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CPS Device-Class Identification via Behavioral
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Abstract— Cyber-Physical Systems (CPS) utilize different
devices to collect sensitive data, communicate with other sys-
tems, and monitor essential processes in critical infrastructure
applications. However, in the ecosystem of CPS, unauthorized
or spoofed devices may danger or compromise the performance
and security of the critical infrastructure. The unauthorized and
spoofed devices may include tampered pieces of software or
hardware components that can negatively impact CPS operations
or collect vital CPS metrics from the network. Such devices
can be outsider or insider threats trying to impersonate other
real CPS devices via spoofing their legitimate identifications to
gain access to systems, steal information, or spread malware.
Device fingerprinting techniques are promising approaches to
identify unauthorized or illegitimate devices. However, current
fingerprinting solutions are not suitable as they disrupt critical
real-time operations in CPS due to the nature of their extensive
data analysis or too much overhead on the devices’ computational
resources. To address these concerns, in this work, we propose
STOP-AND-FRISK (S&F), a novel fingerprinting framework to
identify CPS device classes and complement traditional security
mechanisms in CPS. S&F is based on a secure challenge/response
mechanism that analyzes the behavior of the CPS devices at both
the hardware and OS/kernel levels. Specifically, the proposed
novel mechanism combines system and function call tracing tech-
niques, signal processing, and hardware performance analysis to
create specific device-class signatures. Then, the signatures are
correlated against known behavioral ground-truth to identify the
device types. To test the efficacy of S&F extensively, we imple-
mented a realistic testbed that included different classes of CPS
devices with a variety of computing resources, architectures,
and configurations. Our experimental results reveal an excellent
rate on the CPS device-class identification. Finally, extensive
performance analysis demonstrates that the use of S&F yields
minimal overhead on the CPS devices’ computing resources.

Index Terms— Cyber-physical systems, device-class finger-
printing, correlation, system calls, function calls, hardware
performance.

I. INTRODUCTION

AT THE core of the Cyber-Physical Systems (CPS) (e.g.,
transportation systems, smart grid, gas and oil plants),

devices such as Remote Terminal Units (RTUs), Program-
mable Logic Controllers (PLCs), and Intelligent Electronic
Devices (IEDs) are utilized to collect sensitive data from
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Fig. 1. Sample CPS critical infrastructure network under attack via spoofed
IDE devices. The spoofed devices as well as the compromised communication
links are marked in red.

the infrastructure, provide two-way communication capa-
bilities, and monitor the health of the CPS operations in
real-time [1]–[3]. However, these devices also present an
opportunity for attackers to have access to sensitive informa-
tion and the critical CPS infrastructure [4]–[6]. For instance,
insiders can impersonate real CPS devices via spoofing attacks
to gain access to the systems, steal information, make other
devices in the network to behave erratically, or spread malware
(Figure 1) [7]–[11]. Also, illegitimate CPS devices may have
installed unauthorized pieces of software and hardware that
could degrade the performance of the devices and compromise
the integrity of the CPS network. Recent studies demonstrate
that compromised manufacturing stages within the supply
chain may facilitate malicious manipulation and modification
of CPS devices’ components to deliver a downgraded product
to the critical infrastructures [12].

Protecting against such attacks stemming from spoofed or
unauthorized devices can be very challenging, considering the
size and complexity of the CPS infrastructure. For instance,
an attacker may use spoofed devices with software and hard-
ware architectures very similar to real devices to increase the
chances of stealthy malicious operations. In fact, the spoofed
devices can perform the attacks while mimicking real
CPS operations. Also, devices with unauthorized components
are often capable of supporting most of the CPS operations,
but are prone to under-performance and failure when in charge
of more demanding and critical tasks. In these scenarios,
device fingerprinting techniques are suitable to identify origi-
nal devices and discriminate them from the unauthorized and
the spoofed devices. However, current fingerprinting solutions
either require extensive analysis of network packets and device
features or study the behavior of very dynamic network
metrics [11], [13]–[17]. Thus, in most cases, these solu-
tions introduce significant overhead to devices and systems,
putting the execution of critical time-sensitive CPS tasks at
risk.
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A. Goals and Contributions

In this paper, we address these challenges by proposing
STOP-AND-FRISK (S&F),1 a novel signature-based fingerprint-
ing framework intended to perform CPS device-class identifi-
cation and complement other traditional security mechanisms
in the CPS infrastructure. Specifically, the proposed approach
combines system and function call tracing techniques, signal
processing, and hardware performance analysis on the devices
to implement a secure challenge/response-based fingerprinting
solution. By using this approach, S&F studies the behavior
of the devices within a CPS infrastructure, focusing on their
software/hardware architecture and configuration to identify
real CPS devices and discriminate them from unauthorized
and spoofed devices. The benefits of S&F are two-fold.
First, it combines a secure challenge-response approach with
signature-based fingerprinting techniques to identify spoofed
devices in the field. Second, it studies the performance of
CPS devices to detect devices with degraded software and
hardware that could compromise the CPS’s critical operations.
To test the efficacy of S&F, we implemented a realistic testbed
containing different classes of CPS devices with different
resources (i.e., memory and CPU), architectures, computing
capabilities, and configurations. Our extensive experimental
results demonstrate that, by combining OS/kernel behavioral
analysis and hardware performance analysis, S&F achieves an
excellent rate in the identification of the CPS device classes.
Finally, S&F yielded minimal overhead to the CPS devices’
computing resources.

The contributions and summary of this work are as follows:
• Novel Features for CPS Behavioral Analysis: We pro-

posed a novel combination of features to study the
behavior of CPS devices. These features are related to
the OS/kernel and hardware performance behaviors of the
devices.

• STOP-AND-FRISK : We designed a novel and lightweight
signature-based fingerprinting approach that performs
CPS device-class identification. The proposed frame-
work combines system and function call information,
signal processing, and hardware performance analysis to
perform the identification of spoofed and unauthorized
devices in the CPS network.

• Realistic End-to-End Implementation: We proposed and
tested a secure end-to-end deployment mechanism
for S&F using a realistic CPS testbed that includes
11 different classes of CPS devices with varying resources
and configurations.

• High Performance: Our performance evaluation proved
that the proposed framework achieves very high accuracy
while introducing minimal overhead in the utilization of
the computing resources available in the CPS devices.

B. Organization

In Section II, we present background information on the
classification of CPS devices based on their behavior. Then,
in Section III, we define the problem and present the threat
model. Section IV details the architecture of S&F and dis-
cusses its main components and analysis approaches. Further,

1The term STOP-AND-FRISK makes reference to the architectural prin-
ciples of the proposed fingerprinting mechanism and does not constitute an
endorsement to any law enforcement practice.

Section V presents implementation and deployment details
of S&F. Then, in Section VI, we present and evaluate the
experimental results. We discuss the performance of S&F
under different compromised scenarios in Section VII. Finally,
in Section VIII we discuss the related work and Section IX
concludes the paper.

II. BACKGROUND INFORMATION

A. Cyber-Physical Systems

Cyber-Physical Systems (CPSs) permit the integration of
virtual and physical processes. In this context, the physical
domain refers to capabilities that act over physical objects.
On the other hand, the virtual domain constitutes the set
of software and embedded systems intended to guarantee
two-way communications, monitor the realization of the phys-
ical processes, and provide control [18]. In general, one can
characterize CPSs networks by using the following features:
• Type of Task Performed: Depending on the specific

application and their logical location inside the CPS
architecture, the type of task performed by CPS devices
may range from just a simple service generated by a
local host device to an essential component of a more
complex and centralized process. In any case, individual
CPS processes are assumed to be simple, deterministic,
and very specific actions that support the entire system
in a distributed topology [19].

• Resource Availability: The total amount of available
computing resources to perform CPS processes depends
on the type of device performing every particular task.
In general, we can group CPS devices into resource-rich
and resource-limited devices [8], [20]. Resource-limited
devices have simple hardware (e.g., single-core CPU and
limited memory) and software architecture that allows
for the execution of simple, specific tasks. On the other
hand, resource-rich devices have more complex Operating
System (OS) architecture and run with multi-core CPUs
and plenty of memory. These capabilities allow them to
execute more complex processes inside the CPS network.

• Timing Properties: As we noted before, one of the main
goals of the cyber domain in CPS is the monitoring and
control of physical processes, which is achieved through
rigorous timing control mechanisms. In general, temporal
behavior of CPS is expected to be precise, and should not
change too much over time [19].

B. Device-Class Identification

Traditionally, device-class classification has been performed
by considering the branch, model, specific device metrics
characteristics, and the activities the devices should perform
in the network [21]. S&F implements a more comprehensive
approach to identify types of devices in the network that also
considers (1) the device behavior at the OS or kernel level
and (2) its performance metrics at the hardware level. The
main advantage of an approach that includes behavior and
hardware performance into its analysis is that it allows for a
more secure identification approach that does not depend on
device characteristics or metrics that can be spoofed by savvy
(or even naive) attackers.

In this work, we consider the following features to define
specific classes of CPS devices:
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• Device Metrics: We use well-known metrics like device’s
branch, model, and expected functionality to perform
initial classification of the devices. The expected func-
tionality of the device mostly refers to the intended
application of the device based on the device charac-
teristics (e.g., routers and firewalls may be divided into
two different groups based on their unique application
and intended use). This preliminary analysis supports the
labeling process performed before evaluating S&F (more
details in Section V).

• Device Behavior: This feature characterizes the device
response to specific challenges at the OS and kernel
levels. S&F studies the device’s behavior based on the
collection of system and function calls triggered while
reacting to specific challenges.

• Device Performance: It characterizes the device’s
response to specific challenges at the hardware level.
S&F studies the device’s performance by evaluating the
device’s memory and CPU utilization as well as the appli-
cation execution time while reacting to specific challenges
or stimulants.

III. PROBLEM DEFINITION AND THREAT MODEL

This work assumes a CPS network N within a critical
infrastructure (i.e., the smart grid) that contains devices with
various functionalities and computational resources. First,
we consider that the supply chain that provides the devices
cannot be trusted and is assumed compromised during any
of the sourcing, manufacturing, assembling, packing, and
delivery processes. Hence, the devices being used in the
critical infrastructure may contain unauthorized pieces of
hardware and software that could either degrade their per-
formance, or execute malicious or unexpected functionali-
ties. At some point, a network administrator may install
a Programmable Logic Controller (PLC) device that was
manufactured with a low-cost Central Processing Unit (CPU).
The low-end CPU adds additional delays to the device capa-
bilities to react to inputs, which causes degradation to the
device’s performance and to the CPS network’s effectiveness
to respond to time-critical tasks [8]. Second, we consider that
external attackers may have the capability of inserting fake
(i.e., spoofed) devices into the network. These spoofed devices
have similar computing characteristics and can execute real
tasks with similar performance as legitimate devices. Also,
these devices are capable of malicious activities allowing the
attackers to gain unauthorized access to different regions of
the CPS network and its critical data. Mallory, an insider that
has access to the CPS network, could insert a spoofed device
(e.g., a BeagleBoard) that has been programmed using open
source IEC61850 libraries freely available online [22]. With
this device, Mallory can establish communications with real
CPS devices and implement GPS spoofing attacks [23].

A. Threat Model

This work considers an attacker (insider or outsider) capable
of inserting spoofed devices into a CPS infrastructure. The
unauthorized devices spoof real CPS devices and operations
to gain access to restricted areas of the network and perform
malicious activities. These malicious operations may include:

(1) stealing sensitive information, (2) poisoning physical mea-
surements, and (3) creating the conditions to facilitate new
types of attacks in the future. We do not consider insiders
that have access and can compromise original CPS devices
with the same hardware and software configurations used in
the field. Instead, we assume that attackers utilize spoofed
devices that mimic real CPS network operations to gain access
to the network. We also consider unauthorized or illegitimate
CPS devices that contain unauthorized software or hardware
added during any of the production stages (i.e., raw material
sourcing, manufacturing, assembly, testing, and delivery) of
the supply chain. The use of unauthorized hardware or soft-
ware may cause degradation to the device’s performance and
create unsafe states in the CPS critical infrastructure.

IV. HOST-BASED CPS DEVICE CLASS FINGERPRINTING

In this section, we overview STOP-AND-FRISK and present
the details about its modules and processes. S&F is a novel
and lightweight fingerprinting framework that uses a secure
challenge-response approach to extract behavioral data from
unknown CPS devices to create specific device signatures.
These signatures are then correlated with known device pro-
files for identification purposes. Specifically, we take advan-
tage of the fingerprinting and identification capabilities of S&F
to solve the problems above. First, as S&F considers device
performance into its analysis, we can identify devices that are
under-performing due to unauthorized hardware of software.
Second, the proposed fingerprinting framework can identify
spoofed CPS devices that either fail the challenge-response
process or that are incapable of generating the expected
signature. Finally, S&F’s capabilities support automated con-
figuration mechanisms for similar devices that share akin tasks
in the network.

A. Overview of STOP-AND-FRISK

Assume that there is a CPS critical infrastructure where
devices of different types interact to execute a task T . The
specific class of some of the devices in the setup is known
(i.e., Type A and Type B); however, an Unknown device is
also present. With S&F, the network operators may be able
to verify that (1) the devices in the critical infrastructure are
of the expected class (based on the specific tasks they are
executing) and (2) they may be able to identify unknown
devices and determine if they are authorized to be present
or not. Since most of the CPS devices perform time-critical
operations in the network, we envision our CPS device class
fingerprinting framework to become active at the device’s
patch- or maintenance-time (i.e., downtime). That way, S&F’s
operations would focus on individual devices and would put
minimal overhead on the systems. Such operations require the
interaction of two different services: a server-based remote
service (running from a remote server that monitors the CPS
environment) and a host-based local service (running on the
CPS devices).

Figure 2 depicts the general overview of the proposed
device-class fingerprinting framework. First, a scheduler run-
ning in the remote S&F’s server sends a secure request
containing a secret challenge to the unknown CPS device
(i.e., localhost) at downtime (①). Such a challenge imple-
ments the host-based local service that activates the Device
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Fig. 2. The architecture of STOP-AND-FRISK proposed to identify different
CPS device classes.

Feature Extraction module (②). This module is in charge
of running the secret challenge and extracting software- and
hardware-related data generated during the device’s reaction to
the challenge. Specifically, it hooks into the device’s activity
and extracts lists of system and function calls. Additionally,
the Device Feature Extraction monitors the performance of
the device regarding CPU utilization, memory utilization,
and the execution time of the challenge while extracting the
calls. Once finished, the module derives specific features from
the collected data. These features are related to the set of
functions and system calls triggered, the number of different
call types, and their arguments, respectively. Additionally,
it computes the CPU utilization, the amount of memory
allocated to execute the challenge’s response, and the total
execution time. Once all the required features are acquired,
the local service securely sends them to the remote server
using a for further analysis (③). On the server side, the col-
lected features are then utilized to generate the signature of
the unknown CPS device inside the Signature Generation
module (④). Further, the generated signature is correlated (⑤)
with ground-truth data previously extracted from known-class
CPS devices (i.e., ground-truth) included in the CPS network.
Finally, a threshold-based decision algorithm defines the class
of the unknown device (⑥).

B. Device Feature Extraction

The first step into the fingerprinting process is to collect
the necessary features used to create the unique device-class
signature. These features include OS/kernel behavior via
system and function calls and hardware performance via
memory/CPU utilization and execution time. Compared to
current fingerprinting techniques, the implementation of S&F
does not require extensive network traffic monitoring. Also,
the devices are always monitored at downtime, so no critical
CPS operation is interrupted.

1) The Challenge: S&F uses a challenge-response mech-
anism to generate data that accurately describe the behavior
and performance of the unknown CPS devices. Such data is
utilized to generate device-type specific signatures that are
used later for identification purposes. The Device Feature
Extraction module running in the host is the one in charge of
securely storing and executing the challenge. There are some
advantages associated with executing the challenge locally in
the host devices. First, it eliminates the need for creating
extra secure channels to deliver files from the remote server,
especially at downtime, when connection capabilities may
be limited. Second, S&F automatically flags as unauthorized
those devices with the wrong reaction to the challenge or
where the Device Feature Extraction module is unavailable

at test time (which adds additional security layers in cases
where capable attackers may try to mimic the performance
of S&F). Third, even if the attackers can still implement S&F
in the spoofed devices, the final decision depends on the device
behavior rather than on metrics that can be easily spoofed.
Assuming that the attackers can change the device’s behavior
and also modify the hardware performance results in S&F’s
signature, they still need to guess the right values to guarantee
that the fake signature strongly correlates with the one stored
in S&F’s server, for the specific device-type analyzed.

2) Parametric Call List (PCL): S&F utilizes system and
function call hooking techniques [24] to collect all the system
and function calls that a specific CPS device-class triggers
as a response to the pre-determined challenge. From the call
lists, the Device Feature Extraction module extracts distinctive
device metrics such as (1) the set of specific triggered calls,
(2) the total number of calls by type (e.g., malloc, free, open),
and (3) the value of specific call’s arguments (e.g., the amount
of memory allocated by malloc). We refer to this list of
parameters extracted from the system and function calls as
Parametric Call List (PCL), which is defined as:

PC Li = {xi ∈ Xi : ∃Xi ∧ Xi �= ∅}, (1)

where PC Li represents the PCL data extracted from device i ,
xi represents the arguments of the calls extracted from
device i , and Xi represents the call lists extracted from
device i . In general, the hooking technique utilized to extract
the system and function calls is a configurable attribute
of S&F, and it may be specific to every device’s architecture
and OS [24]. Also, the effectiveness of the PCL in identifying
CPS classes does not depend on the amount of system and
function calls included in the PCL. S&F does not impose
a specific sampling rate to collect the calls, but relies on
well-known hooking techniques to collect the call data. That is,
as opposed to a rate of system and function calls collected over
time, the number of function and system calls is determined
by the specific device’s response to the challenge, and would
always characterize the device behavior.

During our implementation of S&F, we used library inter-
position and ptrace to hook into the challenge execution
and collect the function and system calls. While library
interposition is a hooking technique that can be applied to wide
range of operating systems to collect system calls, ptrace
is a UNIX-based system call that is used to hook into specific
function calls [24]. Specifically, we instrumented relevant sys-
tem call definitions and hooked into the process that executes
the S&F’s challenge in the CPS devices. From there, we were
able to build the PCLs with relevant information extracted
from every call triggered by the challenge process. In Listing 1,
we provide an example of instrumentation of the system call
malloc, and detail the extra code that we added to enable the
collection process.

Finally, to reduce complexity on the host and minimize
overhead, once the PCL generation is completed, the collected
data is sent to the S&F remote server for processing using
secure communication channels. We discuss how to secure
S&F’s communications in later sections.

3) Device Performance Index (DPI): The second feature
used by the proposed framework to identify CPS device classes
is the Device Performance Index (DPI). Since call lists can be
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Listing. 1. An example of a malloc sys call instrumentation.

Listing. 2. A sample script to capture system performance information from
the GNU time command.

Fig. 3. Three-dimensional representation of the DPI of two different classes
of CPS devices. The DPI of device-class A is greater than the DPI of
device-class B by around 2x, 1.4x, and 2.5x of memory, CPU utilization,
and execution time, respectively.

manipulated by attackers to mimic authentic CPS device oper-
ations, S&F includes hardware performance analysis as part of
its identification mechanisms. As mentioned in Section II, CPS
devices are not expected to change their overall functionality,
so the average performance is also expected to describe a
near to deterministic behavior over time [19]. Hence, as every
class of CPS device has specific functionalities, the device’s
performance obtained while devices execute the challenge can
also be used for identification purposes.

S&F integrates three different metrics into the DPI analysis:
memory utilization (α), CPU utilization (β), and execution
time (γ ). Since every metric is evaluated over a certain time
interval t of interest, we consider every metric as a vector
quantity as:

�α = {|α|, φα},
�β = {|β|, φβ},
�γ = {|γ |, φγ }, (2)

where |α|, |β|, and |γ | represent the magnitude of memory
utilization, CPU utilization, and execution time, respectively
and φα , φβ , and φγ represent the direction of change (e.g.,
positive for increased utilization and negative for decreased
utilization) of every metric in t , respect to any previous
time interval t0. Then, we can define DPI as the volume of
the parallelepiped whose adjacent sides are defined by the
averaged metrics �α, �β, and �γ (Figure 3). The parallelepiped
volume can be found via the scalar triple product of the

considered metrics as:
DP I = | �γ · (�α × �β)|,

= �i j kγ iα jβk : i, j, k ∈ 1, 2, 3 . . . n,

= det

⎡
⎣

γ1 γ2 γ3 . . . γn
α1 α2 α3 . . . αn
β1 β2 β3 . . . βn

⎤
⎦ . (3)

where �i j k defines the three-dimensional Levi-Civita symbols
that represent the collection of memory, execution time, and
memory utilization over time. As with the PCL, there are
different mechanisms that can be used to extract the DPI
information. Again, it is the goal of S&F’s architecture not
to enforce a specific implementation strategy to extract the
signature information from the CPS devices. Depending on
the operating system in use, the implementation of S&F may
take advantages of tools available within the system if a secure
environment can be guaranteed.2 In Listing 2, we show a
sample script used to capture system performance information
related to device hardware’s behavior using the GNU time
command.

S&F computes the DPI for every CPS device class and
appends this value to the PCL data to generate the unique
device signature. Specifically, S&F computes the DPI in
the Signature Generation module before creating the specific
device signature. Similarly to the PCL parameter, S&F relies
on OS functions running on secure memory regions to collect
the DPI information. As explained before, the goal of collect-
ing the DPI is to extract hardware-device information that can
be used to characterize the device’s behavior.

C. Device Signature Generation

Once S&F completes the device feature acquisition (i.e.,
PCL and DPI), it generates a unique CPS device-class signa-
ture based on the extracted features. These features are selected
so they guarantee a comprehensive analysis of the device
behavior and performance at both OS/kernel and hardware
levels, while keeping unique host characteristics (e.g., network
metrics, device ID) out of the analysis to preserve privacy. The
signature structure must solely guarantee the correct identifi-
cation of the device classes so the spoofed or unauthorized
devices can be detected and rejected. The final signature for
every CPS device type has the following format:

[μ(PC Llists), μ(DP Ilists )]. (4)

where μ(PC Llists ) represents the average of parameters
extracted from the system and function calls, and μ(DP Ilists )
represents the average of CPU utilization, memory utilization,
and execution time values included in the DPI.

D. Ground Truth Devices - Learning Phase

The effectiveness of S&F in identifying different classes of
CPS devices relies on the use of reliable ground-truth device-
class signatures. S&F correlates the ground-truth signatures
against the behavior and performance of the unknown devices
for identification purposes. In general, ground truth-capable
devices must adhere to two basic rules: (1) they must indeed
characterize the behavior of the device classes in their network

2We discuss details of the performance of S&F in non-secure environments
in Section VII.
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region, and (2) they must perform stationary deterministic
operations inside the CPS infrastructure over time. The
first rule guarantees that the device’s metrics and the type
of activity (i.e., the device’s specific application inside the
CPS network) performed by the ground-truth device are
both considered to define its class (Section II). On the other
hand, the second rule guarantees reliability. S&F requires
that ground-truth devices behave in a deterministic way to
guarantee that, if the same challenge is applied, every device
class always generates the same signature over time. Steady
behavior constitutes a realistic requirement since previous
research works have highlighted the deterministic behavior
of CPS [19]. Finally, the mechanism of obtaining signatures
from ground-truth devices is known as learning phase.
Once S&F completes this process, it stores the ground-truth
device-class signatures into a signature database (SDB).

Ground-truth devices characterize a CPS network region.
As discussed in Section II, device-class classification has been
traditionally focusing on the branch, model, and the specific
application of the devices. We also utilize these metrics to
perform preliminary classification of the potential ground-truth
devices and to determine how many different classes of devices
may be present in the network. We also utilize this information
to better organize signatures in the SDB. Thus, we first
group the different classes of devices in the network based
on device-specific metrics. Further, we apply behavioral and
performance analysis to extract the signatures from every
device class. To evaluate the reliability of the ground truth
devices, we calculate the autocorrelation of different PCLs
and DPIs obtained while the devices execute the same process
(i.e., challenge) but at different time intervals t . We use
Equations 5 and 6 to calculate PCL and DPI autocorrelation,
respectively, as follows:

ρPC Lti ,PC Lti+1
=

�
PC Lti PC Lti+1 − n PC Lti PC Lti+1

nsPC Lti
sPC Lti+1

,

(5)

ρD P Iti ,D P Iti+1
=

�
DP Iti DP Iti+1 − nDP Iti DP Iti+1

nsD P Iti
sD P Iti+1

, (6)

where PC Lti , PC Lti+1 , DP Iti , and DP Iti+1 represent PCL
and DPI metrics extracted from the same CPS process, but
executed at different time interval, n represents the size of the
arrays PC L and DP I , and s represents the standard deviation.

Algorithm 1 details the process of obtaining the
ground-truth signatures during the learning phase. Initially,
in Line 1, the number of iterations (for averaging purposes)
is defined, and the local variables PC Llists and DP Ilists
are declared and initialized. These variables contain the list
of parameters (i.e., PCL and DPI) from every iteration i
learning iteration. The goal of running several iterations of
the challenge on the ground-truth devices is two-fold. First,
we can study the behavior of the devices over time (devices
with a random behavior that would not guarantee a stable
signature would be rejected). Second, we compute and average
all the data from all the iteration to so we consider potential
fluctuations of the device behavior on the final signature.
Going back to Algorithm 1, in Lines 5 and 6, system and
function call tracing techniques are applied to obtain the PCL
and DPI at different time intervals t .

Algorithm 1 Generate Signature (Learning Phase)
1: i terations← N
2: PC Llists ← null
3: DP Ilists ← null
4: for i = 0 to i terations − 1 do
5: PC Llists [i ] ← get ParamList ()
6: DP Ilists [i ] ← get DP Index()
7: end for
8: for i ∈ 0 . . . si ze(PC Llists )− 1 do
9: gT V ecPC L ← ρyi ,yi+t (PC Llists [i ], PC Llists [i + 1])

10: end for
11: for i ∈ 0 . . . si ze(DP Ilists )− 1 do
12: gT V ecDP I ← ρyi ,yi+t (DP Ilists [i ], DP Ilists [i + 1])
13: end for
14: grdT h PC L ← μ(gT V ecPC L)
15: grdT h DP I ← μ(gT V ecDP I )
16: if (grdT h PC L & grdT h DP I ) > ξ then
17: SDB ← [μ(PC Llists ), μ(DP Ilists )]
18: end if
Algorithm to obtain CPS ground truth device-based signatures
during the learning process.

To calculate autocorrelation between different challenge
iterations, S&F converts the PCL lists into random variables
RPC L . To do so, the framework assigns weights δPC Li to
every different type of function and system call in the PCL.
STOP-AND-FRISK follow a specific pattern to assign the weight
values, which depends on the type of system and function
call in the PCL. For instance, if the PCL list that characterize
the device behavior to the challenge contains sys calls of type
malloc and free, the weight assigned to these calls are desire to
have certain statistical relationship to preserve the correlation
among these calls. In regular system tasks, malloc and free
calls are frequently invoked as part of the same process. Thus,
S&F tries to preserve such a correlation by assigning numerical
weight values that are also correlated (e.g., δPC Lmalloc = 2
and δPC L f ree = 4). The result of the weight assignment
is a random variable RPC L that takes values between δmin
and δmax , and that statistically describes the reaction (i.e.,
behavior) of the CPS device class to the challenge. The rest of
the collected parameters (i.e., call arguments, call amount, and
DPI information), are considered without modification for the
autocorrelation calculation as they constitute numerical values.

In Lines 9 and 12, the autocorrelation vector between the
different time intervals of PCL and DPI is calculated. Later,
in Lines 14 and 15, the average of all autocorrelation values
is computed. Finally, if the autocorrelation values of PCL and
DPI are greater than the threshold ξ (Line 16), the algorithm
accepts the evaluated CPS device as ground-truth and stores its
signature into the SDB (Line 17). In practice, the value of the
threshold ξ is agnostic and can be determined based on the
specific characteristics of the operations in the ground-truth
device.

E. Signature Correlation and Decision - Prediction Phase

During decision, S&F correlates the signature obtained from
unknown CPS devices against the ground-truth signatures
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Algorithm 2 Identify Device Class (Prediction Phase)
1: C PSsignList ← SDB
2: i terations← N
3: PC Llists , DP Ilists , C PSdeviceI D← null
4: signatue← null
5: for i = 0 to i terations − 1 do
6: PC Llists [i ] ← get ParamList ()
7: DP Ilists [i ] ← get DP Index()
8: end for
9: signature← [μ(PC Llists ), μ(DP Ilists )]

10: corr XY max ← 0
11: for i = 0 to si ze(C PSsignList) − 1 do
12: corr XY ← ρx,y(C PSsignList (i), signature)
13: if corr XY > δ & corr XY > corr XY max then
14: C PSdeviceI D ← i
15: corr XY max ← corr XY
16: end if
17: end for
STOP-AND-FRISK algorithm for CPS device class identification.

stored in the SDB. This process is known as prediction phase
and is detailed in Algorithm 2.

1) Signature Correlation: The process for obtaining the
signature of the unknown CPS device follows similar steps
as in Algorithm 1. However, this time the system is not
required to calculate autocorrelation, as S&F assumes that
all devices in the network are capable of generating a valid
signature (Lines 2, 6, and 7 in Algorithm 2). Once the
unknown signature is finally generated in the server (Line 9),
S&F calculates the correlation between signature and all the
unique CPS ground-truth signatures from the SDB (Line 12)
using Equation 7 and Equation 8:

ρPC L X ,PC LY =
�

PC L Xi PC LYi − n PC L X PC LY

nsPC L X sPC LY

, (7)

ρD P IX ,D P IY =
�

DP IXi DP IYi − nDP IX DP IY

nsD P IX sD P IY

, (8)

where n represents the size of PC L X (i.e., ground truth PCL),
PC LY (i.e., unknown device PCL), DP IX (i.e., ground-
truth’s DPI), and DP IY (i.e., unknown device’s DPI), PC L X ,
PC LY , DP IX , and DP IY represent the mean value, and
sPC LY , sPC LY , sD P IX , and sD P IY represent the standard devi-
ation, respectively.

After computing both ρPC L X ,PC LY and ρD P IX ,D P IY cor-
relations, the decision process starts. The logical condition in
Line 16 evaluates that (1) the correlation between the unknown
device and signature i from the database is over a certain
threshold δ and (2) this value of correlation is a maximum
obtained from all the iterations in Algorithm 2. If such a
condition holds, the unknown CPS device is deemed to be
the same CPS device class as CPS device i from the database
(Line 14). On the other hand, if the condition in Line 13 is
never satisfied, the unknown device is classified as Unknown,
and flagged by S&F.

2) Decision: One can observe that, from Algorithms 1
and 2, the value of the correlation threshold δ is a configurable
parameter that can be inferred based on the threshold ξ

Fig. 4. Proposed device-class identification framework using call tracing
techniques, signal processing, and device performance analysis.

used to generate the ground-truth device signature. That is,
the value of ξ that achieves the highest accuracy during
the learning phase is selected as δ value for the prediction
phase. With this, we guarantee the highest accuracy for S&F
decisions. In addition, since the signatures are generated as
a result of the device’s response to a controlled stimulus
(i.e., challenge), S&F’s approach minimizes potential decision
errors due to signature deviations. A device’s response that
clearly deviates from a known signature should be considered
as from a different device (known or unknown), as opposed
to a signature error due to different random processes running
in the device. The signature generation process hooks into
the specific challenge execution and does not consider other
processes running in the device. Also, as we explain in
Section IV-D, we extracted the ground-truth signatures after
averaging different learning iterations. With this, we guarantee
that the final device signatures considers “expected” deviations
that may occur to the device signature over time, due to
random kernel and operating system operations.

Finally, the S&F’s processes described in Algorithms 1
and 2 are summarized in Figure 4. One can notice that, for
both the learning and prediction phases, S&F reuses the first
two modules of the proposed architecture since they contain
similar operation steps. In both phases, S&F needs to extract
features and create signatures from ground truth or unknown
devices, respectively.

F. Space- and Time-Complexity Analysis

We analyze the time and space complexity of S&F’s algo-
rithms, which highly depends on their specific implementa-
tion strategies. For instance, the correlation calculation can
be performed either in time or frequency domains, which
would differently impact their overall complexity. In addition,
highly efficient correlation implementations can be used to
reduce the use of computational resources and time [25], [26].
We perform analysis on the space- and time-complexity of
S&F’s implementation (see Algorithms 1 and 2). We do not
consider the encryption and signing steps used to guaran-
tee the secrecy and freshness of S&F’a operations, but the
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TABLE I

REPRESENTATIVE SAMPLE OF THE 11 DIFFERENT CLASSES OF CPS DEVICES IN THE TESTBED. WE ALLOWED MORE THAN ONE DEVICE
PER CLASS TO ALSO EVALUATE THE EFFECTIVENESS OF S&F IN GROUPING DEVICES FROM THE SAME CLASS TOGETHER

mathematical operations and analysis performed during data
extraction, signature generation, correlation, and decision (see
Figure 4). Recall that within the host, S&F only collects
device data to generate the corresponding signature. The worst
case performance scenario would create and query lists of
n PCL and DPI elements, yielding an upper bound time
and space complexity of O(n). On the server side, the two
most complex operations, autocorrelation and correlation, have
similar time and space complexity. In total, considering PCL
and DPI datasets of size n, S&F computes the correlation
calculations within control flow statements of n iterations.
These calculations can be executed in constant time, yielding
an upper bound time complexity of O(n). On the other hand,
the space complexity depends on the terms needed to calculate
the correlation. For devices with storage limitations, it is
possible to only save the value of the average calculations,
yielding an overall space complexity of O(log(M)); where M
would be the maximum value within the PCL and DPI lists.
In this case, however, it would be necessary to spend more time
in calculating a higher number of subtractions. In a different
approach, the algorithm could store the average values and the
differences, allowing for a faster computation but yielding an
upper bound space complexity of O(nlog(M)).

V. IMPLEMENTATION DETAILS OF S&F
In this section, we assume a realistic CPS network and

present implementation and deployment details of S&F. Also,
we detail the key characteristics of the devices included in the
testbed.

A. Realistic CPS Testbed Implementation

We implemented a CPS testbed considering the characteris-
tics of the CPS device classes described in Section III (Table I).
These characteristics were included in our testbed as follows:

1) Diversity in Hardware and Software Resources: We
included 11 different classes of CPS devices with a variety of
available computing resource and different hardware/software
configurations. This diversity makes our testbed representative
of a large population of real CPS devices; from small devices
with limited resources to resource-rich devices [8], [20].
Despite the expected diversity, we allow certain similarities
among the different device classes. We explain later in this
section how we use these similarities to challenge the identi-
fication capabilities of S&F.

2) Discriminate then Regroup: We expect the proposed
classification technique to be effective in discriminating differ-
ent classes of CPS devices (to avoid false positives outcomes).
However, we also expect S&F to be capable of grouping
devices of the same class together (to avoid false negatives
outcomes). To evaluate both metrics, we allowed more that
one device of the same class in some cases (Table I). With this,
we may determine how S&F performs on classifying types of
devices into different classes and devices of the same type into
a common class.

3) CPS-specific Tasks and Processes: During the learning
phase, the devices included in our testbed performed real
CPS networking operations following the IEC61850 commu-
nication standard [27]. The IEC61850 is a protocol-suite that
defines the communication standards for electrical substation
automation systems. To implement this functionality, we uti-
lized an open-source version of the IEC1850 standard (i.e.,
libiec61850) that is freely available online [22]. In addition,
we designed challenge-response approaches for the prediction
phase that are also suitable for CPS operations (e.g., extract
specific device information, write it into a file, and further
delete the file from memory).

4) Multiple But Similar OSes: The CPS devices included
in the testbed run 11 different versions of Linux-based
OSes. Using different versions of Linux constitutes a realistic
approach since most of the legitimate CPS devices used
in the field include some variant of Unix-based OS [28].
Additionally, the open-source approaches in S&F enable the
implementation of flexible solutions that would not impact the
evaluation process of S&F. Indeed, previous research works
have detailed system and function call hooking techniques that
can be applied to all major operating systems [24]. In fact,
obtaining the PCL and DPI data from devices with different
operating systems is independent of S&F’s architecture and
more related to specific implementation challenges. Finally,
despite their noted differences, we purposely kept similarities
among the different devices classes in the testbed. For instance,
as shown in Table I, most of the devices are Debian-based sys-
tems using ARM CPU architecture. Such an implementation
approach would additionally challenge S&F into identifying
device classes based on small deviations of software and
hardware-based features instead of taking advantages of very
noticeable architectural differences.
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Fig. 5. S&F encrypts and signs the challenge request that is sent to an
unknown device. The S&F’s module inside the host processes the request
and sends back the signed and encrypted response.

For fairness, we followed a black-box approach where an
independent third-party assigned specific labels (i.e., IDs)
to the devices in the testbed based on their hardware and
OS characteristics. Table I details the results of the labeling
process. For instance, devices with CPU of type AM355x
Cortex-A8 1GHz clock and 512MB of DD3 RAM, which
also has installed the same type of OS (Linux Beagle-
bone 3.8.13) are considered as from the same “Class #2”
(e.g., B B2 and B B3). However, devices with the same hard-
ware characteristics but different OS are considered as from
different classes (e.g., B B1 receives the label “Class #1”).
With this labeling strategy, we demonstrate that S&F is
capable of fine-grained classification, where devices with very
similar OS and hardware characteristics can fall into different
classes as their behavior differ. The rationale behind including
many different devices classes in the testbed is justified as
CPS infrastructures may contain a high diversity of devices
that behave differently, but that share similar software and
hardware characteristics. Also, the hardware and software
characteristics of the devices may vary considerably in real
scenarios. Specifically, in the CPS infrastructure, one can find
devices with limited and rich computing resources, various
software configurations, and different architectures. In this
context, the hardware and software characteristics of the CPS
devices are specific to their functionalities and applications.
As a consequence, small changes in the CPS devices’ configu-
ration should be highly noticeable in their general behavior [8].
In this work, we exploit these characteristics of CPS networks
and devices to propose a fingerprinting technique that identi-
fies different CPS device classes based on their behavior and
performance.

B. Secure Deployment of S&F

We guarantee secure deployment and implementation of
STOP-AND-FRISK via device attestation [29]. Figure 5 depicts a
high-level representation of the end-to-end attestation process
implemented to support S&F. First, a centralized scheduler
running in the remote S&F server sends a secure request R
containing the specific challenge CH to the unknown CPS
device. The request is secured via the use of encryption,
digital signature, and timestamps. On the one hand, the use
of encryption prevents passive observers (i.e., eavesdroppers)
from learning the structure and content of the challenge.
On the other hand, digitally signing the requests allows the
CPS device to verify that the challenge comes as part of a
legitimate S&F request that has not been illegally modified
(i.e., preserving integrity). Finally, the use of timestamps

prevents attackers from using old S&F requests to implement
reply attacks. The encryption step of S&F uses a combina-
tion of symmetric and asymmetric encryption to protect the
challenge and the device responses from external attackers.
First, the requester generates a session key S that is used
to encrypt the challenge CH. Then, the session key is also
encrypted, along with a timestamp T using the public key
PB of the targeted host, and appended to the CH. Finally,
the entire request is signed using the targeted host’s public
certificate. Once the CPS device receives the request, it is
re-directed to the isolated secure environment where the host
S&F resides. There, the signature of R is verified, and the
part of the request containing the session key is decrypted
using the private key of the device host PK. Then, the rest
of the request corresponding to the challenge CH is decrypted
using the session key. We use software and, where possible,
hardware-based isolation to prevent unauthorized access and
modification of S&F’s modules. As we consider Linux-based
devices in our CPS testbed, we first set up standard UNIX
access control mechanisms, POSIX capabilities to limit access
to the isolated area. Further, we ran the S&F’s modules in
Virtual Machines (VM) hosted in hypervisors implemented
using the Kernel-based Virtual Machine (KVM) [30]. We envi-
sion that, in cases where the architecture of the CPS device
allows, S&F may take advantage of the principle of Plat-
form Security Architecture (PSA) featuring Trusted Execution
Environment (TEE) and TrustZone [31] to guarantee software
isolation via hardware separation.

Once the CPS host processes the challenge, it generates a
response RE that contains specific system and function calls
triggered by the challenge in the host CPS device. These
calls are collected to create the PCL. In addition, the device’s
hardware reaction to the challenge is collected to generate the
DPI. The PCL and DPI information are combined in a form
of a response RE to S&F’s challenge, which is encrypted and
signed using the same session key S and the public key and
certificate of the STOP-AND-FRISK server. Finally, the response
RE is sent back to the S&F server which processes it and
decides if the host device class is authorized or not.

VI. PERFORMANCE EVALUATION

In this section, we present experimental results that demon-
strate the effectiveness of S&F to fingerprint and iden-
tify different classes of CPS devices. With this perfor-
mance evaluation, we aim to answer the following research
questions:
• RQ1: Learning Phase. How the proposed framework

performs during the learning phase? (Section VI-B).
• RQ2: Prediction Phase. What is the accuracy of S&F

in fingerprinting CPS devices while using (1) PCL cor-
relation only, (2) DPI correlation only, and (3) both PCL
and DPI analysis simultaneously? (Section VI-C).

• RQ3: Overhead. What is the overhead introduced by
S&F to the CPS devices? (Section VI-D).

In all the evaluation experiments, we computed the
results after averaging 30 different runs for all the cov-
ered scenarios. Every scenario comprised the execution
of the challenge-response process. Further, we applied
Algorithm 1 and Algorithm 2 on the devices included in
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our testbed (Table I) to (1) generate a trustworthy sig-
nature database, (2) evaluate the correlation between the
signatures and the devices’ behavior, (3) identify different
classes of CPS devices, and finally, (4) evaluate the over-
head that S&F introduces to the CPS devices’ computing
resources.

During the learning phase, we studied the PCL and DPI
behavioral characteristics of the CPS devices included in
the testbed. We expect the devices to have a PCL and DPI
behavior that is deterministic enough to guarantee repeatability
(i.e., test-retest reliability) during the signature generation
step. To evaluate determinism, we calculated the statistical
autocorrelation among signatures extracted from the same
device while it executed similar CPS processes at different
time intervals. For the cases where a deterministic behavior
was identified, the devices were accepted as ground-truth.
Finally, for this phase of the evaluation, we set the threshold
ξ = 0.7 in Algorithm 1 (Section IV), which marks the point
from moderate to strong statistical autocorrelation that is
widely accepted in the literature [32].

Further, S&F applied the challenge-response approach dis-
cussed in Section IV to extract data and create the devices’
signatures. These signatures were then stored in the SDB for
identification purposes during the prediction phase. For the
prediction phase, we also set the threshold δ to 0.7. In real-
life scenarios, this value of δ may be adjusted depending on
the specific behavioral characteristics of the devices in the
CPS network. For instance, in practical applications of S&F,
the analysis over a group of well-known devices (i.e., control
group) may give the best decision threshold value for the
specific network region. Finally, since we are working with
UNIX-based OSes, we utilized library interposition [33] and
ptrace function [34] to extract the lists of system and function
calls, respectively and generate the PCL. Also, we utilized the
top and GNU time commands to extract information related
to execution time as well as CPU and memory utilization
for the DPI analysis. Finally, we used the same challenge
to trigger responses from all the tested devices. That way,
S&F detects and flags the differences between devices classes
based not on the CPS tasks they process, but only on their
relative differences in specific behavior of kernel and hardware
performance. Finally, for statistical evaluation of the PCL,
we converted the list of system and function calls into random
variables. We followed the process of assigning λi weights to
every specific type of system and function call. To maintain the
statistical correlation among similar processes, we assign close
weight values to system and function calls that are related to
a similar process. For instance, we may assign the values λ
and λ + 1 to system calls of the type malloc and calloc,
respectively.

A. Performance Metrics

To evaluate the performance of S&F, we compute the
standard statistical metrics of accuracy, recall, precision, and
specificity. We define these metrics as follows:

ACC = (TP + TN )

(TP + TN + FP + FN )
, (9)

REC = TP

(TP + FN )
, (10)

PREC = TP

(TP + FP )
, (11)

SP EC = TN

(TN + FP )
, (12)

where TP stands for true positive or the case where a CPS
device is correctly classified as of some specific class; TN
stands for true negative or the case where a CPS device is cor-
rectly classified as of not from some specific class; FP stands
for false positive or the case where a CPS device is identified
using the wrong signature. Finally, FN stands for false negative
or the case where a CPS device whose signature has been
previously stored in the database cannot be correctly identified.

B. Performance of S&F During the Learning Phase

As described in Section IV, the first step towards applying
S&F is to find a reliable set of unique signatures that character-
ize the different CPS device classes. The signature generation
process uses statistical autocorrelation between different real-
izations of PCL and DPI to determine if deterministic behavior
can be inferred from different time interval realizations of a
similar process in the devices. Moderate to high values of auto-
correlation (typically over 0.7 [32]) indicate that the specific
CPS device (which is assumed to be a trusted CPS device with
no prior tampering or unauthorized components) can be used
as ground-truth to create a reliable signature for its class.

Figure 7(a) depicts the evaluation results after applying
Algorithm 1 (Section IV) over randomly selected devices
from all the different classes included in the testbed. One
can observe that, in all the cases, the autocorrelation values
are over the threshold ξ , which indicates a deterministic
behavior of the devices over time. Again, we obtained these
results after 30 different PCL and DPI runs in every device
at different time intervals. These results constituted a strong
indicator that ground-truth signatures can be obtained for
all the devices in the testbed. Finally, once the ground-truth
CPS devices were identified, we generated the signatures and
stored them into the SDB.

C. Performance of S&F During the Prediction Phase

The primary goal of S&F is to classify CPS devices to the
right class based on similarities in OS’s behavior, hardware
performance, and configuration. Additionally, S&F must be
able to cluster devices from the same class effectively. Before
executing the prediction phase, S&F securely sent a challenge
to the unknown devices, collected its features, and created
their unique signatures. S&F applied system and function call
hooking techniques (i.e., library interposition and ptrace) to
generate the PCL of the unknown devices. Similarly, S&F
extracted the hardware performance features used to calculate
the DPI of every single device. Once these processes were
completed, the host-based portion of S&F (Figure 2) sent this
information to the remote server for processing. The prediction
phase was then initiated by applying Algorithm 2 (Section IV)
to the collected data.

To thoroughly test the efficacy of S&F and evaluate the
real contribution of every fingerprinting feature that we have
chosen, we first analyzed the performance of the framework
by using PCL- and DPI-based correlation only. Then, we eval-
uated how the results improved after combining both analyses.
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Fig. 6. Evaluation of the experimental results after considering PCL-based correlation only: (a) accuracy, (b) precision, (c) recall, and (4) specificity. One
can observe that, in some cases, lower accuracy results were obtained due to false positives among some device classes. These results were improved after
combining PCL-based correlation with DPI analysis (Figure 9).

Fig. 7. Performance of S&F; (a) during the learning phase, (b) after applying PCL-based detection only, and (c), (d) after applying DPI-based detection
only.

1) PCL-Based Correlation Analysis: Figure 6 depicts
details of the performance evaluation metrics after applying
PCL-based correlation only. S&F achieved lower accuracy
values of slightly over 86% for devices RPi4, RPi2 and B B1.
Also, it obtained accuracy results of over 94% for devices of
classes G Z , B B3, L PT2 and B B2, respectively. We believe
that these results are caused by similarities in kernel behav-
ior from different classes of devices while processing the
challenge. The metrics of precision, recall, and specificity
were also affected by these false-positive events. Figure 7(b)
represents the confusion matrix (NxN PCL-based correla-
tion matrix) among all the device classes in the testbed for
PCL-based analysis only. A darker color indicates a high cor-
relation, while lighter colors indicate lower correlation values
between PCLs from different devices. As per Table I, one
should expect a total of 11 different CPS device classes based
on the different computing resources and software/hardware
configurations. However, in this case, S&F was only able to
identify 9 out of a total of 11 different classes of devices. From
Figure 7(b), one can observe that, for instance, the proposed
framework mistakenly confused G Z and L PT2 as of the same
class. Also, the devices B B1, B B2, and B B3 were wrongly
grouped together.

2) DPI-Based Correlation Analysis: We calculated the DPI
values for every CPS device in the testbed using the approach
proposed in Equation 3. In Figure 7(c), we show the results
of the DPI calculation. As observed, several DPI values
from different devices were very similar, which negatively
impacts the feasibility of using this feature for identification
purposes. However, for some specific devices, DPI values
were significantly different among device classes. To better
understand this analysis, we further represent the obtained DPI
values versus the average DPI of all the devices classes in
the testbed in Figure 7(d). From this figure, it is clear that
DPI analysis may not significantly contribute to discriminating
devices from different classes. For instance, one can observe

Fig. 8. After combining PCL-based correlation and DPI analysis, S&F was
able to identify the 11 different classes of devices included in the CPS testbed.

that devices from different classes like O DR and L PT1 are
wrongly overlapping in Figure 7(d).

3) PCL and DPI Analysis Combined: We further combined
both PCL- and DPI-based correlation analysis and obtained
a new decision map in Figure 8. This time, S&F was able
to identify 11 different device classes by avoiding the false
positives events obtained in previous results. Also, perfor-
mance metrics significantly improved after combining PCL
and DPI, if compared with PCL-only analysis. In Figure 9,
we detail the new performance metrics results. One can
observe that all the different metrics achieved excellent results
if compared with the values presented in Figure 6. For the four
different metrics, S&F obtained excellent performance with
values close to 100%. The excellent detection performance
of STOP-AND-FRISK is a direct consequence of some of the
design strategies of S&F’s architecture. First, the combination
of two different features, the PCL and the DPI, into the
analysis permits monitoring the behavior of the CPS devices
across two different low-correlated dimensions. While the PCL
provides information regarding how the OS and kernel handle
the applications running on the devices, the DPI characterizes
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Fig. 9. Evaluation of the experimental results after considering correlation and device performance index for decision: (a) accuracy, (b) precision, (c) recall,
and (4) specificity. One can notice how the overall metrics improved if compared results shown in Figure 6.

TABLE II

AVERAGE PERFORMANCE METRICS OF STOP-AND-FRISK FOR

ALL THE DIFFERENT DEVICES CLASSES EVALUATED

the hardware configuration used to support such applications.
Second, S&F combines function and system calls into the
PCL, increasing the sensitivity of the proposed fingerprinting
technique for cases in which similar devices have different
OS or kernel configurations. These configurations may define
distinctive device classes with different permission levels for
users and applications that S&F would not be able to detect
without considering kernel- and application-level calls simul-
taneously. Third, the challenge-response strategy followed by
S&F permits the analysis of the devices’ behaviors on a
controlled environment, which minimizes errors introduced by
differences in device tasking over time. Furthermore, we sum-
marize the average performance of S&F for all considered
threshold values in Table II. In addition to the already define
metrics, we include True Positive Rate (TPR), False Positive
Rate (FPR), True Negative Rate (TNR), and False Negative
Rate (TNR). The results depicted in Table II demonstrate the
effectiveness of S&F in fingerprinting CPS device classes with
different behavior.

Finally, we compare S&F’s accuracy with the performance
of other existing similar tools in Table III. Although there
exist tools that combine software and hardware features to
implement fingerprinting mechanisms, not all published works
share their performance metrics. One can observe that despite
some of the tools implement sophisticated analysis based on
machine learning algorithms, S&F’s performance is competi-
tive, if not better, in all the cases.

TABLE III

WE COMPARE THE PERFORMANCE OF S&F WITH OTHER BEHAVIORAL

ANALYSIS-BASED FINGERPRINTING TECHNIQUES. THE ACCURACY
OF S&F IS COMPUTED AFTER CONSIDERING

DECISION THRESHOLDS FROM 0.1 TO 0.5

D. Overhead Introduced by S&F

Table IV summarizes the overhead introduced by S&F to the
CPS devices. Despite the benefits of the proposed technique,
the expected limitations of CPS devices’ computing resources
do not allow for excessive overhead (Section III). We calcu-
lated the system overhead by analyzing the performance of the
devices (1) under normal operating conditions and (2) while
executing our fingerprinting technique. In Table IV, ET refers
to Execution Time, C PU refers to CPU utilization, and M E M
refers to memory utilization. Also, the term T otal M E M
refers to the percent of memory that S&F utilizes, out of
the total memory available in every device. One can observe
that the maximum overhead introduced by S&F, regarding
increments in execution time, memory, the percentage of total
memory, and CPU utilization, is 0.04%, 19.8%, 0.0218%, and
1.5%, respectively. Different from other existing solutions,
the fingerprinting framework proposed in this work did not
require to monitor the CPS devices over long periods. S&F
was able to identify the different device classes with high
accuracy from the kernel’s behavior and hardware performance
data extracted after only 30 sec of challenge execution time.
Finally, one can notice that, since S&F is executed during the
device’s downtime, the current overhead introduced, besides
minimal, only affect the devices while they are not performing
time-critical CPS operations.

VII. DISCUSSION

In this section, we discuss the performance of S&F under
different compromised scenarios.

A. Fingerprinting vs. Anomaly Detection

We propose S&F as a host-based signature-based finger-
printing mechanism capable of identifying unauthorized device
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TABLE IV

AVERAGE OF SYSTEM OVERHEAD INTRODUCED BY S&F ON THE DEVICES INCLUDED IN THE TESTBED

classes within a CPS infrastructure. The implementation and
further evaluation of S&F (Sections V and VI) consider the
behavior of CPS devices while reacting to known challenges
that are securely sent from a centralized secure server. S&F’s
signatures do not characterize the behavior of the devices
while performing regular networking activities in the field.
As explained before, the requests are signed, encrypted, and
timed to prevent potentially compromised devices from uncov-
ering the challenge. With the challenge, attackers would be
able to modify the OS or kernel to generate a fake signature
that could potentially bypass S&F’s analysis, hiding the real
malicious behavior of the compromised device. Also, signing
the requests makes it harder for potential attacker to perform
illegal request which may also reveal the specific device-class
signatures. Although the design approach of the proposed
fingerprinting approach could also support anomaly-based
intrusion detection systems (IDSs) [8], S&F does not monitor
the devices’ behaviors while they are performing regular net-
work operations. Thus, S&F does not consider specific attack
vectors that may deviate the devices’ behavior from their
expected signature [8], [20]. Detecting and classifying specific
anomalies coming from compromised devices is outside the
scope of this work. However, we analyze S&F’s performance
under potentially compromised environments below.

B. S&F on Compromised Environments

We discuss on the performance of STOP-AND-FRISK on
compromised devices. The main goal of S&F is to fingerprint
CPS devices based on their behavior. Since we combine
software and hardware characteristics of the devices into our
analysis, there are several steps an attacker must go through
to properly bypass S&F.

1) The Attacker Knows the Challenge: Since S&F is
expected to run on a secure environment, the attacker must
be able to break the encryption scheme and take control
of the challenge. At this point, S&F relays on the secrecy
of modern symmetric and asymmetric encryption schemes.
Most modern microcontrollers incorporate low-power state-
of-the-art encryption capabilities into their design [40]. Thus,
it is nowadays feasible to perform long-key encryption on
resource-limited devices, enabling the implementation of a
secure S&F in practice.

2) The Attacker Controls the Device: Our threat model
assumes that an attacker is able to introduce fake devices
into a critical infrastructure. In this case, we should assume
that the attacker has control over the device’s OS and apps
and can generate fake PCL and DPI sequences. However,
the attacker still needs to infer the device signature which
resides in a secure server, outside the edge devices. Under
these circumstances, the attacker’s only capability is to infer
the exact behavior of the devices at both hardware and
software levels to create a counterfeit signature that looks
exactly like the ground-truth signature of the device class is
being impersonated.

3) The Device Under Attack: An special case of the pre-
vious threat assumes that a legitimate device is compromised
and the attacker is able to perform stealthy attacks. In this
case, S&F would not be able to directly detect the attacks
as the signatures only computes the device behavior while
reacting to a specific challenge and not while the devices
perform malicious activities. However, previous works have
demonstrated that approaches similar to S&F can be used to
detect stealthy attacks (e.g., stealing sensitive information),
as the attacks would change the normal behavior of the
devices [8]. S&F can be adapted to these scenarios if the right
signature is collected. For this, the learning phase simply needs
to study the behavior of the devices while their perform their
expected operations over time, and not while reacting to a
specific stimulus.

4) S&F Under Attack: It is possible for a legitimate device
to get compromised. In this case, the attacker may be able
to detect the S&F’s requests and modify the PCL and DPI
parameters, causing the device not to correctly react to the
challenge. As a result, S&F would flag the device as unau-
thorized and reject the device, potentially causing a Denial-
of-Service (DoS) situation. Although the DoS attack is the
result of S&F’s analysis, it is definitely positive to reject a
compromised device from the network.

VIII. RELATED WORK

A. Device Fingerprinting

Device fingerprinting is an appealing research area that fol-
lows two main paths: device-class and device-host fingerprint-
ing. In [41] the feasibility of large-scale host fingerprinting
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via motion sensors is analyzed with 90% accuracy. Other
works use microscopic deviations in clock skews to identify
specific devices [42]–[44]. However, these approaches are
vulnerable to simple countermeasures and require the analysis
of several network packets for accurate results. Authors in [45]
use embedded acoustic devices (microphone and speakers) on
smartphones to fingerprint individual devices. Even though
they report accuracy values in the range of 98%, these results
are only possible in close-range distances (0.1 meters). Similar
research paths were followed in [46], [47] where frequency
responses of devices’ speakers are used to identify individual
devices. The authors in [48] use RF-based fingerprinting to
identify attacks to key-less entry systems. Also, the work
in [49] uses the inertial measurement unit sensors found in
iOS and Android devices to create globally unique finger-
prints. Similarly, the work in [50] performs authentication
of different hardware based on checksum extracted from
micro-architectural implementation differences. However, this
work limits its evaluation to simulation environments. The
work in [51] analyzes hardware imperfections from 3D print-
ers to identify unlawful 3D printed products. The recent impact
of the Internet of Things (IoT) has motivated researchers
to look into mechanisms to fingerprint IoT devices. One
interesting approach uses a stimulation-response mechanism to
identify specific devices via magnetic signals emitted from the
CPU module [52]. Finally, Channel State Information (CSI)
has also been proposed to fingerprint WLAN devices [53].

As for the identification of different classes of devices,
in [54], the authors propose a passive blackbox technique
for determining the type of access point (AP) connected to
a network based on its behavior. In [19], [55], the authors use
time as a baseline for device type fingerprinting. In this case,
the proposed fingerprinting methods are mainly based on (1)
the response time to network-based interactions (cross-layer
fingerprinting) and (2) the response time to physical operations
(physical fingerprinting). Although their results are promising,
the first approach highly depends on configurable network
attributes like the level of priority of TCP messages and ACK
implementation. Further, the second proposed method also
depends on the SCADA system configuration. In different
works, passive device-class fingerprinting is proposed by using
the timing distributions between network packets as the finger-
printing features [38], [56]. In similar approaches applied to
domains other than CPS, researchers propose the analysis of
network dynamics to infer IoT device classes [37], [57]–[60].

B. Function and System Calls

Several security approaches make use of system and func-
tion call analysis to regulate and monitor the behavior of
specific applications [24], [61], [62]. For instance, researchers
have proposed the use of system and function call analysis for
the design of intrusion detection systems (IDS) [63], the iden-
tification of operating system functions [64], sandboxing [65],
and the implementation of software portable packages. Also,
some works have demonstrated that similar approaches are
suitable for the classification of behavioral anomalies [66],
[67]. Although these last works report high overhead intro-
duced to the systems, other similar implementations are more
lightweight [68].

TABLE V

S&F AND OTHER FINGERPRINTING TECHNIQUES

C. Behavioral Analysis

The authors in [69] use OS and hardware features extracted
from computing systems to fingerprint browser users. In [35],
behavioral (i.e., network traffic’s temporal features) and static
features are combined to fingerprint mobile device apps. Other
works report the use of the devices’ behavior as a response to
stimulant network packets [70], [71]. In spite of their positive
results, these types of fingerprinting techniques also come with
some limitations. For instance, the proposed approaches only
apply for specific types of network protocols (e.g., transport
layer protocols like UDP, and TCP), or they are vulnerable
to network dynamics such as WiFi channel characteristics and
traffic delay. Also, the behavior of API functions in computer
systems has been proposed to fingerprint specific devices [72].
The work in [36] proposes the utilization of sensor behaviors
from mobile devices to create fingerprints used to authenticate
users.

D. Differences From Existing Works

In Table V, we further compare S&F against fingerprint-
ing techniques discussed before based on specific design
and implementation criteria. The existing works (1) require
extensive analysis, (2) depend on network dynamics, (3) con-
sider physical metrics, (4) consider OS/kernel metrics, or (5)
yield high overhead. We selected these comparison features
as we believe they directly impact the performance of the
time-critical CPS infrastructure. For instance, as opposed to
S&F, other fingerprinting techniques require extensive data
analysis or depend on specific network metrics to achieve
their results. Surprisingly, these solutions do not offer specific
overhead performance analyses even though fingerprinting
solutions that focus on the behavior of the network dynam-
ics may impact the performance of the CPS infrastructure.
Additionally, their effectiveness either depends on the net-
work’s configuration, the analysis of extensive amount of
data, or the observation of fingerprinting features over long
periods. S&F is different from other discussed solutions since
it is host-based and device-centered. Also, it does not require
traffic monitoring, the study of the interaction between CPS
devices and other network equipment, nor the need to over-
come inevitable errors or overhead (e.g., latency) that can be
introduced from changes in network dynamics. Our frame-
work implements a signature-based device type fingerprinting
mechanism that studies the behavior and performance of the
CPS devices at both hardware and kernel levels. S&F utilizes a
challenge-response approach where the devices perform stan-
dard CPS functionalities and operations. Finally, our technique
achieves excellent identification results while introducing very
little overhead to the CPS devices at downtime.
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IX. CONCLUSION

CPS critical infrastructure networks use different devices
to collect data and monitor critical operations. However,
these devices can be spoofed by attackers to get access
to systems, steal information, or disrupt critical operations.
Also, legitimate CPS devices may include unauthorized pieces
of software and hardware that could degrade critical CPS
tasks. In this paper, we presented STOP-AND-FRISK (S&F),
a novel and lightweight CPS signature-based fingerprinting
framework used to identify CPS device classes based on
their behavior. Specifically, our novel approach combined
system and function call tracing techniques, signal processing,
and hardware performance analysis to implement a secure
challenge/response-based device-class identification solution.
Moreover, we evaluated the efficacy of S&F on a realistic
testbed that included different classes of CPS devices with
different hardware, software resources, and configurations. Our
extensive experimental results demonstrated that S&F achieves
an excellent rate in the identification of CPS devices classes.
Also, our analysis revealed that the use of the proposed
framework does not yield a significant overhead on the CPS
devices’ computing resources.
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