
Cybergrenade: Automated Exploitation of Local
Network Machines via Single Board Computers

Anurag Akkiraju, David Gabay, Halim Burak Yesilyurt, Hidayet Aksu, Selcuk Uluagac
Cyber Physical Systems Security Lab

ECE Department, Florida International University, Miami, Florida 33174

anurag.akkiraju@gmail.com, {dgabay, hyesi001, haksu, suluagac}@fiu.edu

Abstract—In this paper, we introduce a defensive cybersecu-
rity framework called Cybergrenade automating various penetra-
tion testing tools to sequentially exploit machines connected to a
single local network, all underneath a single application running
on a Single-Board Computer (SBC). This takes advantage of
the SBC’s unique capabilities in a way that manual exploitation
simply cannot match. Currently, while many SBCs are being
used in research as exploitation tool-kits, the current state of
automation of the processes associated with exploitation leaves
much to be desired. While this paper describes the Cybergrenade
Framework, it can be used as a guideline for future research
automating the exploitation process. Cybergrenade allows tools
such as Nmap, OpenVAS, and Metasploit tools to be automatically
utilized under one framework. Our experimental evolution re-
vealed that Cybergrenade can perform the automation of various
pentesting tools under a single application with ease.

Keywords—Automated Penetration Testing, Local Machines,
OpenVAS, Metasploit, Nmap, Exploitation, Single Board Computers

I. INTRODUCTION

In the field of Cyber-Security, there is a constantly growing
number of Common Vulnerabilities and Exposures (CVEs).
Software applications often include numerous identified and
zero day vulnerabilities, thus making the machines susceptible
to intrusion. As the number of CVEs continues to grow so
does the importance of businesses’ properly penetration testing
their networks, to prevent serious attacks on the networks’
machines from occurring. In this project, we introduce the
Cybergrenade framework which imitates an attack on a local
network for defensive purposes, exploiting the machines using
their respective CVEs. To symbolize a real attack on the
networks machines, we use a small Single Board Computer
which allows the attack to be a covert operation. The defining
factor is the automation of various aspects of the penetration
testing process all under a single script.

A ’Single Board Computer (SBC)’ describes a single
circuit board that has a ’complete’ ecosystem of computing
components such as a microprocessor, Input/Output (I/O), and
memory. As computing power has been compacted more and
more in smaller and smaller processors, the mainstream avail-
ability of SBCs has risen dramatically. SBCs are ubiquitous
today and include the various Raspberry Pis, BeagleBones,
and ODROIDs. The potential to use these various SBCs, often
small enough to fit in one’s hand, in many covert activities
is great. SBCs can be hidden in many small areas in order
to escape visual detection, which makes them perfect to use
as exploitation machines. The problem therein lies that if one

Fig. 1. Cybergrenade System Flow

of the benefits of using an SBC instead of a objectively more
powerful full sized computer lies in its potential to be covert,
then proceeding to manually find vulnerabilities and fire ex-
ploits at other machines in the local network through the SBC
would defeat the whole intention of remaining inconspicuous.
Therefore, to truly play to the real strengths of SBCs, the whole
exploitation process must be as autonomous and self sufficient
as possible, only necessitating human interaction in order to
connect to a local network in the first place. After this, the
SBC would preferably only be interacted with when it’s time
to take it away surreptitiously from its hiding spot. The overall
interaction the SBC has with the local network is shown in
Figure 1.

In this paper, we show that this solution has many useful
applications, namely being able to be used by many not
necessarily familiar with any of the ’made-for-manual-usage’
penetration testing tools needed to perform reconnaissance
and exploit machines on a local area network. As stated
previously, the automation provided as the solution holds true
to the core of using SBCs as penetration testing tool kits, as
well as providing more flexibility in terms of allowing more
covert exploitation of various machines. This project is also
a blueprint for automation within various tools while keeping
their running logic intact.

When we define the exploitation of local machines, we
are, in this case, referring to gaining shell access on the
machines without sanction. Our results differ from related
works constructing penetration testing devices using SBCs as
the exploitation process is automated. In order to autonomously
target and ’exploit’ machines on a local network, there is
integration with a network scanner to find needed information

2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems

2155-6814/17 $31.00 © 2017 IEEE

DOI 10.1109/MASS.2017.95

580

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 18:54:42 UTC from IEEE Xplore. Restrictions apply.

about potentially exploitable machines on the local network.
Here exploitation works as a means of empirically verifying
the vulnerability. In addition to this, there is integration with
a vulnerability assessment scanner in order to find potential
weaknesses in the machines that will be tested. Finally, there
is integration with a penetration testing framework in order
to search for and fire exploits at the identified local machines
based on the information given by the network scanner and
vulnerability assessor.

The remainder of this paper is structured as follows: In
Section II, related works are presented. In section III, we
introduce the design of Cybergrenade involving the tools used
and how to create the autonomous penetration testing device.
Our experiments and the results are presented in Section IV.
Lastly, we conclude by presenting a summary of our work, its
applications, and its uniqueness in Section V.

II. RELATED WORK

A great deal of researchers have worked on using SBCs
as potential pentesting tool kits. However, there are very few
researchers who have expounded on a way to automate the
pentesting tools within a single SBC to take full advantage of
the SBC’s capabilities. The researchers in [7] succeed in the
automation of OpenVAS in the same way we do using the same
XML connection to OpenVAS Management Protocol (OMP)
[12] that we elaborate in the next section on how we use it
in our framework. Though, in [7]’s case a manual interference
is still required, for example, when reading and working off
information automatically delivered to a web server, or while
picking and choosing targets to scan for vulnerabilities. Our
solution for automated OpenVAS/OMP is different and unique
in the way we expound on catching the randomized Unique
Alphanumeric Identifier, or UID, values sent back by OMP to
the SBC as elaborated in Section III of this paper. Furthermore,
[7] stops at the point of importing the automated vulnerability
scan into MSFconsole and not automating MSFconsole in
anyway to do anything with the given information. This paper
does describe a way to automate MSFconsole and succeeds
in getting MSFconsole to run any command a human would
manually run in the same situations. In the case of paper
[4], the authors use a method called SSH callback to connect
a penetration testing device to a computer outside of the
local network. Once connected, they control the penetration
testing device and view results on a web application, they
designed specifically to display the exploits and vulnerabilities
found in their experiments. Like [7], the design in [4] only
automates the initial startup processes, this includes scanning
the local network and populating the Metasploit database with
the discovered hosts, ports, and vulnerabilities. Nonetheless,
beyond this initial script, the user must manually try to exploit
the vulnerabilities on these machines.

Another work [6] automates MSFconsole successfully in a
similar way we end up automating it, by manipulating resource
scripts. However, the caveat is that for their paper, it would
only work in the case that they knew ahead of time which
exploit to run, thereby not being as flexible in terms of our
solution in which the resource script file sent with MSFconsole
is truly procedurally generated each time we run the script. [6]
also does not focus on using these tools in tandem with SBCs,
which we are focusing on with this paper. Both [7] and [6]

use Python as the chosen scripting language for their works,
similar to the Cybergrenade framework.

Besides aforementioned related works, there are two related
works focused on security assessment. [2] is one security
assessment study that covers next generation wireless mobile
networks. Another penetration testing and security assessment
work is [3], which utilizes Nmap and OpenVAS software to
perform penetration testing like Cybergrenade. In [1]’s tech-
nical report, there is a penetration testing system architecture
that is similar to the architecture of Cybergrenade.

In addition to all these works, [5] is an instrumental
reference for ideas on why to run Kali Linux on any SBC
over other Operating Systems. It also explains the manual
’exploitation process’ consisting of a network scan, vulner-
ability assessment, and exploit delivery through SBCs, which
is roughly followed in the Cybergrenade Framework, though
in an automated fashion.

III. SYSTEM DESIGN AND IMPLEMENTATION

In the Cybergrenade framework, Kali Linux [8], created by
Offensive Security, an image of Linux with many pentesting
tools already built in, was used as the OS for the SBC-based
pentesting device. This OS can be used on every SBC that can
handle more than 8 GB of memory, which makes a good fit
to base the system on. As most SBCs are powerful enough to
run all the tools needed to perform an automated exploitation,
some SBCs would simply be faster due to larger amounts of
RAM. For example, a Raspberry Pi 3B [14] with Kali Linux
on it, hence can run all the necessary tools on it, albeit slowly.
In Cybergrenade, we used the ODROID XU4 [11] due to the
XU4’s 2 GB of RAM, among other things, compared to the
Pi’s 1 GB of RAM, which helped speed up the runtime greatly.
Nevertheless, the Cybergrenade framework can be replicated
on any SBC that can host the full version of Kali Linux on
it. On all the SBCs, we used a 32 GB Micro-SD card for
memory storage, and encountered no problems with running
out of memory throughout this project. Furthermore, for its
readibility and its native support by many tools, we chose
a lightweight scripting language, Python, to connect all the
various tools needed together under one executable script.
Python also provided tight and easy access to the command
shell in terms of sending commands to be executed and was
easily able to spawn various threads as needed.

A. Tools Used

To scan the network and return information about the
IP Addresses, Ports, Protocols, and OS used for the local
machines, Cybergrenade uses ’Nmap’, a free and open source
network mapper natively supported on the Kali Linux image.
For a vulnerability assessment scanner, the options natively
supported on Kali Linux were not very flexible as they mainly
focused on web-based vulnerability assessment, which we
wanted to stay away from in case the local network is a closed
system in of itself and the machines on the local network could
not connect to the Internet. We also aimed to make sure that
the vulnerability scanner we used was free so that it would be
available for anyone to download using the proposed solution;
as well as open source. For these reasons, we settled on
’OpenVas’, a free service provided by ’Greenbone Networks’.

581

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 18:54:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Architecture of Cybergrenade

As Kali Linux came with the ’Metasploit Penetration Testing
Framework’ built in, it was chosen to find and deliver exploits
to the local machines using information given to it by the other
two tools. All of the penetration-testing tools used were made
generally to be manually used, with little, if any, support for
automation, which presented a serious problem and demanded
some unique solutions as we progressed.

B. System Workflow

As stated earlier, the script that is executed when the SBC
is connected to a target wireless network is written in Python.
Python has native commands for sending a string parameter to
a terminal shell for execution. Taking advantage of that, many
of the automated commands not within the ’Metasploit’ stand-
alone module, which is later explained, are sent through the
native connection between Python and the Terminal. The full
flow of the script is depicted in Figure 2. The first thing in the
script to be automated was scanning the network with Nmap.
The various flags seen below such as ’-O’, simply specify the
types of information that will be needed to be returned into
the created file ’recon.nmap’.

Following this, the results in ’.nmap’ form were converted,
shown in Listing 1, into a CSV file through an open source
python file called ’nmaptocsv’ [10]. As Python is built in with
packages to decipher and sort CSV rows and columns into
Arrays, having the scanner data saved in CSV form was very
important.

. . .
os . system (’ py thon nmaptocsv . py −i r e c o n . nmap −f ip−fqdn−

p o r t−p r o t o c o l−s e r v i c e−v e r s i o n−os −o r e c o n . csv ’)
. . .

Listing 1. Sending Nmap output as input to nmaptocsv.py to be converted
to CSV.

After sorting the data in ’recon.csv’ into various arrays,
IP Array, OS Array, PORT Array, etc..., such that index n
throughout each array would represent the corresponding bit
of information about the (n+1)th machine found on the local
network. For example, the information in Index 8 in the OS
Array represents the OS of the 9th machine found by Nmap.

After this step, one by one, the IP Addresses of the targets
are sent to OpenVAS Management Protocol (OMP). After

extensive trial and error, it was decided that sending and
receiving data through XML would be easiest to automate.
A command showing one of these commands is shown in
Listing 2. For OpenVAS, to perform a scan on a target IP
and get a report back, a set of processes must be run. The
first one of these processes is to set a target by assigning it
to a machine IP. The next being to set a task by assigning it
to a target, followed by starting the task, and finally getting
a report in XML format. Each of these processes returns a
UID. In OpenVAS, to refer to the previous data returned by
itself, the UID of the previous action must be given back to
the system, which in itself can be a daunting task to automate
the next command, the SBC would have to know what random
UID was assigned after the previous command. To combat this
issue, every output given by OMP was piped into a separate
XML file, which was promptly parsed for the case-specific
UID, and was stored on the SBC for future usage.

. . .
os . system (’ omp −−p r e t t y−p r i n t −−xml \’<g e t t a s k s />\’ ’

+ ’> t a s k s . xml ’)
. . .

Listing 2. Example in which output XML is sent to ’tasks.xml’ to be parsed.

The XML parsing is done through a Python package called
’ElementTree XML.’ It specifies in the OMP documentation,
where the location of the UID will be for each returned XML
file, which is the reason the UID is able to be returned without
any problem.

Once the final report XML file is created, as seen in the
excerpt shown in Listing 3, per OMP documentation, there will
be a ’CVE’ tag either with the string ’NOCVE’, or a string
specifying a CVE the target machine may be susceptible to,
such as ’CVE-2007-2447’.

This ’CVE string’ is extracted and if the CVE is valid,
then it is sent to Metasploit to see if Metasploit has any
exploits made for that CVE; if not valid, then the next machine
IP address in IP Array is sent to OpenVas for vulnerability
assessment.

. . .
<h o s t>1 9 2 . 1 6 8 . 1 . 1 0 3

<a s s e t a s s e t i d =” ”></ a s s e t>
</ h o s t>
<p o r t>445 / t c p</ p o r t>

<n v t o i d =” 1 . 3 . 6 . 1 . 4 . 1 . 2 5 6 2 3 . 1 . 0 . 1 0 3 9 4 ”>
<t y p e>n v t</ t y p e>
<name>SMB l o g i n</ name>
<f a m i l y>Linux</ f a m i l y>
<c v s s b a s e>0 . 0</ c v s s b a s e>
<cve>CVE−2007−2447</ cve>

</ p o r t>
. . .

Listing 3. Sample XML from the returned report for the vulnerability scan.

Automating Metasploit or more specifically ’MSFconsole’
was a nontrivial task throughout this process. The problem lies
in the fact that when MSFconsole is called from the terminal,
and opens its own separate module inside it, the separate
module cannot be accessed with the regular means Python
provides to access the standard shell. The command in the
Python script opening the MSFconsole is shown in Listing 4.

. . .
os . sys tem (’ MSFconsole ’)
. . .

Listing 4. Calling MSFconsole from terminal in Python.

582

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 18:54:42 UTC from IEEE Xplore. Restrictions apply.

Due to this, any following commands sent to the terminal
via Python for MSFconsole are sent to the separate module
MSFconsole runs in within the terminal. It was possible, we
found to pass a resource script (.rc) file in with the command
to initialize MSFconsole. However, this option was meant to
pass a few unchanging commands in for MSFconsole to run
as part of the initializing process. What we found needed to be
done for true automation of MSFconsole was to procedurally
generate the contents of the .rc file, thereby retaining needed
dynamism for exploiting various local networks.

The way we went on by doing that is quite unique and may
help anyone in the future needing Python-based automation
of MSFconsole. While other researchers have stumbled upon
very similar solutions as we did, ours can work in a variety
of different situations, rather than in static situations that only
work if a known exploit is manually entered in. Metasploit’s
native language is Ruby, and therefore has more support for
Ruby Automation than Python Automation. In fact, within the
.rc file that can be passed in with MSFconsole, there is the
option to create code blocks of Ruby code to achieve auto-
mated tasks. However, this standalone feature cannot integrate
and pass variables with outside Ruby scripts and therefore
will not allow the needed transition back and forth between
spawning commands within MSFconsole and to the root shell.
Nevertheless, we are using Python, and found that we could,
within the main Python script that every tool is automated
through, open and write commands to the .rc file when needed,
only invoking MSFconsole with its corresponding resource
script file after we have finished generating all the commands it
must run for the entirety of the attempted exploitation session
of all the machines on the local network and closed the file.
This process is shown in Listing 5.

Going back to the transition between OMP and Metasploit,
as OMP passes the CVEs that the target IP address maybe sus-
ceptible to MSFconsole, MSFconsole runs a series of searches,
using commands written to the aforementioned resource script
file, to find out if it has any preexisting exploits made for
each CVE given to it. If it does not find any existing exploits
for any of the CVEs given to it, control will pass back to
OMP to start scanning the next machine in the network as
provided by the IP Array. If it does find existing exploits,
MSFconsole will sequentially execute said exploits against the
target machine. Again, if none of the exploits work, and a
shell is not spawned, control is passed back to OMP to begin
scanning for vulnerabilities on the next machine. If in the case
that the exploit works, and a shell is spawned, another thread
will be opened, leaving the current untouched, and the next
machine will go through the whole process again in that thread.

. . .
msf = open (” g e n e r a t e d . r c ” , ”w”)
. . .
Log ic t h a t l e a d s t o f o l l o w i n g commands
. . .
msf . w r i t e (”\n ” + ” s e t RHOSTS ” + IP Array [x])
msf . w r i t e (”\n ” + ” s e t RHOST ” + IP Array [x])
msf . w r i t e (”\n ” + ” e x p l o i t ”)
. . .
A f t e r a l l l o g i c has been pa s se d and f i l e i s f u l l y w r i t t e n
msf . c l o s e ()
os . sys tem (’ MSFconsole −r g e n e r a t e d . r c ’)
. . .

Listing 5. Sample Commands sent to the .rc file and run at the end of file
generation through logic using the ’-r’ flag.

IV. EXPERIMENTS

Trials ranged between networks with only a single target
machine to networks with multiple target machines. The local
networks with multiple target machines consisted of 3 vul-
nerable VM’s, as well as 2 machines that were not expected
to be exploitable. All the trials were conducted on local
networks consisting of machines with OS images known to
be susceptible to some exploits on Metasploit. For example,
we used the ’Metasploitable’ VM [9] in VirtualBox [13] as our
’go-to’ exploitable machine in the testing phases. The ’pwnOs’
VM was also used as a VM for one machine on the local
network. On various machines, the Metasploitable VM was
set up and connected to the target local network and the script
on the SBC, which in our case was the ODROID XU4, was
executed. First, the script scanned the network and sorted the
information into a CSV file. Behind the scenes, the data from
the CSV file was sorted into various arrays for later extraction.

IP ;FQDN;PORT ;PROTOCOL; SERVICE ;VERSION ;OS
192 . 168 . 0 . 1 ; ; 21 ; t c p ; f t p ; ; Linux 2 . 6 . 23 − 2 . 6 . 38
. . .
192 . 168 . 0 . 101 ; ; 88 ; t c p ; k e r b e r o s−s e c ; ; Apple Mac OS X 10 . 7 . 0
. . .

Listing 6. CSV output after Nmap scan. This data is sorted into various
arrays.

Next, in this trial, the script ran as expected into OpenVas and
scanned each IP address and behind the scenes, the responses
were parsed for the UID assigned at the end of each command
as in shown Listing 7.

Starting OpenVas Services
<create target response status text=”Target exists already” status=”400”
<create task response id=”15aece0b6328−4f1d931e−7aaf455cfe52” status
<start task response status text=”0K, request submitted” status=”202”>
<report id>fd7aaea52a554d53−9d47c7d1f45a3113<lreport id>
</start task response>
<create target response status text=”Target exists already” status=”400
<create task response id=”8f2e8088e7b8−4584b877−3565a5def3d8” status
<start task response status text=”0K, request submitted” status=”202”>
<report id>699a33@afcee4544−90efa219e228878e<lreport id>
</start task response>

Listing 7. Response of OpenVAS.

Any CVEs found in the OpenVAS report were successfully
passed on to MSFconsole and if MSFconsole found a working
exploit for it, it set the Target to the IP Address that was
the target of the vulnerability scan and successfully attempts
to exploit it. For example, Listing 8 is the terminal output
while exploiting one machine, it fails trying one exploit, then
succeeds after trying another.

...
MSFconsole > resource (generated.rc)> spool cve0.txt
Spooling to file cve0.txt...
MSFconsole > resource (generated.rc) > search CVE−2007−2447
MSFconsole > resource (generated.rc) > use exploit/multi/samba/usermap script
MSFconsole > resource (generated.rc) > set RHOSTS 192.168.0.103
RHOSTS => 192.168.0.103
MSFconsole > resource (generated.rc) > set RHOST 192.168.0.103
RHOST => 192.168.0.103
MSFconsole > resource (generated.rc) > exploit
Handler failed to bind to 192.168.0.102:4444:−
Started reverse TCP double handler on 0.0.0.0:4444
...

Listing 8. Automated MSFconsole response and exploitation output to
terminal.

We found that out of a local network of 3 vulnerable
machines and 2 machines that were not expected to be

583

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 18:54:42 UTC from IEEE Xplore. Restrictions apply.

vulnerable to any exploit in the metasploit database, 1 to 2
machines consistently had a root shell spawned and could
be deemed ’successfully exploited’. In all cases, however, the
unique automation techniques that Cybergrenade mapped out
worked to the best of their abilities and delivered the right
commands at the right times. Failure to exploit any given
machine mainly stemmed from either OpenVas not being able
to find any CVEs and from Metasploit not being able to match
a working exploit with those CVEs.

V. CONCLUSION

In this paper, we introduced Cybergrenade, which is a
framework that automates Nmap, OpenVAS, and Metasploit
as part of the exploitation process all underneath one Python
Script on an SBC. SBCs are quickly becoming more and more
widespread and its popularity shows no signs of slowing down.
Many have used them as covert pentesting tool-kits before,
but they stop short in completely automating the exploitation
process. The automation has many benefits that stay true to
the covert nature of exploitation. This covert behavior bids
well to the whole point of using a SBC rather than a larger
computer, to remain undetected. The flexibility automation
provides opens up endless possibilities previously unrealizable
without it.

Two unique contributions in this paper, that can be used
in other projects, are the successful automation of Open-
VAS/OMP in the manner shown, and the specific way Cyber-
grenade provides flexible automation of Metasploit/MSFcon-
sole through Python. As this project successfully deals with
the unpredictability OMP’s UIDs pose in the automation of
the tool, further research and usage of this technique can allow
anyone who needs a free vulnerability scanner like OpenVAS
automated a path to do so. Also, this paper presents a good
way forward for any group looking to automate MSFconsole
using Python by writing to the resource script file whenever
needed and only initializing MSFconsole once the .rc file
has been fully generated. As the blueprint for automated
MSFconsole has been laid out, it can be followed to allow even
smarter exploitations in the future as most of what a human
can do manually on MSFconsole can now be automated as
predictability allows. Automated exploitation of local networks
is most practical in tandem with SBCs due to the covert nature
of SBCs, however automated solutions as presented in this
paper are also viable on any Linux-based Computer that can
use Nmap, OpenVAS, and Metasploit.

ACKNOWLEDGMENT

This work was partly supported by the US National Sci-
ence Foundation Research Experiences for Undergraduates
Sites Program Grant No: REU-CNS-1461119 and US NSF-
CAREER-CNS-1453647. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the
funding agencies.

REFERENCES

[1] K. Scarfone, M. Souppaya, A. Cody, and A. Orebaugh,
“Technical guide to information security testing and
assessment,” National Institute of Standards and Tech-
nology, Tech. Rep., 2008.

[2] F. Palmieri, U. Fiore, and A. Castiglione, “Automatic
security assessment for next generation wireless mobile
networks,” Mobile Information Systems, vol. 7, no. 3,
pp. 217–239, 2011.

[3] F. Holik, J. Horalek, O. Marik, S. Neradova, and
S. Zitta, “Effective penetration testing with metasploit
framework and methodologies,” in 2014 IEEE 15th
International Symposium on Computational Intelligence
and Informatics (CINTI), Nov. 2014, pp. 237–242. DOI:
10.1109/CINTI.2014.7028682.

[4] L. Epling, B. Hinkel, and Y. Hu, “Penetration testing in
a box,” in Proceedings of the 2015 Information Security
Curriculum Development Conference, ser. InfoSec ’15,
Kennesaw, Georgia: ACM, 2015, 6:1–6:4, ISBN: 978-1-
4503-4049-6. DOI: 10.1145/2885990.2885996. [Online].
Available: http : / / doi . acm . org / 10 . 1145 / 2885990 .
2885996.

[5] J. Muniz, Penetration testing with raspberry pi. Packt,
2015.

[6] V. Tilemachos and C. Manifavas, “An automated net-
work intrusion process and countermeasures,” in Pro-
ceedings of the 19th Panhellenic Conference on In-
formatics, ser. PCI ’15, Athens, Greece: ACM, 2015,
pp. 156–160, ISBN: 978-1-4503-3551-5. DOI: 10.1145/
2801948.2802001. [Online]. Available: http://doi.acm.
org/10.1145/2801948.2802001.

[7] Y. Hu, D. Sulek, A. Carella, J. Cox, A. Frame, and
K. Cipriano, “Employing miniaturized computers for
distributed vulnerability assessment,” in 11th Interna-
tional Conference for Internet Technology and Secured
Transactions (ICITST), Dec. 2016, pp. 57–61. DOI: 10.
1109/ICITST.2016.7856666.

[8] (2017). Kali linux, [Online]. Available: https : / /www.
kali.org/kali-linux-documentation/.

[9] (2017). Metasploitable3, [Online]. Available: https : / /
github.com/rapid7/metasploitable3.

[10] (2017). Nmaptocsv, [Online]. Available: https://www.
github.com/maaaz/nmaptocsv.

[11] (2017). Odroid xu4, [Online]. Available: http://odroid.
com/dokuwiki/doku.php?id=en:odroid-xu4.

[12] (2017). Omp documentation, [Online]. Available: http:
//www.openvas.org/omp-6-0.html.

[13] (2017). Oracle virtualbox, [Online]. Available: https://
www.virtualbox.org/.

[14] (2017). Raspberry pi 3b, [Online]. Available: https : / /
www.raspberrypi.org/products/raspberry-pi-3-model-b/.

584

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 18:54:42 UTC from IEEE Xplore. Restrictions apply.

