. For exam-
ple, 6thSense offers both online and offline training
mode for different machine learning detection tech-
niques to reduce power consumption.

5 DETECTION TECHNIQUES: THEORETICAL

FOUNDATION

In this section, we describe the theoretical foundation of the
detection techniques used in 6thSense. For the context-
aware IDS in 6thSense, we utilize several different ML-
based techniques including Markov Chain, Naive Bayes
and, a set of other ML algorithms (e.g., PART, Logistic Func-
tion, J48, LMT, Hoeffding Tree, and Multilayer Perception)
to differentiate between normal and malicious behavior on
a smart device.

As explained in Section 4, we consider the context aware-
ness of user activities in a smart device which shows state
transition and sensor co-dependence feature in a smart
device. The Markov Chain model can illustrate these prop-
erties of the smart device’s sensors accurately based on dif-
ferent user activities in the transition matrix. Another
advantage of using Markov Chain model is that it is
easy to build the model from a large dataset and compu-
tational requirements are modest which can be met by
resource-limited devices. On the other hand, the Naive
Bayes model can build multiple activity contexts from
sensor data and identifies whether a test dataset belongs
to a user activity or a malicious activity. The Naive
Bayes model uses the sensor co-dependence feature to
build the activity context and classifies data accordingly.
In addition to this, the Naive Bayes technique is chosen
for its fast computation rate, small training dataset
requirement, and ability to modify it with new training
data without rebuilding the model from scratch.

Apart from the Markov Chain and the Naive Bayes
model, other ML techniques are also common in malware
detection because of their high accuracy rate [18], [44].
We also investigate how other ML algorithms perform in
building a context-aware model from sensor data and

detecting sensor-based threats on a smart device. Our
main purpose is to check whether popular ML algorithms
can understand and build an effective context-aware
model for sensor-based threats. A discussion of these
approaches in the context of 6thSense is given below. The
efficacy of these different approaches utilized in 6thSense
is analyzed in Section 7.

5.1 Markov Chain-Based Detection
Markov Chain model can be described as a discrete-time sto-
chastic process which denotes a set of random variables and
defines how these variables change over time. There are two
main assumptions for Markov Chain model: (1) Probability
distribution of the state at time t+1 depends on the state at
time t only. Here, the state refers to the overall condition of
the stochastic process. (2) A state transition from previous
timestamp (t) to next timestamp (t+1) is independent of time.
Markov Chain can be applied to illustrate a series of events
where what state will occur next depends only on the previ-
ous state. In our study, a series of events represents user
activity and state represents condition (i.e, values, on/off sta-
tus) of the sensors in a smart device (Fig. 3). We can represent
the probabilistic condition of Markov Chain as in Equation (1)
whereXt denotes the state at time t [45].

P ðXtþ1 ¼ xjX1 ¼ x1;X2 ¼ x2 . . . ;Xt ¼ xtÞ ¼ P ðXtþ1 ¼ xjXt ¼ XtÞ;
when; P ðX1 ¼ x1;X2 ¼ x2 . . . ;Xt ¼ xtÞ > 0:

(1)

In our study, we observe the changes of condition of a set
of sensors as a variable which changes over time. The condi-
tion of a sensor indicates whether the sensor value is chang-
ing or not from a previous value in time. Let us assume S
denotes a set which represents current conditions of n num-
ber of sensors. So, S can be represented with S ¼ fS1; S2;
S3; . . . ; Sng, where S1; S2; S3; . . . ; Sn ¼ 0 or 1. For a specific
time, t, we consider the combination of all the sensors’ con-
ditions in the smart device as the state of our model. As
we consider change in a sensor’s condition as binary output
(1 or 0, where 1 denotes that sensor value is changing from
previous instance and 0 denotes that sensor value is not
changing), the number of total states of our model will be
exponents of 2. For example, if we consider the total number
of sensors in set S is 10, the number of states in our Markov
Chain will be 210 and the states can be represented as a
10 bit binary number where each bit will represent the state
of a corresponding sensor. For this, pij denotes the probabil-
ity that the system in a state j at time t+1 given that system
is in state i at time t. If we have n number of sensors and

Fig. 3. Markov Chain model for 6thSense.
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m ¼ 2n states in our model, Markov Chain can be con-
structed by the following transition probability matrix:

P ¼

p11 p12 p13 . . . . . . p1m
p21 p22 p23 . . . . . . p2m
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
pm1 pm2 pm3 . . . . . . pmm

2
66664

3
77775
: (2)

The transition probability matrix of this Markov Chain
can be constructed by observing the transitions from one
state to another state for a certain time. Assume that, sys-
tem’s states are X0;X1; . . . ;XT at a given time t ¼ 0; 1; . . . ; T .
We can represent the transition probability matrix as follows:

Pij ¼ Nij

Ni
; (3)

where,Nij = the number of transition fromXt toXtþ1 where
Xt in state i andXtþ1 in state j;Ni = the number of transition
from Xt to Xtþ1, where Xt in state i and Xtþ1 in any other
state. The initial probability distribution of this Markov
Chain can be represented as follows:

Q ¼ q1 q2 q3 . . . . . . qm½ �; (4)

where qm is the probability that the model is in state m at
time 0. Probability of observing a sequence of states
X1; X2; . . . ; XT at a given time 1; . . . ; T can be computed
using the following equation:

P ðX1; X2; . . . ; XT Þ ¼ qx1
YT
2

PXt�1Xt: (5)

For 6thSense, instead of predicting the next state, we deter-
mine the probability of occurring a transition between two
states at a given time. We train our Markov Chain model
with a training dataset collected from real users and build
the transition matrix accordingly. Then, we determine sen-
sor working condition for time t and t+1. Let us assume a
and b are sensor’s state in time t and t+1. We determine the
probability of transition from state a to bwhich can be found
by looking up in the transition matrix and calculating P(a,b).
As the training dataset consisted of sensor data from benign
activities, we can assume that if transition from state a to b
is malicious, the calculated probability from transition
matrix will be zero.

5.2 Naive Bayes Based Detection
The Naive Bayes model is a simple probability estimation
method which is based on Bayes’ method. The main
assumption of the Naive Bayes detection is that the presence
of a particular sensor condition in a task/activity has no
influence over the presence of any other feature on that par-
ticular event. The probability of each event can be calculated
by observing the presence of a set of specific features.

Assume pðx1; x2Þ is the general probability distribution
of two events x1; x2. Using the Bayes rule, we can have the
following equation:

pðx1; x2Þ ¼ pðx1jx2Þpðx2Þ; (6)

where pðx1jx2Þ = Probability of the event x1 given that event
x2 will happen. Now, if we have another variable, c, we can
rewrite Equation (7) as follows:

pðx1; x2jcÞ ¼ pðx1jx2; cÞpðx2jcÞ: (7)

If knowledge of c is sufficient enough to determine the prob-
ability of event x1, we can state that there is conditional
independence between x1 and x2 [46]. So, we can rewrite
the first part of Equation (8) as pðx1jx2; cÞ ¼ pðx1jcÞ, which
modifies Equation (8) as follows:

pðx1; x2jcÞ ¼ pðx1jcÞpðx2jcÞ: (8)

In 6thSense, we consider users’ activity as a combination of
n number of sensors (Fig. 4). Assume X is a set which repre-
sents current conditions of n number of sensors. We consider
that conditions of sensors are conditionally independent
(See Section 4.2), which means a change in one sensor’s work-
ing condition has no effect over a change in another sensor’s
working condition. As we explained earlier, the probability of
executing a task depends on the conditions of a specific set of
sensors. So, in summary, although one sensors’ condition
does not control another sensor’s condition, overall probabil-
ity depends on all the sensors’ conditions. For example, if a
person is walking with his smartphone in his hand, the
motion sensors (accelerometer and gyroscope) will change.
However, this change will not force the light sensor or the
proximity sensor to change its condition. Thus, sensors in a
smart device change their conditions independently, but exe-
cute a task together. From Equation (9), we can have a gener-
alized formula for this context-aware model [46]

pðXjcÞ ¼
Yn
i¼1

pðXijcÞ: (9)

In our contextual activity-oriented model, we have a set
of training data for users’ activities. Assume that B repre-
sents a set which denotes m numbers of user activities. We
can determine the probability of a dataset X to be classified
as a user activity using the following equation:

P ðBijXÞ ¼ P ðXjBiÞP ðBiÞ
P ðXÞ ; (10)

where i = 1, 2, ... , m. As the sum of all the conditional proba-
bilities for X will be 1, we can have the following equation
which will lead to Equation (12)—

Xm
i¼1

P ðBijXÞ ¼ 1: (11)

P ðBijXÞ ¼ P ðXjBiÞP ðBiÞPm
i¼1 P ðXjBiÞP ðBiÞ : (12)

Fig. 4. Naive Bayes model for 6thSense.
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This calculated conditional probability then is used to
determine the benign user activity or malicious attacks in
6thSense. In this way, we compute the probability of occur-
ring an activity over a certain period of time.

We divide the sensor data into smaller time values
(1 second) and calculate the probability of each instances to
infer the user activity. The calculated probability per second
data is then used in the expected value theorem to calculate
total probability. If the probability of the first instance is p1
with a value of a1, probability of the second instance is p2
with a value of a2 and so on, up to value an, the expected
value can be calculated by the following formula:

E½N� ¼ a1p1 þ a2p2 þ a3p3 þ � � � � � � þ anpn
a1 þ a2 þ � � � � � � þ an

: (13)

As all the values of a1; a2; . . . . . . ; an are equally likely, this
expected value becomes a simple average of cumulative
probability of each instances. We infer the user activity by
setting up a configurable threshold value in the 6thSense
framework and checking whether calculated value is higher
than the threshold or not. If it is lower than the threshold
value, a malicious activity is occurring in the device.

5.3 Other ML-Based Detection Techniques
In addition to the Markov Chain and the Naive Bayes mod-
els above, there are other machine learning algorithms
(such as PART, Logistic Function, J48, LMT, Hoeffding
Tree, and Multilayer Perception) that are very popular for
anomaly detection schemes because of their fast computa-
tion and easy implementation.

In the alternative detection techniques, we used four
types of ML-based classifier to build a context-aware analyt-
ical model for 6thSense. The following briefly discusses
these classifiers and our rationale to include them:

Rule-Based Learning. Rule-based ML works by identify-
ing a set of relational rules between attributes of a given
dataset and represents the model observed by the sys-
tem [47]. The main advantage of the rule-based learning is
that it identifies a single model which can be applied com-
monly to any instances of the dataset to make a prediction
of outcome. As we train 6thSense with different user activi-
ties, the rule-based learning provides one model to predict
data for all the user activities which simplifies the frame-
work. For 6thSense, we chose, PART algorithm for the
rule-based learning.

Regression Model. Regression model is widely used in
data mining for its fast computation. This type of classifier
observes the relations between dependent and independent
variables to build a prediction model [48]. For 6thSense, we
have a total 11 attributes where we have one dependent var-
iable (device state: malicious/benign) and ten independent
variables (sensor conditions). Regression model observes
the change in the dependent variable by changing the val-
ues of the independent variables and build the prediction
model. We use the logistic regression model in 6thSense,
which also yields with high accuracy against conventional
Android malware [48].

Neural Network.Neural network is another common tech-
nique that is utilized by researchers for malware detection.
In neural network techniques, the relation between attrib-
utes of dataset is compared with the biological neurons and
a relation map is created to observe the changes for each

attribute [49]. We chose Multilayer Perceptron algorithm for
training the 6thSense framework as it can distinguish rela-
tionships among non-linear dataset.

Decision Tree. Decision tree algorithms are predictive
models where decision maps are created by observing the
changes in one attribute in different instances [50]. These
types of algorithms are mostly used in a prediction model
where output can have a finite set of values. For 6thSense,
we utilized and tested three different decision tree algo-
rithms (J48, LMT (Logistic Model Tree), and Hoeffding tree) to
compare the outcome of our framework.

6 6THSENSE FRAMEWORK

In this section, we provide a detailed overview of our pro-
posed context-aware IDS framework, 6thSense, for detect-
ing sensor-based threats on smart devices. As illustrated in
Fig. 5, 6thSense has three main phases: (1) data collection,
(2) data processing, and (3) data analysis. In the Data Collec-
tion phase, we use a custom Android App to collect the sen-
sor data for different user activities and the collected sensor
data are then processed in the Data Processing phase. In
Phase 3, the collected data is fed into detection models and
the end result indicates whether the current state of the
device is malicious or not. The following sub-sections
briefly describe these three phases.

6.1 Data Collection Phase
In this phase, 6thSense collects data from different sensors
of a smart device. There can be multiple sensors in a smart
device. 6thSense considers nine sensors in total to identify
different user activities using a sensor-rich Android device.
The sensors selected are accelerometer, gyroscope, light sen-
sor, proximity sensor, GPS, audio sensor (microphone and
speaker), camers, and headphone. The chosen sensors are
then categorized into two following categories.

No-Permission-Imposed Sensors in 6thSense. For 6thSense,
we chose four no-permission imposed sensors (i.e., acceler-
ometer, gyroscope, light, proximity sensors). We can also
refer these sensors as data-oriented sensors in the context of

Fig. 5. Overview of 6thSense.
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6thSense because values provided by these sensors need to
be observed to infer user activities. For example, acceler-
ometer’s and gyroscope’s values change with motion and
they give values on X, Y, and Z axes. To detect whether a
sensor is activated or not for a specific activity, one needs to
observe values of these sensors.

Permission-Imposed Sensors in 6thSense. We chose five per-
mission-imposed sensors to build the context-aware model
(microphone, GPS, speaker, camera, and headset) of
6thSense. The conditions of these sensors can be repre-
sented by their logical states (on/off status) for different
user activities. Hence, we also referred to these sensors as
logic-oriented sensors in the context of 6thSense. For exam-
ple, microphone has only two values to identify users’ activ-
ity: on and off. So, it can be represented with 0 or 1 to detect
if the camera is on or off correspondingly.

To collect the data and logical values from sensors, we built
a customAndroid App and 6thSense used this in the data col-
lection phase. In Android, this App uses sensoreventlistener
API to log numerical values of the data-oriented sensors. On
the other hand, the App determines the state of the sensor
and logs 0 or 1 if the sensor is on or off, respectively. This App
uses the user permission to use the microphone, GPS, and
camera to record the working conditions of these sensors. For
GPS, we consider two datasets - either GPS is turned on or not
and either location is changing or not. In total, six different
logic state information for five aforementioned permission-
imposed sensors are collected by this App.

Note that 6thSense considers different typical daily
human activities [51] that involve the smart devices (e.g.,
smart watch, smart phone, etc.) to build the contextual
model. These activities include walking, talking, interacting
(playing games, browsing), driving (as driver and passen-
ger). Furthermore, the number of activities is configurable in
6thSense and is not limited to aforementioned examples. As
also explained in the evaluation of 6thSense, a total of seven
and nine typical daily activities are selected for smart watch
and smart phone respectively as they are considered as com-
mon user activities [14]. 6thSense collects these data using
the App for different users to train the framework which is
then used to distinguish the normal sensor behavior from
the malicious behavior. In summary, the aforementioned
App collects data from eight different sensors for different
typical user activities. 6thSense observes sensor state (combi-
nation of working conditions (i.e., values, on/off status) of
different sensors) in a per second manner for each user activ-
ity. Each second of data for user activity corresponds to 512
state information from eight different sensors.

6.2 Data Processing Phase
In the second phase of the framework, 6thSense organizes the
data to use. As different sensors have different frequencies on
the smart device, the total number of readings of sensors for a
specific time period is different. For example, the accelerome-
ter and gyroscope of LG Watch Sport have a sampling fre-
quency of approximately 418 Hz and 32 Hz, respectively
while the light sensor has a sampling frequency of 5 Hz. Thus,
the data collected in Phase 1 needs to be sampled and reorgan-
ized. 6thSense observes the change in the sensor condition in
each second to determine the overall state of our device and
from this per second change, 6thSense determines the activity
of users. For this reason, 6thSense takes all the data given by a
single sensor in a second and calculates the average value of

the sensor reading. This process is only applicable for the data
oriented sensors as mentioned earlier. Again, the data col-
lected from the App is numerical value as given by the sensor.
However, for the detection model, 6thSense only considers
the condition of the sensors. 6thSense observes the data col-
lected by the aforementioned App and determines whether
the condition of sensors is changing or not. If the sensor value
is changing from the previous value in time, 6thSense repre-
sents the sensor condition as 1 and 0 otherwise. The logic state
information collected from the sensors need to be reorganized,
too as these data are merged with the data collected from the
collected values from the other sensors to create an input
matrix. We consider the condition of the sensors to be the
same over time and organize the data accordingly. The reor-
ganized data generated from the aforementioned App are
then merged to create the training matrices.

6.3 Data Analysis Phase
In the third, 6thSense uses different ML-based detection
techniques introduced in the previous section to analyze the
data matrices generated in the previous phase.

For the Markov Chain-based detection, 6thSense uses
75 percent of the collected data to train 6thSense and gen-
erate the transition matrix. This transition matrix is used to
determine whether the transition from one state to another
is appropriate or not. Here, state refers to generic represen-
tation of all the sensors’ conditions on a device. For testing
purposes, we have two different data set—benign activities
or trusted model and malicious activities or threat model.
The trusted model consists of 25 percent of the collected
data for different user activities. We tested the trusted
model to ensure the accuracy of the 6thSense framework in
detecting benign activities. The malicious activities are
built from performing the attack scenarios mentioned in
Section 4. 6thSense calculates the probability of a transi-
tion occurring between two states at a given time and accu-
mulates the total probability to distinguish between normal
and malicious activities.

To implement the Naive Bayes-based detection technique,
6thSense uses the training sessions to define different user
activities. In 6thSense, seven typical user activities are selected
in total for smart watch as listed in Table 3. In addition to
these user activities, we consider walking with smart device
in pocket and making a video call as typical user activities to
test 6thSense in smart phone. 6thSense uses ground truth
user data to define these activities. Using the theoretical foun-
dation explained in Section 5, 6thSense calculates the proba-
bility of a test session to belong to any of these defined
activities. As 6thSense considers one second of data in each
computational cycle, the total probability up to a predefined
configurable time interval (in this case five minutes) is calcu-
lated. This calculated probability is used to detect malicious
activities from normal activities. If the computed probability
for all the known benign activities is not over a predefined
threshold, then it is detected as a malicious activity.

For the other alternative machine-learning-based detec-
tion techniques, 6thSense uses WEKA, a data mining tool
which offers data analysis using different machine learning
approaches [52].

7 PERFORMANCE EVALUATION OF 6THSENSE

In this section, we evaluate the efficiency of the proposed
context-aware IDS framework, 6thSense, in detecting the
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sensor-based threats on smart devices (smartphone and
smart watch). We tested 6thSense with the data collected
from different users for benign activities and adversary
models described in Section 4. As discussed earlier,
6thSense considers three sensor-based threats: (1) a mali-
cious App that can be triggered via a light or motion sen-
sors, (2) a malicious App that can leak information via
audio sensors, and (3) a malicious App that steals data via
audio sensors. Furthermore, we measured the performance
impact of 6thSense on the devices and present a detailed
results for the efficiency of the 6thSense framework on both
a smart watch and smart phone.

7.1 Training Environment and Dataset
In order to test the effectiveness of 6thSense, we imple-
mented it on both a sensor-rich Android-based smart watch
and smartphone. We used the LG Watch Sport as a reference
Android smart watch with Android Wear version 2.0 to collect
sensor data for different typical user activities. We chose
this Android device as the LG watch sport is a second gen-
eration, stand-alone Android wearable that provides a rich
set of sensors. A list of sensors of LG Watch Sport is given in
Table 1. As discussed earlier, we selected 7 different typical
user activities or tasks to collect user data (Table 2). These
are typical basic activities with the smart watches that peo-
ple usually do in their daily lives [14]. The user activities/
tasks are categorized in two categories as generic activities
and user related activities.

Generic activities are the activities in which the sensor
readings are not affected by the smart device users. Sleeping
wearing smart watch, driving with the smart watch using
GPS as a navigator, and driving with smart watch in hand
are three generic activities that were considered in this
work. Basically, in the generic activities, sensors’ data are
not affected by different users since users do not interact
with the smart watch directly. For example, if a user is
sleeping, sensors activity will be irregular depending on
sleeping pattern. There will be less movement detected in
the device and sensor data will be changed accordingly. For
user-related activities, in which the sensor readings may be
affected by the user, we identified four different activities

including walking, playing games, browsing, and making
voice calls via smart watch.

For implementing and evaluating the performance of
6thSense on smartphone, we chose Samsung Galaxy S5 Duos
with Android OS version 7.1.2 (Android N) which provides
a broad range of sensors. Samsung currently holds approxi-
mately 23.3 percent of total market share of smartphones [53]
and is the largest Android operated smartphone manufac-
turer which motivates to implement 6thSense on Samsung
smartphone. In addition to user activities used in the smart
watch data collection, we considered two more user-related
activities (walking with the device in pocket/bag and mak-
ing video calls) for testing 6thSense on the smartphone.

6thSense was tested by 100 different individuals (50
smart watch users and 50 smartphone users) while the sen-
sor data was collected from the smart watch and the smart-
phone. We note that our study with human subjects was
approved by the appropriate Institutional Review Board
(IRB) and we followed all the procedures strictly in our
study. To train and test 6thSense on the smart watch, we
collected 200 sets of data for four user-related activities
for the smart watch where each dataset comprised of
300 seconds of data from the selected sensors mentioned in
Section 6. We also collected three sets of data for each gen-
eral activity. We asked the different users to perform the
same activity to ensure the integrity for different tasks. We

TABLE 1
Sensor List of LG Watch Sport and Samsung Galaxy S5 Duos Smartphone Used in Experiment

Sensor type Name Model (Smart Watch j Smart Phone) Specification (Smart Watch j Smart Phone)

No-permission

imposed sensors

Accelerometer Bosch BMI160 Acceleration Sensor j
MPU6500 Acceleration Sensor

78.4532m=s2, 417.67 Hz, 0.01 mA j 19.6133m=s2,

203.60 Hz, 0.25 mA

Gyroscope Bosch BMI160 Gyroscope Sensor j
MPU6500 Gyroscope Sensor

17.453293 rad/s, 31.95 Hz, 0.01 mA j 8.726646 rad/s,
203.60 Hz, 6.1 mA

Light Sensor APDS-9306 Light Sensor j TMG399X

RGB Sensor

30000 lux, 5 Hz, 0.11 mA j 600000 lux, 5.62 Hz,

0.75 mA

Proximity Sensor LGWear Detection Sensor j
TMG399X proximity sensor

1V, 0.15 mA j 8V, 0.75 mA

Permission-imposed

sensors

Microphone Qualcomm Snapdragon Wear 2100 built

in microphone j Qualcomm Snapdragon

801 Processor built in microphone

120 dB, .12 mA j 86 dB, .75 mA

Speaker Qualcomm Snapdragon Wear 2100 built

in speaker j Qualcomm Snapdragon 801

Processor built in speaker

90 dB, .18 mA j 110 dB, 1 mA

Camera N/A j Samsung S5K2P2XX N/A j 12 megapixels, 30 fps, 4.7 mA

TABLE 2
Typical Activities of Users on a Smart Device [14]

Task Category Task Name

Generic Activities 1. Sleeping
2. Driving as driver
3. Driving as passenger

User-related Activities 1. Walking with smart watch in hand
2. Playing games
3. Browsing
4. Making phone calls
5. Walking with device in pocket/bagy

6. Making video callsy

y Only considered for smart phone.
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also asked the users to perform the tasks naturally without
any influence of the lab environment. Users performed
these tasks in a real-life workplace and outdoor in a natural
environment. Additionally, users chose their preferred
place, walking routes, and apps in the entire data collection
process. For example, to collect data in walking scenario,
users chose their preferred walking routes both inside their
workplace and outside environment. Note that each five
minutes of the data collected for user-related and generic
activities corresponds to 300 events with 512 different
states. So, a total of 153,600 different event-state information
were analyzed by 6thSense for a user activity. For testing
6thSense on a smartphone, we collected data from 50 differ-
ent individuals for nine different activities. We considered
nine different sensors to build the context-aware model and
each dataset depicted 300 events with 1,024 different states
and a total of 307,200 event-state information [12].

For the malicious dataset, we created three different
attack scenarios considering the adversarymodel mentioned
in Section 4. For Threat 1, we developed two different
Android Apps which could be triggered using the light
sensor and motion sensors on the smart watch. We also
created the same malicious Android app for the smart
phone. To perform the attack described in Threat 2, we
developed a malware that could record conversations as
audio clips and playback after a specific time to leak the
information. This attack scenario included both the micro-
phone and speaker on the smart watch and smart phone. We
developed another version of this app which could record
conversations as audio clips in smartphone using a con-
nected smart watch. Also, for Threat 3, we developed a
malicious App that could scan all the sensors and if none of
the sensors were changing their working conditions, the
malicious App could open up the microphone and record
audio clips surreptitiously. For Threat 3, we developed
another version for smart devices with camera (e.g., smart-
phone) where a malicious App can scan all the sensors of a
device and if device was inactive, the malicious App could
activate camera and record videos covertly. We developed
an updated version of this attackwhich could start recording
via microphone in a smart watch if the connected smart-
phone was inactive. This version of the app could bypass the
security feature introduced on Android P [54]. In summary,
we created 10 different malware that could perform mali-
cious activities in Android-powered smart phone and smart
watch. We collected 18 different datasets (a total of 62,850
event-state information) from these three attack scenarios to
test the efficacy of 6thSense against these adversaries in a
smart watch.

In order to test 6thSense, we divided the collected real
user data into two sections as it is a common practice [55].
75 percent of the collected benign dataset was used to train
the 6thSense framework and 25 percent of the collected data
along with malicious dataset were used for testing pur-
poses. For the Markov Chain-based detection technique, the
training dataset was used to compute the state transitions
and to build the transition matrix. On the other hand, in the
Naive Bayes-based detection technique, the training dataset
was used to determine the frequency of sensor condition
changes for a particular activity or task. As noted earlier, for
the smart watch, there were seven activities for the Naive
Bayes technique. We split the data according to their activi-
ties for this approach. For the analysis of the other ML-
based approaches, the data in benign and malicious classes
were used to train and test 6thSense using 10-fold cross
validation for different ML algorithms.

7.2 Performance Metrics
In the evaluation of 6thSense, we utilized the following six
different performance metrics: Recall rate (sensitivity or
True Positive rate), False Negative rate, Specificity (True
Negative rate), False Positive rate, Accuracy, and F-score.
True Positive (TP) indicates number of benign activities that
are detected correctly while true negative (TN) refers to the
number of correctly detected malicious activities. On the
other hand, False Positive (FP) states malicious activities
that are detected as benign activities and False Negative
(FN) defines number of benign activities that are catego-
rized as malicious activity. F-score is the performance met-
ric of a framework that reflects the accuracy of the
framework by considering the recall rate and specificity.
These performance metrics are defined as follows:

Recall rate ðTP RateÞ ¼ TP

TP þ FN
; (14)

False negative rate ¼ FN

TP þ FN
; (15)

Precision rate ðTN rateÞ ¼ TN

TN þ FP
; (16)

False positive rate ¼ FP

TN þ FP
; (17)

TABLE 3
Performance Evaluation of Markov Chain Based Model

Smart Watch Smart Phone

Thresholdy Recall FN Precision FP Accuracy F-score Recall FN Precision FP Accuracy F-score

0 0.66 0.33 1 0 0.77 0.79 0.62 0.38 1 0 0.68 0.76
1 0.77 0.22 1 0 0.85 0.87 0.86 0.14 1 0 0.88 0.92
2 0.88 0.11 1 0 0.92 0.94 0.96 0.04 1 0 0.96 0.97
3 0.97 0.02 0.98 0.01 0.97 0.98 0.98 0.02 1 0 0.98 0.98
5 0.99 0.001 0.89 0.11 0.96 0.94 1 0 0.9 0.1 0.98 0.94
6 1 0 0.84 0.16 0.95 0.92 1 0 0.8 0.2 0.96 0.89

y Number of consecutive malicious state is considered as threshold.
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Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
; (18)

F � score ¼ 2 �Recall rate � Precision rate

Recall rateþ Precision rate
: (19)

In addition to the aforementioned performance metrics, we
considered Receiver Operating Characterstic (ROC) curve
and Precision Recall Curve (PRC) as other performance
metrics for 6thSense. As our collected dataset is imbalanced
(number of benign events is higher than the malicious
events), the accuracy of the framework can be influenced by
the dataset. To address data imbalance problem in 6thSense,
we used PRC as a performance metric which considers data
imbalance and reflects the base-rate fallacy correctly [56].

7.3 Evaluation of Markov Chain-Based Detection
In the Markov Chain-based detection technique, we ques-
tion whether the transition between two states (sensors’ on/
off condition in each second) is expected or not. In the eval-
uation, we used 66 testing sessions in total for the smart
watch, among which 51 sessions were for the benign activi-
ties (both generic and user-related activities) and the rest of
the sessions were for the malicious activities. For evaluation
in the smartphone, we have 80 testing sessions in total (65
benign sessions). A session is composed of a series of sen-
sory context conditions where a sensory context condition is
the set of all available sensor conditions (on/off state) for
different sensors. As discussed earlier in Section 6, a sensor
condition is a value indicating whether the sensor data is
changing or not. In this evaluation, the sensory context con-
ditions were computed every one second. For Markov
Chain-based detection, we referred each sensory context con-
dition as state of the device of that particular moment.
6thSense provides both online and offline training method to
reduce performance overhead of the resource-constrained
devices. As the highest battery life is 430 mAh for LG watch
sport, training with different user data will consume more
power which will increase power-accuracy trade-off of our
framework; hence, we chose offline training method [57]. For
the test dataset, we used the transition matrix generated
from the training period to determine whether transition
from one state to another is malicious or not. We observed
that in real devices, sometimes some sensor readings would
be missed or real data would not be reflected due to hard-
ware or software imperfections. And, real malicious Apps
would cause consecutive malicious states on the device.
Therefore, to overcome this, we also kept track of number of
consecutive malicious states and used it as a threshold after
which the session was considered as malicious. Table 3 dis-
plays the evaluation results associated with the Markov
Chain-based detection technique. When the threshold for
consecutive malicious states is 0, i.e., when no threshold is
applied, the accuracy is just 77 percent and FNR is as high as
33 percent. With increasing the threshold value, the accuracy
first increases up to 97 percent then starts decreasing.

The logical cut-off threshold should be three consecutive
malicious occurrences which has both accuracy and F-score
over 97 percent. In Table 3, different performance indicators
for Markov Chain based detection are also presented. We
can observe that FN and TN rates of Markov Chain-based

detection decrease as the threshold of consecutive malicious
states increases. Again, both accuracy and F-score reach to a
peak value with the threshold of three consecutive mali-
cious states on the device. From Fig. 6, we can see that FP
rate remains zero while TP rate increases at the beginning.
The highest TP rate without introducing any FP case is over
88 percent. After 88 percent, it introduces some FP cases in
the system. For the cut-off threshold of three consecutive
malicious occurrences, TP rate of 6thSense increases over
97 percent with FP rates as low as 0.01 percent.

Table 3 also depicts evaluation of Markov chain model
on the smartphone. Similar to the smart watch, TP rate and
FP rate increase with consecutive malicious occurrences
and FN and TN decrease with the threshold on a smart-
phone. The plausible cut-off threshold should be three con-
secutive malicious occurrences which is the same for the
smart watch. The peak accuracy and F-score can be
achieved for this threshold value which is over 98 percent.
From Fig. 6, we can also notice that the highest possible TP
rate without introducing any FP cases is 98 percent. Fig. 6b
shows PRC curve for Markov Chain-based detection on
both the smartwatch and the smart phone. We can see that
for both the smart watch and the smartphone, area under
PRC are approximately 1 which is ideal result for our imbal-
anced dataset. In summary, Markov Chain-based detection
in 6thSense can acquire accuracy over 97 percent and
auPRC approximately 1 with low FP rates (1.43 percent) for
both the smart watch and the smartphone.

7.4 Evaluation of Naive Bayes-Based Detection
In the Naive Bayes-based detection technique, 6thSense
calculates the probability of a session to match it with each
activity defined in Section 7.1. Here, 6thSense checks the cal-
culated probability of an activity from dataset against a
threshold to determine the correct activity. If there is no
match for a certain sensor condition with any of the activi-
ties, 6thSense detects the session as malicious. Table 4
shows the evaluation results.

For the smart watch, for a threshold value of 55 percent,
FN rate is zero. However, FPR is too high (47 percent),
which lowers F-score of the framework. For a threshold of
60 percent, FPR decreases while FNR is still zero. In this
case, accuracy is 97 percent and F-score is 80 percent. If the
threshold is increased over 65 percent, it reduces the recall
rate which affects accuracy and F-score. The evaluation
indicates that the threshold value of 60 percent provides an
accuracy of 97 percent and F-score of 80 percent. Also, From
Fig. 6, one can observe the relation between FPR and TPR of
Naive Bayes-based detection. For FPR larger than 0.33, TPR
becomes 1.

For Naive Bayes-based detection on the smartphone, we
considered nine activities in total (three general
activities and six user-related activities) [12]. From Table 4,
we can observe that TP rate FP rates decrease with the
threshold value while FN and TN increase. When the
threshold is 60 percent, the peak accuracy (95 percent) and
F-score (82 percent) are achieved for the smartphone. Preci-
sion-Recall curve for Naive Bayes model is given in Fig. 6d.
We can notice that PRC curve is more irregular compared to
Markov Chain-based approach. Calculated auPRC for
Naive Bayes-based approach is 0.7 for the smart watch and
the smartphone, both of which indicate less efficient method
for imbalanced dataset.
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7.5 Evaluation of Alternative Detection Techniques
In alternative detection techniques, we used other supervised
machine learning techniques to train the 6thSense framework
for both the smart watch and the smart phone. For this, we
utilized WEKA and it provides three types of analysis - split
percentage analysis, cross-validation analysis, and supplied
test set analysis. We chose 10 fold cross-validation analysis to
ensure that all the data was used for both training and test.
Thus, the error rate of the predictive model would be mini-
mized in the cross validation. In Table 5, a detailed evalua-
tion of different machine learning algorithms is given for
6thSense. For Rule Based Learning, 6thSense has the best result
for PART algorithm, which has an accuracy of 0.98 and
F-score of 0.80. On the other hand, for Regression Analysis, we
use the logistic function which has high FPR (0.65) and lower
F-score (0.49). Multilayer Perceptron algorithm gives an accu-
racy of 0.9878 and F-score of 0.80, which is higher than previ-
ously mentioned algorithms. However, FPR is much higher
(0.35), which is actually a limitation for intrusion detection
frameworks in general. Compared to these algorithms, Linear
Model Tree (LMT) gives better results in detecting sensor-
based attacks. This evaluation indicates that LMT provides
an accuracy of 0.99 and F-score of 0.972 for the smart watch.

From Table 5, one can also see performance of different
machine learning algorithms in 6thSense on a smartphone.
Here, LMT achieves the highest accuracy and F-score of
0.99 and 0.96, respectively. Multilayer Perception algorithm
also performs well with F-score of 0.82. However, false posi-
tive rate is high in this algorithm which decreases the per-
formance. In summary, LMT works efficiently in both the
smart watch and the smart phone.

7.6 Comparison of Detection Methods
In this section, we give a comparison among the different
machine learning-based detection approaches tested in
6thSense for defending against sensor-based threats on the
smart watch and the smartphone. For all the approaches,

we select the best possible case and report their perfor-
mance metrics.

Table 6 depicts comparison among different detection
approaches on the smart watch. For Markov Chain-based
detection, we chose three consecutive malicious states as
valid device conditions. On the other hand, in Naive Bayes
approach, the best performance is observed for the thresh-
old of 60 percent. For other machine learning algorithms
tested via WEKA, we chose LMT as it gives highest accu-
racy among other machine learning algorithms. These
results indicate that both Markov Chain and LMT provide
high accuracy and F-score compared to the Naive Bayes-
based approach.

On the contrary, Naive Bayes model displays higher
recall rate and less FNR than other approaches. However,
the presence of FPR in IDS is an issue to the system since
FPR refers to a malicious attack that is identified as a valid
device state. Both Markov Chain and LMT has lower FPR.
Again, as our dataset is imbalanced (number of benign
activities is higher than malicious activity), we chose auPRC
as one of the performance metric of 6thSense. From Table 6
we can see that Markov Chain-based detection has the high-
est auPRC (0.926) followed by LMT (0.892) and Naive Bayes
(0.646). In summary, considering F-score, accuracy, and
auPRC of all three approaches, we conclude that Markov
Chain and LMT both performs effectively for 6thSense.

In Table 6, we present a comparison of different machine
learning-based detection techniques used in 6thSense on the
smartphone. Again, we chose the best possible (Markov
Chain, Naive Bayes, and LMT) cases for all of the
approaches and compare them in Table 6. Similar to results
in the smart watch, threshold for Markov Chain-based
detection is three consecutive malicious state. For Naive
Bayes-based detection, best performance can be observed
for 60 percent threshold probability. From Table 6, we can
observe that Markov Chain and LMT performs with high
accuracy and F-score compared to Naive Bayes-based

TABLE 4
Performance Evaluation of Naive Bayes Model

Smart Watch Smart Phone

Thresholdy Recall FN Precision FP Accuracy F-score Recall FN Precision FP Accuracy F-score

55% 1 0 0.53 0.47 0.96 0.69 1 0 0.6 0.4 0.93 0.75
57% 1 0 0.6 0.4 0.96 0.75 1 0 0.7 0.3 0.95 0.82
60% 1 0 0.67 0.33 0.97 0.80 1 0 0.7 0.3 0.95 0.82
62% 0.96 0.04 0.67 0.33 0.94 0.79 1 0 0.7 0.3 0.95 0.82
65% 0.89 0.11 0.67 0.33 0.87 0.76 0.94 0.06 0.7 0.3 0.9 0.80
67% 0.86 0.14 0.67 0.33 0.85 0.75 0.88 0.12 0.7 0.3 0.85 0.78

y Calculated expected probability is considered as threshold.

Fig. 6. ROC curve and PRC curve of different detection techniques on smart watch (—–) and smart phone (—–).
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approach. Naive Bayes model also introduces high FP rate
(0.3) which indicates poor performance for IDS. On the con-
trary, Markov Chain and LMT shows lower FP rate (0 and
0.0694 respectively). Again, from Fig. 6d, we can observe
that Naive Bayes model has low auPRC compared to Mar-
kov Chain-based detection in Fig. 6b. LMT also has high
auPRC (0.91) which is suitable for our imbalanced dataset.
In summary, both Markov Chain and LMT performs well
for 6thSense on the smart phone with high accuracy,
F-score, and auPRC.

7.7 Performance Overhead
As previously mentioned, 6thSense collects data in an
Android device from different sensors (permission and no-
permission imposed sensors). In this sub-section, we mea-
sure the performance overhead introduced by 6thSense on
the tested Android devices (smart watch and smartphone)
in terms of CPU usage, RAM usage, file size, and power
consumption. Tables 7, 8, and 9 give the details of the per-
formance overhead of 6thSense on the smart watch and the
smartphone.

For no permission-imposed sensors, the data collection
phase logs all the values within a time interval which causes
an increased usage of RAM, CPU and Disc compared to per-
mission-imposed sensors. For the power consumption, we
observe that no permission-imposed sensors use higher
power than permission-imposed sensors. This is mainly
because permission-imposed sensors are logic-oriented and
have lower sampling rate, which reduces its resource needs.
The overall performance overhead is as low as 5.5 percent of
CPU, less then 17 MB RAM space, and less than 10 MB disc
space for the smart watch. Compared to the smart watch,

performance overhead for the smartphone is higher because
of higher number of sensors. Nevertheless, smartphone
offers more resources (CPU speed, RAM size, disc size) than
the smart watch which minimizes the effect of performance
overhead. Performance overhead for the smartphone is as
low as 3.9 percent, less than 6.5 MB RAM space, and less
than 12MB disc space. Thus, 6thSense’s overhead is minimal
and acceptable for an IDS system on current smart devices.
One of the main concerns of implementing 6thSense on
smart device is the power consumption.

Table 7 also shows the power consumption of the
Android app used in 6thsense. For one minute, 6thsense
consumes 10.5 mW power which increases upto 78.4 mW
for ten minutes on a smartwatch. For a smartphone,
6thSense consumes upto 133.33 mW power for ten minutes.
The main reason of this high power consumption is that all
the sensors are kept on for the data collection and all the
data are saved on device for later analysis. To mitigate
power-performance trade-off, in practical settings, the data
are not saved on device rather a real-time analysis is done,
which indeed decreases the power consumption. Without
saving the data, the power consumption significantly
becomes smaller. From Table 7, we can observe that the
power consumption of 6thSense becomes 32.56 mW which
is almost 2 times lower than otherwise on a smartwatch.
For real-time analysis, power consumption of 6thSense
decreases 2.4 times on the smartphone. As all the sensors do
not have to remain on for the analysis part, data can be
observed if the smart device is in unlocked status to lower
the power consumption.

TABLE 5
Performance of Other Different Machine Learning Based-Detection Techniques Tested in 6thSense

Smart Watch Smart Phone

Algorithms Recall FN Precision FP Accuracy F-score Recall FN Precision FP Accuracy F-score

PART 0.98 0.012 0.69 0.30 0.98 0.80 0.99 0.01 0.65 0.35 0.99 0.79
Logistic Function 0.99 0.01 0.35 0.65 0.97 0.49 0.99 0.01 0.28 0.72 0.99 0.43
J48 0.99 0.01 0.71 0.29 0.99 0.81 0.99 0.01 0.65 0.35 0.99 0.79
LMT 0.99 0.01 0.95 0.05 0.99 0.97 0.99 0.01 0.93 0.07 0.99 0.96
Hoeffding Tree 1 0 0.07 0.93 0.99 0.12 1 0 0.06 0.94 0.99 0.11
Multi-layer Perceptron 0.99 0.01 0.65 0.35 0.98 0.81 0.99 0.01 0.69 0.31 0.99 0.82

TABLE 6
Comparison of Different Machine-Learning-Based Approaches

Proposed for 6thSense on Smartwatch and Smartphone
(i.e., Markov Chain, Naive Bayes, and LMT)

Performance
Metrics

Markov Chain
(Smart Watchj
Smart Phone)

Naive Bayes
(Smart Watchj
Smart Phone)

LMT (Smart
Watchj Smart

Phone)

Recall rate 0.9770 j 0.98 1 j 1 0.9998 j 0..998
False Negative
Rate

0.0230 j 0.02 0 j 0 0.0002 j
0.0002

Precision rate 0.9857 j 1 0.67 j 0.7 0.9458 j
0.9306

False positive
rate

0.0143 j 0 0.33 j 0.3 0.0694 j 0.07

Accuracy 0.9795 j 0.9833 0.9720 j 0.9492 0.998 j 0.9997
F-Score 0.9813 j 0.9899 0.80 j 0.8235 0.972 j 0.964
auPRC 0.926 j 0.947 0.646 j 0.686 0.892 j 0.91

TABLE 7
Performance Overhead of Data Collection

Parameters Time No-permission
imposed

sensors (Smart
Watchj Smart

Phone)

Permission-
imposed

sensors (Smart
Watchj Smart

Phone)

CPU Usage N/A 5.5% j 3.9% 2.5% j 0.3%
RAM Usage(MB) N/A 17 j 23 11 j 14
Disc Usage (MB) 1 min 4 j 6.5 0.001 j 0.001

5 min 7.5 j 9 0.001 j 0.002
10 min 10 j 12 0.001 j 0.003

Power
Consumption
(mW)

1 min 10.5 j 13.5 2 j 3.12
5 min 45.6 j 96.67 16.5 j 27.4
10 min 78.4 j 133.33 27 j 45

Power
Consumption
(without data file)

1 min 1.32 j 2.68 0.1 j 0.23
5 min 8.7 j 23.4 2 j 9.63
10 min 32.56 j 55.35 9 j 17
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Moreover, for the data analysis phase of 6thSense, we also
implemented Markov Chain, Naive Bayes, and LMT-based
detection methods on the Android smartphone and smart
watch. Table 8 shows the performance overhead of different
detection techniques used in 6thSense on a smart watch. All
three detection techniques yield less than 2 percent CPU
usage and 10 MB of RAM usage. Note that we consider the
disc usage as a performance overhead for the data analysis
phase since results can be stored for further performance
evaluation of the framework. Our extensive evaluation
shows that the disc usage for the data analysis of 6thSense
is less then 1 MB in all the three detection methods for
5 minutes of analysis. Table 8 also provides the power
consumption of different detection techniques of 6thSense.
We can observe that the power consumption of the data
analysis phase is comparatively lower (less than 5 mW)
than the data collection phase of 6thSense. Finally, Table 9
shows performance evaluation of different detection tech-
niques of 6thSense on an Android operated smartphone.
6thSense performs with minimum overhead with less than
3 percent CPU usage, 17 MB RAM usage, and 2 MB of disc
usage. Power consumption in the smartphone is also as low
as 6 mW for different detection techniques implemented on
6thSense. In summary, different detection methods used in
6thSense offer lower performance overhead in the system.

7.8 Power-Efficiency Trade-Off
One major concern of implementing a security framework
in smart devices is power-efficiency trade-off. As smart
devices such as smart watch and smart phone are resource
constrained devices, an efficient security framework should
work accurately with limited resources. 6thSense uses all
the available sensors in a device to understand the state of
the device and detects sensor-based threat based on state
transition model. This can be a drawback in terms of power
consumption of the device. To address this limitation, we
performed a power-frequency trade-off study to determine
the working condition of 6thSense in real-life settings.

According to Nielsen, average American adult spends
around 3 hours everyday on their smartphone [58].

We consider this as an average time that 6thSense has to
run to detect any sensor-based threats in a smart device. In
Figs. 7a and 7b, we illustrate the average power consumption
graph for 6thSense with different scanning frequency in a
smartphone and a smart watch, respectively. One can notice
that 6thSense consumes 310 mW power for scanning contin-
uously for 3 hours in a smart phone (Fig. 7a). Average power
consumption lowers to 234 and 174 mW with 5s and 15s
time interval respectively. For smart watch, highest average
power consumption for 6thSense is 220 mW for continuous
scan. Average power consumption becomes as low as 174
mW and 148 mW for 5s and 15s time interval respectively.

7.9 Discussion and Limitations

� Sensor-based threats in real-life settings: One limitation
of 6thSense is the adversaries (sensor-based attacks)
used in the evaluation were constructed in a lab-
environment. Note that as of this writing there are no
real sensor-based malware in the wild. However, many
independent researchers have confirmed the feasibility
of sensor-based threats for smart devices [18]. Indeed,
more recently, ICS-CERT also warned the vendors and
the wider communities about the possibility of exploit-
ing the sensors of a device to alter sensors output in a
controlled way to perform malicious behavior in the
device [10]. Google also acknowledges the sensor-based
threats by restricting sensor access for background apps
in version of Android [54]. To understand the sensor-
based threats and limitation of existing solutions, we
built the proof-of-concept versions of the sensor-based
threats discussed in Section 4. We also note that to
ensure the reliability of the malware (i.e., specific mali-
cious Apps) for the threats described in Section 4, we
checked how they perform with respect to the real
malicious software scanners. For this, we uploaded our
malware on VirusTotal and tabulated the results of the
performance of 60 different malware scanners available
at the VirusTotal website in Table 10. As seen in this
table, the sensor-based threats are not recognized by
the different scanners. In conclusion, current malware
scanners are not aware of these threats yet and our malware
can be reliably used to test the efficiency of 6thSense.

� Power monitoring app: Different smartphone and
smart watch vendors offer power monitoring apps
which monitor running apps (both background and
foreground apps) and minimize the power con-
sumption of the device. For example, Samsung
provides a power monitoring app that prevents

TABLE 8
Performance Overhead of the Data Analysis Phase in

6th Sense on Smart Watch

Parameters Markov
Chain

Naive
Bayes

LMT

CPU Usage 1% 1.5% 1%
RAMUsage 6 MB 10 MB 10 MB
Disc Usage (For 5 Min) <1 MB <400 kB <400 kB
Power Consumption
(For 5 min)

1 mW 2 mW 2.5 mW

TABLE 9
Performance Overhead of the Data Analysis Phase in

6thSense on Smartphone

Parameters Markov
Chain

Naive
Bayes

LMT

CPU Usage 1.2% 2.5% 1%
RAMUsage 12 MB 15 MB 17 MB
Disc Usage (For 5 Min) <2 MB <1 MB <1 MB
Power Consumption
(For 5 min)

4.5 mW 6 mW 3 mW

Fig. 7. Power-frequency for (a) smart watch and (b) smartphone.
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background apps to drain power. Power monitoring
apps activate sleep mode which disables the
updates and notifications for the inactive apps.
This conflicts with the malicious apps described
in Section 7.1. However, the power monitoring
app only works when the app is in the back-
ground. If a foreground app has malicious sensor
logic, it can easily bypass the power monitoring
app and initiate an attack. As power monitoring
apps restrict important updates (e.g., messages
from text apps, alarm apps, etc.), users can turn-
off or modify this feature for convenience [59].
Moreover, the smart watches do not have any
power monitoring option which makes them vul-
nerable to sensor-based threats. In summary, power
monitoring app can restrict sensor-based threats to
some extent, but can not nullify them entirely.

� New OS feature: Recently, Android introduced a new
version of OS (Android P) which restricts camera and
microphone usage if an app runs in the background.
This feature certainly acknowledges the sensor-based
threats and restricts sensor misuse in a smartphone.
However, Android P only eliminates one threat
model described in Sections 4 and 7.1. Different mali-
cious apps can still access other sensors in the back-
ground and perform multiple malicious activities. As
explained in Section 7.1, Threat Model-1 uses motion
and light sensors which does not have any conflict
with Android P. Threat Model-2 uses the microphone
of a connected smart watch which bypasses the secu-
rity feature of Android P. Threat Model-3 triggers the
camera of a smartphone if all the other sensors are
inactive. Here, the malicious app opens the camera in
the foreground which is allowed by Android P. We
developed an updated version of this attack which
could start recording via microphone in a smart
watch if the connected smartphone was inactive and
thus, bypass the security feature of Android P. Again,
Android P only nullifies the threat if the app is
installed in a smart phone. A malicious app installed
in a smart watch can trigger the camera of a smart
phone without any restriction. Also, only 1 percent of
Android-powered devices support Android P cur-
rently whichmakes majority of the devices vulnerable
to sensor-based threats using camera or microphone
surreptitiously [60]. In short, even with the introduction
of the new OS, sensor-based threats can still affect normal
operations of the smart devices.

� Optimum scanning frequency: As smart devices are
resource-constrained devices, an optimum scanning
frequency is needed for 6thSense to lower the power
consumption of the device. In Section 7.8, we illustrated
that by scanning the sensors in fixed intervals (15s) and
unlocked states, power consumption can be lowered
by approximately 43 percent. However, some sensor-

based threats can bypass the lock state and perform
malicious activities in smart devices. To address this
limitation, 6thSense can use the context-aware model to
detect the lock state of the device and monitor limited
sensors to minimize the power consumption. As
Android P is restricting some sensors (microphone and
camera), 6thSense can use this feature and select limited
sensors to scan in the locked state. In short, performance
of 6thSense can be configured in terms of power consumption
by selecting optimum scanning frequency and combining
with existing permission model of OS.

8 CONCLUSION

Wide utilization of sensor-rich smart devices created a new
attack surface namely sensor-based attacks. Accelerometer,
gyroscope, light, etc. sensors can be abused to steal and leak
sensitive information or malicious Apps can be triggered via
sensors. Security in current smart devices lacks appropriate
defense mechanisms for such sensor-based threats. In this
paper, we presented 6thSense, a novel context-aware task-
oriented sensor-based attack detector for smart devices. We
articulated problems in existing sensor management systems
and different sensor-based threats for smart devices. Then,
we presented the design of 6thSense to detect sensor-based
attacks on sensor-rich smart devices (smartwatch and smart-
phone) with low-performance overhead. 6thSense utilized
different machine learning (ML) techniques to distinguish
malicious activities from benign activities on a device. To the
best of our knowledge, 6thSense is the first comprehensive
context-aware security solution against sensor-based threats.
We evaluated 6thSense on real devices with 100 different
individuals. 6thSense achieved over 97 percent of accuracy
with different ML algorithms including Markov Chain,
Naive Bayes, and LMT. We also evaluated 6thSense against
three different sensor-based threats, i.e., information leakage,
eavesdropping, and triggering a malware via sensors. The
empirical evaluation revealed that 6thSense is highly effec-
tive and efficient at detecting sensor-based attacks while
yielding minimal overhead.
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