
GTID: A Technique for Physical Device
and Device Type Fingerprinting

Sakthi Vignesh Radhakrishnan, Student Member, IEEE, A. Selcuk Uluagac, Senior Member, IEEE, and

Raheem Beyah, Senior Member, IEEE

Abstract—In this paper, we introduce GTID, a technique that can actively and passively fingerprint wireless devices and their types

using wire-side observations in a local network. GTID exploits information that is leaked as a result of heterogeneity in devices, which is

a function of different device hardware compositions and variations in devices’ clock skew. We apply statistical techniques on network

traffic to create unique, reproducible device and device type signatures, and use artificial neural networks (ANNs) for classification. We

demonstrate the efficacy of our technique on both an isolated testbed and a live campus network (during peak hours) using a corpus of

37 devices representing a wide range of device classes (e.g., iPads, iPhones, Google Phones, etc.) and traffic types (e.g., Skype, SCP,

ICMP, etc.). Our experiments provided more than 300 GB of traffic captures which we used for ANN training and performance

evaluation. In order for any fingerprinting technique to be practical, it must be able to detect previously unseen devices (i.e., devices for

which no stored signature is available) and must be able to withstand various attacks. GTID is a fingerprinting technique to detect

previously unseen devices and to illustrate its resilience under various attacker models. We measure the performance of GTID by

considering accuracy, recall, and processing time and also illustrate how it can be used to complement existing security mechanisms

(e.g., authentication systems) and to detect counterfeit devices.

Index Terms—GTID, device fingerprinting, wireless device fingerprinting, device type fingerprinting

Ç

1 INTRODUCTION

IDENTIFYING devices connected to a network (i.e., device fin-
gerprinting) has become of critical importance to ensure

security services to the network. In the same vein, there has
also been a need to understand the type of a device that is
connected to a network (i.e., device type fingerprinting).
Device fingerprinting seeks to uniquely identify devices on
a network without considering existing easily forgeable
identifiers (e.g., Internet Protocol (IP) and Medium Access
Control (MAC) addresses). On the other hand, device type
fingerprinting can be used to determine if a device belongs
to a particular cohort.

In this paper, we present GTID1: A Technique for Physical
Device and Device Type Fingerprinting. Our technique uses
information leaked by the physical implementation of a
device through its network traffic to identify a device and a
device’s type. This is accomplished by exploiting the hetero-
geneity of devices which is a function of the different
hardware compositions (e.g., processor, DMA controller,
memory) of the devices as well as the clock skews. While
the former enables device type identification, the latter

enables device identification. We use statistical techniques
to capture time-variant behavior of network traffic and to
create unique, reproducible device and device type signa-
tures. For this, GTID passively collects traffic on a wired
segment between the access point (AP) and the final desti-
nation in a local network and uses Artificial Neural Net-
work (ANN) based algorithm to identify devices and their
types. Unlike current wireless intrusion detection systems
(WIDSs) or wireless device fingerprinting techniques that
monitor the wireless spectrum, our technique allows for
wireless device and device type fingerprinting from the
wired side of the network (e.g., at a backbone switch). Thus,
GTID can alleviate the need for costly spectrum analyzers
and the need to be within wireless range of the device to be
fingerprinted. In addition, GTID can complement existing
security solutions such as authentication, network manage-
ment, and access control systems.

In general, although it is possible to combine existing
device and device type fingerprinting techniques, current
fingerprinting techniques either identify unique devices [1],
[2], [3], [4], [5], [6] or identify device types [7], [8], [9], [10],
[11], [12]. However, a technique that does both can prove
very useful. For example, the device ID capability (device
fingerprinting) provided by GTID can be used to augment
existing Network Access Control (NAC) systems that seek
to control access to a network. GTID can be used as a stand-
alone fingerprinting system; however when used in con-
junction with an exiting NAC, two limitations of current
NAC systems can be obviated. Given that NAC client soft-
ware passes the user’s credentials to a backend server (e.g.,
RADIUS) for authentication, the user is ultimately autho-
rized, not the device. Therefore, a user can simply transfer
his or her credentials to another device, which could be

1. The name of our technique is inspired by Georgia Tech ID cards.

� A.S. Uluagac is with the Department of Electrical and Computer
Engineering, Florida International University, Miami, FL.
E-mail: suluagac@fiu.edu.

� S.V. Radhakrishnan and R.A. Beyah are with the School of Electrical and
Computer Engineering, Georgia Institute of Technology, Atlanta, GA
30318. E-mail: sakthi03@gatech.edu, rbeyah@ece.gatech.edu.

Manuscript received 28 Sept. 2013; revised 30 May 2014; accepted 26 Sept.
2014. Date of publication 9 Nov. 2014; date of current version 16 Sept. 2015.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TDSC.2014.2369033

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2015 519

1545-5971� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:08:39 UTC from IEEE Xplore. Restrictions apply.

unauthorized, and access the network in a legitimate fash-
ion (Fig. 1). On the other hand, because GTID’s device type
fingerprinting capability detects differences in devices inter-
nal composition, GTID can be used as a non-destructive
method for counterfeit device detection (Fig. 2a)2 [14]. With
GTID used in conjunction with a NAC, the device can be
authorized in addition to the user’s credentials (Fig. 2b). A
second limitation of current NAC systems is that they sup-
port a limited range of devices (e.g., Windows machines
and Macs), and deem many other devices (e.g., IP printers,
IP thermostats, gaming systems) as unmanageable. Since
GTID uses information leaked by patterns in the network
traffic, it does not require a software client and can thus be
used on devices that are traditionally deemed as unmanage-
able (Fig. 2c). Note that as we approach the Internet of
Things (IoTs), most devices will be considered unmanage-
able and may not work with current NAC solutions. The
complete realization of each of the aforementioned services
requires a highly accurate device fingerprinting technique.
While GTID is not perfect, this paper presents the initial
results of a promising system that takes a unique approach
to device and device type fingerprinting.

The contributions of GTID are as follows: It (1) can
provide device and device type fingerprinting; (2) is resilient
to various attacker types; (3) can detect previously seen and
unknown devices; (4) provides wired-side detection of wireless
devices and device types; (5) works for various protocols
(e.g., TCP, UDP, ICMP) and operating systems; (6) does not
require deep packet inspection (e.g., to obtain timestamps

or protocol banners), thus it is scalable and privacy preserv-
ing; (7) works on IP-level encrypted streams; (8) helps to
ensure that devices be authorized, and not just the users
(i.e., independent of user credentials); (9) does not require
third party client software and works for devices that do
not (or will not) have NAC clients although it can comple-
ment such existing security mechanisms. In this paper, we
demonstrate the effectiveness and the practicality of GTID
on both an isolated testbed and a live campus network
using a collection of 37 devices belonging to a diverse set of
device classes including iPads, iPhones, Kindles, Google-
Phones, Netbooks, etc. The performance of GTID is evalu-
ated by considering accuracy, recall, and processing time
with real traffic from various applications and protocols
such as Skype, ICMP, SCP, Iperf. We also consider eight dif-
ferent attack models and show how GTID would react to
each of these attacks.

The primary weakness of this technique, as with most
works that rely on fine-grained packet timing, is that the
timing is lost as a result of buffering in switches and routers.
Therefore, this technique is not suited for identification
across the Internet. Rather, it is perfectly suitable for supple-
menting the significant challenge of local network access
control (and other local network activities, e.g., counterfeit
detection). Although the cost of equipment and experimen-
tation was significant, the authors recognize that the perfor-
mance of the system using a cohort of 37 devices is not
representative of a network with 1,000+ devices. However,
given that most business are small (87 percent of US compa-
nies have 19 or fewer employees while only 0.34 percent of
US companies have 500 or more employees) [15], most net-
works are small, which implies that GTID could be useful
for a significant segment of the deployed networks.

The remainder of this paper proceeds as follows. We first
discuss the related work in Section 3. In Section 2, we dis-
cuss the background and theory behind our technique.
Threat model and assumptions are articulated in Section 4.
Section 5 provides an overview of the technique. In
Section 6, we evaluate GTID while considering various
attacker models. We analyze the limitations of GTID in Sec-
tion 7 and then discuss its real-time implementation and
performance analysis in Section 8. We conclude the paper
and discuss future work in Section 9.

Fig. 1. Authentication of an unauthorized device in 802.1x.

Fig. 2. How can device and type fingerprinting can complement other security security mechanisms? (a) Counterfeit device detection; (b) Device and
user authentication with NAC; (c) Authentication of unmanageable devices with NAC.

2. Counterfeiting accounts for at least $7.5B in lost revenue for U.S.
semiconductor companies [13].

520 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2015

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:08:39 UTC from IEEE Xplore. Restrictions apply.

2 BACKGROUND DISCUSSION

Packet creation in a device is a complex process. It involves
many internal parts of the device working together as
shown in Fig. 3. Before a packet can be sent, the instruction
set initiating the process is extracted from the memory hier-
archy (LI/L2 cache, main memory, hard disk) and sent to
the CPU for execution. The OS then directs the CPU to cre-
ate a buffer descriptor in the main memory, which contains
the starting memory address and length of the packet to be
sent. Multiple buffer descriptors are created if the packet is
located in multiple discontiguous regions of memory. The
OS then directs the CPU to write information about the new
buffer descriptors to a memory-mapped register on the net-
work interface card (NIC). These data traverse the front side
bus through the Northbridge to the PCI bus. The NIC ini-
tiates one or more direct memory access (DMA) transfer(s)
to retrieve the descriptors. Then, the NIC initiates one or
more DMA transfer(s) to move the actual packet data from
the main memory into NIC’s transmit buffer. These data
again leave the front side bus, and travel to the NIC through
the Northbridge and the PCI bus. Finally, the NIC informs
the OS and CPU that the descriptor has been processed.
Then, the NIC sends the packet out onto the network
through its medium access control unit [16]. Assuming that
the effect of the OS can be abstracted, one can see that the
major components that affect the creation of packets are: the
CPU, L1/L2 cache, physical memory, the DMA controller,
the front side bus, the back side bus, the PCI bus, and the
NIC. Therefore, the opportunities for diversity exist at both
the device level, aiding device type identification, and at the
component level, aiding device identification. At the device
level, different vendors use different components with dif-
ferent capabilities and algorithms (e.g., Dell Latitude 2110
with Intel Atom N470 processor @ 1.83 GHz vs. Lenovo
G570 with Intel Core i5-2430 processor @ 2.4 GHz) to create
a device’s internal architecture. Accordingly, the packet cre-
ation process varies across architectures aiding in device
type identification.

In order to better understand its impact, we studied the
variation in packet inter-arrival time (IAT) patterns cap-
tured for different CPU configurations and clock frequen-
cies. The results of these experiments are presented in
Figs. 4a and 4b. Fig. 4a shows the difference in the IAT pat-
terns for two cache configurations (cache-config 1: data
cache size 4KB, instruction cache uses Least Recently Used
(LRU) replacement algorithm [17]; cache-config 2: data
cache size 8KB, instruction cache uses Random replacement
algorithm [17]), and Fig. 4b shows the result for three differ-
ent clock frequencies. These experiments clearly demon-
strate the impact of differences in hardware configuration
on packet IATs. Moreover, at the component level, micro-
scopic differences in the clock frequencies (clock skews) can
contribute to differences in the timing pattern. For example,
assume Asus netbooks take x CPU cycles to sleep for 10ms
and generate a 56 byte ping packet, and f1 and f2 are the
clock frequencies of two Asus netbooks, then the difference
in the time taken to generate a packet is xðf2 � f1Þ/ðf1f2Þ.
This value will be reflected as average differences in the
inter arrival times between two devices. Fig. 4c shows a plot
of average IAT values, of four identical Asus netbooks gen-
erating 56 byte ping packets at 10ms intevals. The x-axis
denotes the sample numbers, where each sample consists of
2.5 K ping packets. For instance, 20 samples will have 50 K
ping packets in total. The average IAT of packets in each
sample is shown on the y-axis. A clear difference in the
average IATs of each of the four Asus netbooks can be
noted, even though they all belong to the same type. These
minor variations in the average IATs can affect the fre-
quency count, which in-turn will result in different signa-
tures for each device. These two are among several possible
reasons which enables device identification.

3 RELATED WORK

The existing work in this area can be broadly classified as
device fingeperinting and device type fingerprinting.

The first category of fingerprinting is host or physical
device fingerprinting. An important work in this area was
presented by Kohno et al. in [1]. In [1], they introduce a
method for fingerprinting physical devices by exploiting
the implementation of the TCP protocol stack. The authors
use the TCP timestamp option of outgoing TCP packets to
reveal information about the sender’s internal clock. The
authors’ technique exploits microscopic deviations in the
clock skews to derive a clock cycle pattern as the identity
for a device. In contrast to the work in [1], our work is inde-
pendent of protocol (i.e., it works for TCP, UDP, and

Fig. 3. Packet flow in hardware.

Fig. 4. (a) PDFs of IATs for different CPU configurations; (b) PDFs of IATs for different clock frequencies; (c) Effect of clock skew on IATs.

RADHAKRISHNAN ET AL.: GTID: A TECHNIQUE FOR PHYSICAL DEVICE AND DEVICE TYPE FINGERPRINTING 521

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:08:39 UTC from IEEE Xplore. Restrictions apply.

ICMP), does not require deep packet inspection (e.g., time-
stamps), thus it is more positioned for scalability and does
not compromise privacy and works on IP level encrypted
streams. The authors of [2] take a similar approach to that in
[1] (i.e., using clock skew to uniquely identify nodes), how-
ever the goal of [2] is to uniquely fingerprint APs. Also,
instead of getting the timestamp from TCP packets, they
obtain the timestamp from 802.11 beacon frames. Another
recent work in AP fingerprinting was done by the authors
of [3]. The major improvement in [3] over [2] is that their
technique is online and does not carry the fingerprint of the
fingerprinting device. Since both the techniques make use
of the 802.11 beacons, they can be used only for AP finger-
printing and cannot be used for general device fingerprint-
ing. In [4], the authors evaluate the use of traffic parameters
such as transmission rate, frame size, medium access time,
transmission time, and inter arrival of packets to fingerprint
802.11 devices. However, these analysis are made with
direct wireless side captures, which means an observer has
to be in wireless range of the targeted device in order for
this technique to work. Moreover, their proposed technique
does not identify traffic from unseen sources to be coming
from an unknown device. This is a major disadvantage com-
pared to our technique because one cannot expect a system
to possess signatures of all possible devices that it may
encounter. There have also been physical layer approaches
to fingerprint wireless devices. Radio frequency (RF) emit-
ter fingerprinting uses the distinct electromagnetic (EM)
characteristics that arise from differences in circuit topology
and manufacturing tolerances. This approach has a history
of use in cellular systems and has more recently been
applied to Wi-Fi [5] and Bluetooth [6] emitters. The EM
properties fingerprint the unique transmitter of a signal and
differ from emitter to emitter. This technique requires
expensive signal analyzer hardware to be within RF range
of the target. In contrast, our approach only needs a network
tap at a switch to capture traffic on a wired segment that
could be a hop downstream.

Another body of work that is relevant to our work is
device type fingerprinting. The main objective of the techni-
ques in this category is to be able to remotely identify a spe-
cific device type. In [7], we introduce an active device
fingerprinting technique that can detect the type of wireless
AP that a traffic stream passes through. It relies on distinct
patterns (from the hardware composition of the device) that
are generated in the network traffic as a result of specially
crafted data streams. In contrast to our current work, our
previous work requires specially crafted data streams to
trigger a signature. Further, the study was limited to AP
types whereas our current scheme works with normal traf-
fic across a wide range of device types, and can be used to
fingerprint devices as well as device types. Another work
for fingerprinting of wireless APs with similar issues is
introduced in [8], where the authors fingerprint wireless AP
types by actively probing them with various regular and
malformed packets. The authors of [9] propose a technique
for device type behavioral and temporal fingerprinting.
They model a specific protocol implementation (i.e., the Ses-
sion Initiation Protocol - SIP) and create a behavioral finger-
print using a Temporal Random Parameterized Tree
Extended Finite State Machine (TRFSM). Their technique

can learn distinctive timing patterns of the transitions of the
SIP protocol’s state machine. These timing patterns for
the state machine can be detected by observing the differ-
ence between various outgoing and incoming SIP messages
of the device being fingerprinted. Additionally, in their
early work [10], their technique required knowledge of the
entire syntax of the protocol. In [9], this requirement is
relaxed as they only need a corpus containing SIP sessions.
The authors of [9], [10] develop a real-time approach and
discuss deploying their techniques in [11]. However, all of
their proposed techniques are limited to a specific applica-
tion layer protocol - SIP, whereas our scheme works for
ICMP, UDP, and TCP protocols and for the applications
that they transport (e.g., Skype). The authors in [12] use tim-
ing information between commands and responses on the
Universal Serial Bus (USB) to distinguish between varia-
tions in model identifiers, OSs (and sometimes OS version
number), and whether a machine is answering from a real
or virtual environment. One limitation of this work is that it
requires one to be in physical possession of the device.

In general, our work is fundamentally different from the
previous studies in several ways. The existing studies (1)
fingerprint only either device types or devices, not both; (2)
do not detect unknown devices (devices which do not have
a signature); and (3) do not consider attackers who seek to
disrupt the classification process.

4 THREAT MODEL AND ASSUMPTIONS

As shown in Fig. 5, in our setup, a device transmits data
over the air, which then gets forwarded through the back-
bone switch. GTID passively collects timing traffic from
captured packets on the wired segment to identify the devi-
ces that are transmitting.

Since our technique is based on timing analysis
(Section 5), 8 different classes of attackers are considered.
The first seven attackers are considered to be novice attack-
ers who have some knowledge of the detection technique
and are capable of controlling their device’s network
traffic. These attackers can (1) introduce constant delays to
packet stream; (2) inject random delays to packets; (3) vary the
packet size; (4) change the data rate; (5) modify/change the
operating system; (6) load the CPU with intensive applications
to over shadow normal behavior; (7) tunnel packets through
another protocol. The eighth attacker is assumed to be
highly skilled and knowledgable of the technique. Hence,
this attacker could try to emulate an authorized device’s
traffic pattern in order to establish/maintain network

Fig. 5. Overview of GTID.

522 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2015

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:08:39 UTC from IEEE Xplore. Restrictions apply.

access. Analysis of these eight attacks and how GTID is
resilient against these different threats are further dis-
cussed in Section 6.4.

5 OVERVIEW OF GTID

In this section, we introduce the major components of GTID
and discuss the Artificial Neural Network based algorithm
used to identify devices and their types. We then articulate
the metrics that we have used in evaluating the overall per-
formance of the technique.

5.1 Components of the Technique

GTID has four major components: feature extraction, signa-
ture generation, similarity measure, and enroll.

Feature extraction. As traffic from devices are collected,
the feature extraction process Measures traffic properties
successively in time. The resulting feature vector with time
values is passed to the signature generation process for
time-series analysis. When selecting a feature to measure, it
should preserve the information pertinent to the type of
device and capture discriminating properties for successful
classification. For our analysis, we use the packet inter-
arrival time as our feature. IAT measures the delay (Dt)
between successive packets and characterizes the traffic
rate. The IAT feature vector is defined as

f ¼ ðDt1 ;Dt2;;Dt3; . . . ;DtiÞ (1)

where Dti is the inter-arrival time between packet i and
i� 1.

Signature generation. The signature generation process
uses statistical analysis to reveal patterns embedded in the
traffic measurements. We adopted a time-domain method
for signature generation, which relies on the distribution of
the IAT feature vector. Distributions capture the frequency
density of events over discrete intervals of time. Due to the
periodic nature of network traffic, distributions are a useful
tool for traffic analysis. We define frequency count as a vec-
tor that holds the number of IAT values falling within each
of the N equally spaced time bins. The device signature is
sensitive to the bin width and different bin widths will
reveal different information about the feature vector.
Smaller bin widths cause fewer IAT values to occur within
a particular bin, and what may appear to be meaningful
information may really be due to random variations in the
traffic rate. Conversely, larger bin widths may omit impor-
tant information, aggregating information into fewer bins
that might otherwise help to discriminate between two dif-
ferent devices. Based on our experiments, we empirically
determined N ¼ 300 to be an ideal choice for all traffic types
tested in this paper. We use this value of N to determine the
binwidths for each traffic type.3

Enroll. Signatures generated from the previous compo-
nent is used to train Artificial Neural Networks which regis-
ters the pattern and in essence enrolls that device or device
type. ANNs are basically computational models inspired
from biological neural networks and they imitate them both
structurally and functionally. An ANN consists of a group

of interconnected computational units called neurons. These
neurons take in inputs and transform them according to a
specified activation function to generate an output.
Although in our work we treat the ANN as a black box, we
specifically use ANNs that belong to a class called feedfor-
ward networks, where there is only a one-way connection
from the input to the output layer [18]. ANNs belonging to
this class require supervised training and are commonly
used for prediction, pattern recognition and nonlinear func-
tion fitting. We configure our feedforward ANN to use
scaled conjugate gradient backpropagation as the training func-
tion. We also note the use of sigmoid hidden and output neu-
rons which are ideal for pattern recognition. These produce
a value between 0 and 1, where 1 denotes a perfect match in
our case.

Fig. 6 shows an example of an ANN that can be trained to
classify M different device or device types using signatures
having N bins. This is a multi-layer feedforward ANN
which consists of an input layer, a hidden layer and an out-
put layer. The input layer accepts a vector of size N (b1 to
bN), and produces an output vector of sizeM (d1 to dM). The
elements of the input vector correspond to the values in the
probability distribution (signature) and the elements of the
output vector correspond to the similarity measure between
the input signature and the M device or device type signa-
tures that it was trained on. The number of hidden nodes P ,
that provide optimum results was empirically determined
to be 50. Two neural networks of this kind are used for each
traffic type that we analyze. One is trained for device identi-
fication while the other is trained for device type identifica-
tion. Once trained, the neural networks (Q) are stored in a
master database for future use.

Similarity measure. Once signatures are generated, it is
passed through trained neural networks that are present
in the master database. This yields closeness values
between 0 and 1 for each device in the database (note that
1 denotes a perfect match). These values of closeness or
similarity measures are used to compare an unknown sig-
nature to the master signatures, which are essentially a
collection of previously seen signatures.

5.2 Identification of Devices and Their Types

As explained earlier, GTID compares a device in question
with previously collected master signatures and identifies
the device in question and/or its type. We refer to the suc-
cessful identification of an unknown device with one of the
master devices as Device Identification and the identification

Fig. 6. Illustration of a sample neural network.

3. The start and end points of the histogram are selected to fit the
peak of certain traffic. This range is then split into 300 equal-sized bins.

RADHAKRISHNAN ET AL.: GTID: A TECHNIQUE FOR PHYSICAL DEVICE AND DEVICE TYPE FINGERPRINTING 523

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:08:39 UTC from IEEE Xplore. Restrictions apply.

of the unknown device’s type with one of the master device
types as Device Type Identification. For instance, GTID may
have a collection of master signatures for two identical
Kindles. In this case, there will be two master device IDs
(Kindle#1 and Kindle#2) and one device type (eReader).
Hence, given a set of master signatures, there would be
three applicable outcomes in identifying a device and its
type. In the first case, GTID successfully recognizes the
unknown device and its device type because the samples
from the unknown device match either one of the master
signatures of a device or master signatures of a device type
in the signature database. In the second case, GTID is not
able to find a match for a given device and device type in
the signature database. Therefore, in this case, the sample
device is classified as an unknown device. We note this
result to be very meaningful because a detection system
cannot hold all possible signatures of devices or types.
There might be situations where the system will have to
encounter signatures that it has never encountered in the
past. In cases like these, GTID will rightly classify the
signatures as unknown targets, unlike techniques that
always pick the closest matching signature (Section 3).
Finally, the third outcome represents a case between the
first two outcomes as the system is able to identify the
device’s type, but not the actual device associated with
the tested device.

GTID’s core algorithm is shown in Algorithm 1. Based
on the type of traffic, the system extracts the neural
networks (QID : DeviceID; QType : DeviceType) and lists
(Devlist; Typelist) from the master database (line 3). Masking
vectors are then generated according to the subset of master
signatures that is used for comparison (line 4). The system
then extracts the unknown signature V from the unknown
sample S (lines 5-6). Once this is extracted, the system feeds
it into the device ID neural network (QID). The masked out-
put generated by the neural network is then used to get the
index and the corresponding value of closeness (lines 7-8).
The closeness values range between 0 to 1, where 1 denotes
a perfect match. If the value of closeness fits the previously
observed True-Positive (TP) closeness values (X), the
unknown signature is identified as the device pointed by
the index and its corresponding type (lines 9-11). If not, sim-
ilar steps are performed to get the index and closeness value
for device type using QType (lines 12-14). If the device type
closeness satisfies the condition in line 16, the system identi-
fies the unknown signature to be from an Unknown device
and a known category pointed by the index, else the signa-
ture is identified to be from an Unknown device and an
Unknown type (lines 15-19). Note that the TP values used to
determine X come from a database of TP values which was
created using a separate dataset. Thus, GTID checks to see if
the closeness value fits the previously seen TP distribution
of the master signature in order to determine whether a sig-
nature is classified as known or unknown. An example dis-
trubution of TP history for Kindle (device) and eReaders
(device type), along with the cutoff TPs Xdev and Xcat is
shown in Fig. 7. From the Kindle and eReader TP distribu-
tions in Fig. 7, it can be observed that device (Kindle) TPs
(red line) are more often closer to 1, compared to the
device type (eReader) TPs (green line). The clearly

observed difference in the distribution patterns of device
TP, the device type TP and TN from other devices (Fig. 7)
is in fact due to heterogeneity of the different hardware
composition (e.g., processor, DMA controller, memory) of
the devices as well as clock skew and possibly the intrin-
sic variation in the chip fabrication process as discussed
in Section 2. Therefore, a tested device is first expected to
be closest to its own signature, next to its type signature,
then to other devices, assuming the existence of a match
for the signature of the tested device.

Algorithm 1. Device ID and Type Identification

1: Identify� ID� TypeðÞ
2: begin
3: QID;QType;Devlist; Typelist MastersDBðTraffic TypeÞ
4: ~�ID; ~�Type MaskingVectorsðÞ
5: S IAT SampleðÞ
6: V generate signatureðSÞ
7: ~outID ~�ID � ~simðQID;VÞ
8: index; closeness maxð ~outIDÞ
9: X 10 percentile TP ðDevindexlist Þ
10: ifðcloseness > XÞ
11: return Devindexlist ; Corresponding Type
12: else
13: ~outType ~�Type � ~simðQType;VÞ
14: index; closeness maxð ~outTypeÞ
15: X 10 percentile TP ðTypeindexlist Þ
16: ifðcloseness > XÞ
17: return Unknown; Typeindexlist

18: else
19: return Unknown;Unknown
20: end if
21: end

5.3 Metrics for GTID’s Effectiveness

We evaluate the performance of GTID using accuracy and
recall as our metrics similar to [19]. Accuracy is defined as

a ¼ TP þ TN

TP þ TN þ FP þ FN
; (2)

where TP, TN, FP, and FN refer to True Positive, True Nega-
tive, False Positive, and False Negative, respectively. With
accuracy, we measure the overall performance of our

Fig. 7. CDF of closeness values for Kindle-Fire.

524 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2015

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:08:39 UTC from IEEE Xplore. Restrictions apply.

system. Recall is the measure of identifying an actual device
and it is statistically defined as

g ¼ TP

TP þ FN
: (3)

We use both accuracy and recall because the sole usage of
accuracy is misleading when analyzing certain types of test
cases (e.g., for test cases that do not allow the entire cohort
to contribute to all of the statistics). This is because accuracy,
as shown in Equation (2), requires statistics from the entire
cohort of devices (i.e., TNs). This information may not be
available for certain experiments (i.e., different protocols on
one device). Hence, recall makes the evaluation indepen-
dent of the impact of the other TNs and yields a realistic
performance focused only on TPs. Nonetheless, accuracy is
still useful, for instance, in analyzing the behavior across
different traffic types of the entire cohort. Thus, in the Per-
formance Evaluation Section, accuracy is only populated
where appropriate in the results.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of GTID
across four dimensions. First, we analyze our technique
in an isolated network environment (Fig. 8a). Second, we
measure the performance of GTID in a live campus net-
work (Fig. 8b) during peak hours. Third, we evaluate the
performance of a prototype version of GTID. Finally, we
analyze the effectiveness of GTID under various attack
scenarios in a live network.

In GTID, two automated testbeds were assembled to
transmit and record traffic from the wireless devices to the
wired segment and vice versa. In the isolated testbed shown
in Fig. 8a, a control machine (not shown in the figure) was
used to send commands to the different devices in the
testbed. The device under test was placed in an isolation
box to reduce RF leakage and interference. For the campus
network testbed (Fig. 8b), the AP and LAN destination were
connected to a campus backbone switch. This helped us
evaluate our technique under MAC and physical layer
interference from other wireless users in proximity (during
peak hours). A total of more than 300 GB of traffic captures
from 37 different devices [20], (14 in the isolated testbed, 23
in the campus network testbed) were tested and the details
of which are listed in Tables 2 and 3.

Furthermore, two generic applications were used to
generate traffic in our testbeds (Table 1). One was Iperf,
which was used to generate both TCP and UDP traffic at
controlled rates, and the other was Ping. In addition to
these, we performed tests using other applications such
as secure copy (SCP) and Skype. TCP, SCP, and Skype
were allowed to flow at their natural rate, while Ping and
UDP were controlled. In our experiments using Ping, we
set the rate to 100 pings/second and tested payload sizes of
64 Bytes and 1,400 Bytes. For UDP analysis we used two
payload sizes, 64 Bytes and 1,400 Bytes, and sending rates
of 1 and 8 Mbps. Also, note that we classify all the above
traffic types as either Active or Passive. Active traffic types
are generated from the target in response to a trigger. For
example, pinging a target device will result in ping
responses (Active Traffic), which can then be finger-
printed (Active Fingerprinting). The passive traffic types
are cases where the target system generates traffic with-
out any trigger, e.g., a computer uploading data to a
server. In these cases, the fingerprinting of such traffic is
termed as passive fingerprinting. Although our experi-
ments did not involve a human-generated traffic due to
device use, the passive traffic is representative of experi-
mental cases where human-generated traffic would be
involved. Note that for each protocol/application in our
tests, we only focused on one application/protocol with-
out combining any protocols/applications. We captured 1
hour of traffic for each of these traffic types from 37 devi-
ces. This provided us more with more than 400 hours of
traffic (about 300 GB of captures), which was used to

Fig. 8. Setup of campus and isolated network testbeds.

TABLE 1
Traffic Types Used in Experiments

Exp # Active/
Passive

Traffic Type Traffic
Case #

Parameters

1 Passive Iperf - UDP 1 -b 1M -t 3600 -l 56
2 2 -b 1M -t 3600 -l 1400
3 3 -b 8M -t 3600 -l 56
4 4 -b 8M -t 3600 -l 1400
5 Iperf - TCP 1 -t 3600
6 SCP 1 1.7 GB
7 Skype - UDP 1 Video
8 Ping 1 -s 56 -0.01 -c 360000
9 2 -s 1400 -i 0.01 -c 360000

10 Active Ping Response 1 -s 56 -i 0.01 -c 360000
11 2 -s 1400 -i 0.01 -c 360000

RADHAKRISHNAN ET AL.: GTID: A TECHNIQUE FOR PHYSICAL DEVICE AND DEVICE TYPE FINGERPRINTING 525

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:08:39 UTC from IEEE Xplore. Restrictions apply.

evaluate GTID. The first half of each capture is used for
training the ANN and the second half is used for perfor-
mance analysis.

Note that before GTID can be applied on the traffic cap-
tures, it needs to be configured. There are two important
values that are required to be set. The first one is the sam-
ple size, which denotes the number of IAT values that is
used to generate a signature. Though it is better to have a
larger sample size from an accuracy stand point, we note
that it increases the processing time. Fig. 9a shows the var-
iation in the recall of GTID and the average processing

time per sample as the sample size is increased. It can be
observed that the average time required for processing a
sample increases almost linearly while the performance
improvement follows a saturating curve. In our experi-
ments, we chose the sample size to be 2.5K because it pro-
vided a recall of 74 percent4 for a processing time of
120 ms, which is quite acceptable. Increasing the sample
size beyond this does not provide any fruitful increase in

TABLE 2
Isolated Network Device Specifications

Device Device ID Model Hardware Specification Operating System Kernel

Netbook Dell 1 DELL
Latitude 2110

Intel Atom N470
@ 1.83GHz 1GB RAM

Ubuntu 10.04.1 LTS
/Windows XP

Kernel 2.6.32-24
-genericDell 2

Dell 3
Dell 4
Dell 5

Nokia Nokia 1 N900 ARMv7 rev 3 (v7l) Maemo 5, Version Kernel 2.6.28
Nokia 2 @ 600MHz 256MB RAM 3.2010.02-8 - omapl

iPhone3G iPhone3G 1 MB715LL (A1303) A4 processor @ 1GHz iOS 4.0 (8A293) Kernel 10.3.1
iPhone3G 2 512MB eDRAM

iPhone4G iPhone4G 1 MC608LL (A1332) A4 processor @ 1GHz iOS 4.3.3 (8J2) Kernel 11.0.0
iPhone4G 2 512MB eDRAM /Firmware 04.10.01

iPad iPad 1 MC497LL A4 processor @ 1GHz
256MB DDR RAM

iOS 4.3.5 Kernel 10.3.1
iPad 2 iOS 3.2.2
iPad 3 iOS 3.2.2

TABLE 3
Campus Network Device Specifications

Device Device ID Model Hardware Specification Operating System Kernel

Asus Netbook AS1
AS2
AS3

Asus EeePC 1025C 1.6 GHz Intel Atom
processor-N2600

1GB RAM

Ubuntu 12.04 (32 bit)
/ Windows 7 (32bit)

Linux 3.2.0-29
- generic

AS4
AS5

Lenovo L1 Lenovo G570 2.4 GHz Intel Core i5-2430M Ubuntu 11.04 (64 bit) Linux 2.6.38 - 13
L2 4GB RAM /Windows 7 (64 bit) - generic

Dell D1 Dell Probook 4350s 2.4 GHz Intel Core i5-2430M Ubuntu 11.04 (64 bit) Linux 2.6.38 - 13
D2 4GB RAM /Windows 7 (64 bit) - generic

ASUS Tablet T1 ASUS Transformer 1.0GHz NVIDIA Tegra 2 Android 3.2.1 Kernel 2.6.36.3
T2 TF 101 dual-core CPU 1GB RAM

Google Nexus G1 Nexus One 1 GHz Qualcomm QSD8250 Android 2.2 Kernel 2.6.32.9
One G2 Processor 512MB RAM Kernel 2.6.29

Kindle Fire K1 Kindle Fire 1 GHz Texas Instruments OMAP Customized
Android 2.3

Firmware 6.2.2
K2 4430 dual-core processor; 512MB RAM Firmware 6.2.1

Apple TV A1 ATV 1st Gen Intel PentiumM processor OS Version 2.0 -
A2 256MB DDR2 RAM@400MHz based on Mac OS X

HP Printer H1 HP Officejet - RTOS -
H2 6500A Plus

D-Link C1 D-Link DSC 932L - RTOS -
IP-Camera C2

PS3 P1 CECH-3001A CPU : Cell Processor PowerPC-base Core XrossMediaBar Firmware
Version 3.72@3.2GHz. GPU: RSX @550MHz

P2 256MB XDRMain RAM @3.2GHz
256MB GDDR3 VRAM@700MHz

4. For known analysis.

526 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2015

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:08:39 UTC from IEEE Xplore. Restrictions apply.

performance. For instance, if the sample size is doubled to
5 K, the processing time increases by 66 percent while the
value of recall increases by only 3 percent. The second
parameter that needs to be set is the value for the
‘Unknown’ threshold. This value was empirically set to 10
percent which means the resulting value of closeness
needs to be within the 90 percentile of previously seen
closeness values for that particular device. The reason for
choosing this value can be explained using Figs. 9b and 9c.
Fig. 9b shows the variation in the true positive rate (TPR)
of finding known and unknown devices as the threshold is
increased and Fig. 9c shows the corresponding values for
the false positive rate (FPR). From Fig. 9b, it can be seen
that an equilibrium of guessing a known and an unknown
device is reached for a threshold of 10 percent while main-
taining the corresponding values of FPR at acceptable lev-
els (Fig. 9c). It should be noted that the value of threshold
can be moved around depending on the type of applica-
tion. For example, if the network administrator is more
concerned about finding unknown devices, he/she can
move the threshold value higher to reduce the number of
False Negatives.

As briefly mentioned in the previous section, GTID oper-
ates in two modes: Known and Unknown. The known mode
refers to a case where GTID attempts to recognize a previ-
ously seen device among other previously seen devices and
therefore, has a master signature associated with the device
in question. Hence, in this case, GTID either correctly identi-
fies the device and the device type (category) or mis-identi-
fies them. In the unknown mode of test, we exposed GTID to
both devices it has previously seen and devices that it has not
previously seen. Note that for this, we took out the tested
device and its signature from the signature database
completely in order to understand and better observe the
performance of our system. Hence, in this case, GTID does
not have the necessary master signature associated with a
sample device/type tested. As a result, if GTID does not rec-
ognize a device, it then identifies the test device as an
unknown device, otherwise it identifies the type and/or the
device. Note that the existing studies do not seek to detect
unknown devices (devices where they do not have a signa-
ture) as discussed in Section 2. Indeed, GTID’s capability to
operate in both test modes (known and unknown) makes it a
comprehensive approach as the two different modes work
best for different scenarios. For example, in a benign net-
work, the known mode can be used for inventory control.

However, in a network where access control is a concern,
GTID can be employed in unknown mode in addition to
other security solutions. Using the accuracy (a) and recall
(g) metrics explained in Section 5.3, we analyzed the overall
effectiveness of our technique for these different modes.
Nonetheless, as noted earlier, to analyze the performance
specific to device IDs and device types, we only focus on g

because a is inflated superfluously by TNs. We note that
this is not needed for results per traffic type because all traf-
fic from devices and types are aggregated for each traffic
type; hence, we include results pertinent to both metrics.

6.1 Experiments on the Isolated Wireless Testbed

Initially, we experimented GTID on an isolated wireless
environment (Fig. 8a). Conducting experiments in an iso-
lated setup allowed us to get a more fundamental and
deeper understanding of the overall technique. Specifically,
we seek to understand: (1) What is the overall accuracy and
recall of this technique in an isolated environment? (2) Is there a
protocol/rate that works the best for this technique in the testbed?
(3) Are there devices that are more amenable to this technique? (4)
How does data rate affect this technique overall?

As seen in Table 4, the device with the maximum g is
Netbook #5 with 100 percent and the average is 94 percent
for the device identification analysis in the known analysis
mode. For the same devices, in the unknown mode, the
maximum and the average fall to 93 and 81 percent. The
maximum and the average recall values for both known
and unknown test modes for device type identification are
lower compared to that of device identification. Nonethe-
less, we show through experiments in Section 6.2 that recall
of device type identification can be significantly improved
by using samples from more devices of the same type for
training (Fig. 10a). As for the protocols and applications
evaluated, UDP at the rate of 1 Mbps has a recall of 98 per-
cent (known) and 83 percent (unknown) for device identifi-
cation and 56 Byte Ping has a recall of 92 percent (known)
and 90 percent (unknown) for device type identification. In
comparison with UDP, a slight performance penalty with
SCP was observed that is attributed to the reactive nature of
TCP to round trip times and congestion.

6.2 Results from Experiments on the
Wireless Campus Network

We conducted experiments in a live network to determine
the feasibility of the technique and provided bounds for the

Fig. 9. Analysis of configurable parameters: (a) Sample size analysis (b) Variation in TPR vs. Unknown Threshold (c) Variation in FPR vs. Unknown
Threshold.

RADHAKRISHNAN ET AL.: GTID: A TECHNIQUE FOR PHYSICAL DEVICE AND DEVICE TYPE FINGERPRINTING 527

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:08:39 UTC from IEEE Xplore. Restrictions apply.

performance of our technique in realistic deployments.
Therefore, in the campus network, we were specifically
interested in answering the following question: What is the
overall accuracy (a) and recall (g) of this technique in a campus
network? General results for the campus network testbed are
summarized in Table 5.

As seen in Table 5, in the campus network testbed the
device with the maximum g is Kindle #2with 93 percent and
the average is 74 percent for the device identification analy-
sis in the known operational mode. In the unknown opera-
tional mode, the maximum and the average g for these
devices fall to 85 and 64 percent respectively. Similar to
what was observed in the isolated experiments, the maxi-
mum and the average recall values for both known and
unknown operational modes for device type identification
is smaller compared to device identification.

As mentioned in Section 6.1, the performance of device
type identification operational mode can be significantly
improved by using more training devices for each type of
device. Fig. 10a shows the results of an experiment that
illustrates the improved recall value as more training devi-
ces are considered. In this experiment, we start by training
on one representative device for each device type and con-
tinue to increase the number of representative devices used
to train the Asus netbooks (device type). From the results
shown in Fig. 10a, we clearly see that the recall of the Asus
netbook (device type) increases as the number of training
devices increases for each traffic type. As for the applica-
tions and protocols, the maximum g and a are different for
device and device type identification experiments. Specifi-
cally, for the device identification experiments, UDP with a
rate of 8 Mbps and 1400 B payload exhibits the maximum g:
80 percent; while for the device type experiments, the maxi-
mum is achieved by Skype traffic with g: 96 percent. In the
future, we plan to determine why the recall values of these
signatures are traffic and device type dependent.

Comparing the campus network to the isolated network
experiments, we see that the performance degrades across
both a and g in the campus network. Across all the cases,
we also observe that device identification results are better
than the device type identification. As illustrated in Fig. 10a,
this situation may possibly be improved with more devices
to train for each device type, which will be explored more
exhaustively as part of our future work.

We further analyzed the impact of physical and MAC
layer interference on the campus network as presented in
Fig. 10b. Focusing on the similarity measures for these
two testbeds, we see that more than 50 percent of the sim-
ilarity measures have values close to 1 (which denotes a
perfect match) in the isolated testbed, while it is less than
30 percent for the campus testbed. We attribute this dif-
ference to the uncontrolled characteristics of the physical
medium which make inter arrival patterns look less simi-
lar in the campus network.

Finally, although the slight performance decrease associ-
ated with the unknown test mode observed in all the test
scenarios is attributed to the nature of the identification
algorithm, our ANNs-based identification technique shows
strong promise for the effectiveness of GTID (given its
numerous benefits described in Section 1).

6.3 Active Fingerprinting

GTID operates on a stream of packets from the target device
in order to generate a signature using the IATs (the results
of this approach are provided in 5). On a campus network,
this might not always be possible. For example, a network
administrator might want to identify a suspicious node on
the network that does not communicate frequently. In such
a scenario, it would be very useful to have an active finger-
printing technique that can fingerprint devices using the
response generated by the target device. In this analysis, we
continuously probe the target device with ping packets and
apply GTID on the stream of ping responses that is gener-
ated. The pinging rate was fixed at 100 pings per second
and we analyze GTID’s performance for payload sizes of 56
bytes and 1,400 bytes (Table 1).

From the results (Table 6) obtained in this analysis, it can
be observed that Kindle (similar to passive analysis results)
has the highest recall of 91 percent, which shows that it is
quite suitable for fingerprinting using GTID. It is also
observed that HP printers have the highest recall for device
type identification. This indicates that the printers possess
signatures that are very different from other types of

Fig. 10. (a) Effect of increase in training data (b) Effect of MAC
contention.

TABLE 4
Isolated Network—Passive Analysis

Device ID Device Type

Known Unknown Known Unknown

Dev a g a g Type a g a g

Max Netbook #5 - 1.00 - 0.92 iPhone4 - 0.99 - 0.78
Traffic Type Traffic Type

Max UDP 56B 1Mbps 1.00 0.98 0.97 0.80 Ping 56B 0.97 0.92 0.90 0.74
Avg 0.99 0.94 0.97 0.78 0.87 0.67 0.83 0.54

95% Confidence � 0.006 � 0.04 � 0.01 � 0.04 � 0.07 � 0.29 � 0.05 � 0.2

528 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2015

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:08:39 UTC from IEEE Xplore. Restrictions apply.

devices, but quite similar to one another. From the per traf-
fic type analysis, it can be seen that Ping with 1,400 byte
payload does better than Ping with a 56 byte payload. This
is consistent for both device and device type identification
and also across both known and unknown analysis. The rea-
son behind this is attributed to the fact that a continuous
stream of large packets involves more memory operations,
which in turn could provide a stronger fingerprint of the
devices’ hardware. In general, the active mode of finger-
printing performs slightly worse compared to the passive
analysis (Tables 5 and 6). The reason is, in active fingerprint-
ing, the IAT patterns embed the signature of both the prob-
ing device and the target device. Investigating methods for
removing the sender’s signature from the IAT pattern will
be a part of our future work.

6.4 Analysis of Attacker Models

In this section, we seek to determine the effectiveness of
GTID under various attack scenarios. Assuming that attack-
ers are knowledgable about GTID and given that GTID is
IAT-based, eight unique attackers, as articulated in Section
4 were considered. These attacks were implemented and
tested against GTID.

Fig. 11a shows distributions of traffic where an attacker
can vary the packet sizes, change the data rate and tunnel
packets through another protocol. Fig. 11b presents distri-
butions where an attacker has introduced constant/random
delays to the packet stream and loaded the CPU with inten-
sive applications to over shadow normal behavior. Fig. 11c
shows distributions where an attacker has changed the
node of interest’s operating system. When we run these
attacks on GTID, it detects and classifies all of them to be
coming from an unknown source even though they were per-
formed from a known devices. This outcome can be seen as
an alert by the network administrator, who can take neces-
sary actions. The variation in the IAT distribution patterns
(from normal) observed in Fig. 11 explains why GTID was
able to identify the attacker traffic.

However, a highly skilled attacker could try to emulate
an authorized device in order to establish/maintain net-
work access. To do this, the attacker would need the distri-
bution of the difference in the IAT pattern of his device and
the device that he wants to emulate. Once this information
is in hand, he can use a network emulation tool like netem
(which is available in linux kernels 2.6 and higher) to trans-
mit packets in accordance with the distribution. When such

TABLE 5
Campus Network - Passive Analysis

Device ID Device Type

Known Unknown Known Unknown

Device a g a g Device Type a g a g

Max Kindle #2 - 0.93 - 0.88 Asus Netbook - 0.99 - 0.99
Test Type Test Type

Max UDP 1400B 8Mbps 0.96 0.80 0.94 0.66 Skype 0.96 0.96 0.85 0.86
Avg 0.95 0.74 0.93 0.60 0.86 0.68 0.83 0.61

95% Confidence � 0.01 � 0.08 � 0.02 � 0.07 � 0.06 � 0.25 � 0.05 � 0.15

TABLE 6
Campus Network - Active Analysis

Device ID Device Type

Known Unknown Known Unknown

Device a g a g Device Type a g a g

Max Kindle #2 - 0.91 - 0.85 Printer - 1.00 - 0.91
Test Type Test Type

Max Ping 1400B 0.97 0.72 0.96 0.58 Ping 1400B 0.95 0.77 0.94 0.71
Avg 0.97 0.69 0.96 0.55 0.94 0.74 0.94 0.70

95% Confidence � 0.006 � 0.07 � 0.01 � 0.08 � 0.023 � 0.16 � 0.03 � 0.14

Fig. 11. Distribution of IATs for different attacker scenarios : (a) PDF of UDP IATs for normal and attacker traffic (b) PDF of ping response IATs for
normal and attacker traffic (c) O/S attack (d) laptop emulates a Kindle.

RADHAKRISHNAN ET AL.: GTID: A TECHNIQUE FOR PHYSICAL DEVICE AND DEVICE TYPE FINGERPRINTING 529

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:08:39 UTC from IEEE Xplore. Restrictions apply.

an attack is perpetrated, one would expect the attacker’s
device to be classified as a known device. However, as seen
in Fig. 11d this is not the case. Fig. 11d shows the IAT distri-
bution when the Lenovo laptop attempted to behave like a
Kindle. Clearly, the distribution of the emulated traffic is
different from the legitimate distribution and GTID labels
the device that generated this traffic as unknown. Also, the
IATs are observed to be more distributed when compared
to the unaltered device. One of the primary factors that pre-
vent an accurate emulation is the fact that the attacker’s
device has to simultaneously spoof a signature of a device
and attempt to hide its innate signature. It is important to
note that the theory behind GTID is that different devices
essentially “talk” differently (i.e., they have a different
cadence), so as illustrated above, it is difficult for even a
more powerful device to emulate the traffic distribution of a
less powerful device.

7 ANALYSIS OF GTID’S LIMITATIONS

While it is important to understand the performance of a
detection system and its advantages, it is also equally
important to understand its draw backs. Getting such clarity
into both the positives and negatives of a technique is very
important for system designers to wisely pick and integrate
techniques that can work together in providing a complete
security solution. In this section, we aim at providing a bet-
ter understanding of GTID’s limitations through experi-
mental analysis and discussions.

7.1 Scalability

GTID is able to identify wireless devices and their device
types by simply monitoring traffic generated by the wireless
devices. The numerous benefits of such an approach are
enumerated in Section 1. However, as with all techniques,
GTID has limitations. Fig. 12 shows the average recall of
GTID demonstrated on a live campus network as the num-
ber of devices being fingerprinted is increased. The figure
also illustrates the likelihood (without a system like GTID)
of detecting a device without expensive spectrum analyzers
covering the entire wireless network and without client soft-
ware installed on a node (i.e., chance). The figure shows the
recall of GTID drops off fairly linearly with increase in the
number of nodes. Although GTIDmay not be a general solu-
tion for every network, as discussed in Section 1, GTID could
help secure 87 percent of the current corporate networks.

7.2 Performance Analysis with Increased
Accuracy in Time-Stamping

Given that the performance of GTID is completely depen-
dent on the amount of hardware signature that gets
embedded into the IATs, it is imperative that we preserve
it well. For all the analysis discussed above, we used a
normal ethernet interface card plugged into a desktop
computer for monitoring the network traffic. The time-
stamping in such a setup provides accuracy only up to
micro seconds. In addition to this, since time-stampings
are done at the kernel, the accuracy of IATs can go down
even further. In order to study the impact of timestamp
accuracy on the performance of GTID, we repeated the
wireless experiment for SCP traffic type using a 10 Gig
NetFPGA to capture the packets. The hardware/software
combination allowed us to timestamp the packets with
nanosecond accuracy, and importantly, the time-stamping
was done in hardware and not at the kernel level.

Surprisingly, this experiment did not show any improve-
ment compared to the results achieved using a normal NIC.
This attributes to the fact that the magnitude of timing noise
added by the CSMA/CA protocol and the switches on the
network might be in the order of microseconds, which
makes nanosecond time-stamping less useful. Another
problem with using highly accurate timestamps is that it
requires very small bin sizes in order to capture variations
that are happening at the nanosecond scale. This results in a
huge increase in the size of the input vector passed on to the
ANNs, which in turn makes the neural network more com-
plex and slow. This experiment shows that the analysis
results discussed in other sections are the best achievable
results from the stand point of timestamp accuracy. In order
to further improve the performance of GTID, we need to
look into other alternative areas, which is a part of our
future work.

8 REAL-TIME IMPLEMENTATION

Detection techniques need to be quick in order to be of any
practical use. High accuracy with high latency will lead to
correct, but less useful results. In order to study the detec-
tion speed of this technique, a prototype version of GTID
was developed in MATLAB and its performance was evalu-
ated. The internal architecture of the prototype is shown in
Fig. 13.

8.1 Overview

The basic purpose of this tool is to match a given network
traffic sample with a list of previously stored signatures. We
achieve this using a three stage process as explained below.

Stage 1: Network traffic collection. Before starting to collect
traffic from the network interface, GTID is configured with
the necessary parameters such as Sample Size (S), Number
of Samples (N), and unknown thresholds. Tcpdump is then
used at the back end to collect and save N number of pcap
files, each containing captures of S+1 packet headers. These
files are sent to stage two (identification) of the process as
they are created. This forms a small pipeline and thereby
contributes to speed up of GTID. Another feature supported
by the system is processing of existing pcap files. When this
option is used, the system parses a pcap file that is given as

Fig. 12. Scalability analysis.

530 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2015

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:08:39 UTC from IEEE Xplore. Restrictions apply.

input in stage one and sends N IAT matrices of size S to
stage two of the process. In this case, stages one and two
cannot be pipelined and therefore, the time required to com-
plete stage one is highly dependent on the size of the pcap
file. This is useful for forensic analysis.

Stage 2: Identification. At this stage, once a pcap sample
arrives, IAT values are extracted using matshark [21]. After
extraction, the IAT values are passed to the identification
module which is the core module of this entire process. This
module is responsible for matching the given IAT pattern to
a preexisting pattern in the master database. After process-
ing the input traffic, it provides the identified device/type
along with the similarity measures. This process of extrac-
tion and identification can be done in parallel because each
incoming pcap file is a separate sample. In order to parallel-
ize this process, each sample is assigned to a separate core
or hyper thread of the CPU, using n matlabpool workers
and parallel loops. If this stage receives sampled IAT
matrices, then it skips the extraction block and directly
enters into the process of identification as shown in Fig. 13.
This happens when pcap files are fed into stage one of the
process.

Stage 3: Decision making. In the decision making stage, the
system waits and accumulates all the results obtained from
the identification module until the Nth sample is identified.
Once it has all N results, it checks for the device/type that
has matched most of the input samples and declares that
device/type as the final identified device/type.

The system also has a graphical user interface which
makes it easy to enter the input values and display
results. It can be used to set all the parameters that are
required for traffic capture and identification. Moreover,
it has features which enables the user to select a subset of
all the master signatures that are in the database which
will in turn help in speeding up the identification process.
This is useful if one has an idea of the types of unknown
devices on the network.

8.2 Performance Analysis

In order to quantify the performance of our technique, we
developed a prototype of GTID. The two most important
factors that delay the identification process are capture time
and processing time. The capture time is dependent on the
sample size and the processing time is dependent on
the algorithm and processing power. Table 7 shows the var-
iation in the time taken to identify a device when the sample

sizes are varied. The time taken to capture packets increases
linearly with an increase in sample size (as expected). How-
ever, the processing time increases at a slower rate. This is
evident from the decrease in the percentage of processing
time from 4 to 2 percent as sample size is increased from 1
to 50 K.

Since the capture time is inversely proportional to the
packet rate, the percentage of the processing time will not
be as low as it appears in Table 7. At high data rates, the
processing time will start to become the performance bottle
neck. The only way to overcome this bottle neck is by paral-
lelizing the identification process. Table 8 shows the proc-
essing time when GTID is run over a single core and over a
hyper threaded quad-core CPU (Intel Corei7). Clearly, the
process of parallelizing pays off when the packet rate
increases, or in other words, when the processing time
becomes comparable to that of the capture time. For the sec-
ond test case, the time taken for identification reduced by
almost 45 percent when parallelized.

9 CONCLUSION AND FUTURE WORK

In this paper, we introduced GTID, a technique which can
operate actively or passively to fingerprint wireless devices
and their types. GTID exploits the heterogeneity of devices,
which is a function of the different device hardware compo-
sitions and variation in device clock skew. We applied this
technique within the realm of 802.11 networks. We demon-
strated the effectiveness and the practicality of GTID on
both an isolated testbed and a live campus network using
artificial neural networks. Further, we showed, using a traf-
fic capture of over 400 hours and 300 GB emanating from 37
different devices (e.g., iPads, iPhones, Kindles, Google-
Phones, Netbooks, etc.) with a diverse set of operating sys-
tems and traffic types (e.g., Skype, ICMP, SCP, Iperf), that
GTID achieves high accuracy and acceptable recall in

TABLE 7
Timing Analysis for Variation in Sample Sizes : Traffic—UDP

1,400byte 8 Mbps, Number of Samples 20

Sample
Size

Capture
Time(s)

Processing
Time(s)

%Processing
Time

1K 1.18 0.051 4.14
2.5K 3.95 0.12 2.95
5K 7.59 0.199 2.55
7.5K 11.28 0.28 2.42
10K 14.98 0.38 2.47
30K 44.27 1.15 2.53
50K 73.61 1.18 1.58

Fig. 13. Design of real-time implementation.

TABLE 8
Effect of Parallelizing: Sample Size 2,500,

Number of Samples 20

Test Type Total Processing Time
(s)

1 Thread 8 Thread

UDP 56B 1Mbps 30.66 26.24
UDP 56B 8Mbps 11.49 6.67

RADHAKRISHNAN ET AL.: GTID: A TECHNIQUE FOR PHYSICAL DEVICE AND DEVICE TYPE FINGERPRINTING 531

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:08:39 UTC from IEEE Xplore. Restrictions apply.

identifying previously seen and unknown devices and
device types. We also addressed the efficacy of GTID under
eight different attack models; provided algorithmic provi-
sion for device, device type and unknown signature detec-
tion; and conducted performance analysis using a real-time
prototype implementation that involved multiple types of
hardware and traffic configurations. With its promising
results, GTID can complement existing security solutions
such as those that provide authentication, network manage-
ment, and access control systems.

In the future, we are generally interested in understand-
ing the long-term stability of the signature. We plan to study
the performance of GTID when device and device type
identification is conducted over various access links (e.g.,
DSL, LTE) and under different temperature. Additionally,
we plan to improve the robustness of GTID so it can better
handle congestion on a link and varying levels of load on a
node. Further, we plan to extend the application of GTID to
provide remote detection of resource utilization on a node.

ACKNOWLEDGMENTS

The authors thank Supreeth Sathyanarayana for useful
experiments in supporting our background discussion. This
work was supported partially by NSF-CAREER-CNS-
0545667 844144 and DARPA-N10AP20022 grants.

REFERENCES

[1] T. Kohno, A. Broido, and K. C. Claffy, “Remote physical device
fingerprinting,” in Proc. IEEE Symp. Security Privacy, 2005,
pp. 211–225.

[2] S. Jana and S. K. Kasera, “On fast and accurate detection of unau-
thorized wireless access points using clock skews,” in Proc. ACM
Int. Conf. Mobile Comput. Netw., 2008, pp. 104–115.

[3] F. Lanze, A. Panchenko, B. Braatz, and A. Zinnen, “Clock skew
based remote device fingerprinting demystified,” in Proc. IEEE
Global Commun. Conf., 2012, pp. 813–819.

[4] C. Neumann, O. Heen, and S. Onno, “An empirical study of pas-
sive 802.11 device fingerprinting,” in Proc. Int. Conf. Distrib. Com-
put. Syst. Workshops, Jun. 2012, pp. 593–602.

[5] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “ Wireless device
identification with radiometric signatures,” in Proc. ACM 14th Int.
Conf. Mobile Comput. Netw., 2008, pp. 116–127.

[6] J. Hall, M. Barbeau, and E. Kranakis, “Rogue devices in bluetooth
networks using radio frequency fingerprinting,” in Proc. IASTED
Int. Conf. Commun. Comput. Netw., 2006, pp. 108–113.

[7] K. Gao, C. Corbett, and R. A. Beyah, “A passive approach to wire-
less device fingerprinting,” in Proc. Int. Conf. IEEE/IFIP Dependable
Syst. Netw., 2010, pp. 383–392.

[8] S. Bratus, C. Cornelius, D. Kotz, and D. Peebles, “Active behav-
ioral fingerprinting of wireless devices,” in Proc. ACM WiSec
Conf., 2008, pp. 56–61.

[9] J. Francois, H. Abdelnur, R. State, and O. Festor, “Ptf: Passive tem-
poral fingerprinting,” in Proc. IFIP/IEEE Int. Symp. Integr. Netw.
Manage., 2011, pp. 289–296.

[10] J. Francois, H. Abdelnur, R. State, O. Festor, “Machine learning
techniques for passive network inventory,” IEEE Trans. Netw. Ser-
vice Manage., vol. 7, no. 4, pp. 244–257, Dec. 2010.

[11] J. Francois, R. State, T. Engel, and O. Festor, “Enforcing security
with behavioral fingerprinting,” in Proc. 7th Int. Conf. Netw. Serv.
Manage., 2011, pp. 64–72.

[12] L. Letaw, J. Pletcher, and K. Butler, “Host identification via USB
fingerprinting,” in Proc. 6th Int. Workshop Syst. Approaches Digit.
Forensic Eng., 2011, pp. 1–9.

[13] F. Koushanfar, S. Fazzari, C. McCants, W. Bryson, P. Song,
M. Sale, and M. Potkonjak, “Can EDA combat the rise of electronic
counterfeiting?” in Proc. ACM/EDAC/IEEE Des. Autom. Conf., 2012,
pp. 133–138.

[14] S. Sathyanarayana, W. H. Robinson, and R. Beyah, “A network-
based approach to counterfeit detection,” in Proc. IEEE Int. Conf.
Technol. Homeland Security, Nov. 2013, pp. 473–479.

[15] Census numbers [Online]. Available: http://www.census.gov/
econ/smallbus.html, Sept. 2014.

[16] V. Pai, H.-Y. Kim, and S. Rixner, “Exploiting task-level concur-
rency in a programmable network interface,” in Proc. 9th ACM
Symp. Principles Practice Parallel Programm., 2003, pp. 61–72.

[17] J. L. Hennessey and D. A. Patterson, Computer Architecture: A
Quantitative Approach, 4th ed. San Mateo, CA, USA: Morgan Kauf-
mann, 2006.

[18] M. H. Hassoun, Fundamentals of Artificial Neural Networks. Denver,
CO, USA: A Bradford Book, 1995.

[19] G. Kakavelakis, R. Beverly, and J. Young, “Auto-learning of SMTP
TCP transport-layer features for spam and abusive message
detection,” in Proc. 25th Int. Conf. Large Installation Syst. Admin.,
2011, pp. 18–18.

[20] (2014). Gtid wireless device fingerprinting dataset [Online]. Avail-
able: http://crawdad.org/gatech/fingerprinting/

[21] Sharktools [Online]. Available: http://www.mit.edu/ armenb/
sharktools/, Sept. 2014.

Sakthi Vignesh Radhakrishnan received the
bachelor’s degree in electronics and communica-
tion engineering from the SSN College of Engi-
neering, Anna University, in 2011. In 2013, he
graduated with a master’s degree in ECE from
Georgia Institute of Technology and joined Qual-
comm Atheros as a firmware developer. During
his master’s at Georgia Tech, he was a member
of the Communication Assurance and Perfor-
mance. His research interests include network
security and wireless networking. He is a student

member of the IEEE.

A. Selcuk Uluagac received the MS degree in
information security from the School of Computer
Science at Georgia Tech and the MS degree in
electrical and computer engineering from
Carnegie Mellon in 2009 and 2002, respectively.
He received the PhD degree with a concentration
in information security and networking from the
School of Electrical and Computer Engineering at
Georgia Tech in 2010. He is currently an assis-
tant professor in the Department of Electrical and
Computer Engineering at Florida International

University. He has served as a member of the research faculty as a
senior research engineer in the School of ECE at Georgia Tech. Prior to
Georgia Tech, he was a senior research engineer at Symantec. The
focus of his research is on cybersecurity with an emphasis on its practi-
cal and applied aspects.. He is a member of ASEE, ACM and a senior
member of the IEEE.

Raheem Beyah received the bachelor’s of sci-
ence degree in electrical engineering from North
Carolina A&T State University in 1998. He
received the master’s and PhD degrees in electri-
cal and computer engineering from Georgia Tech
in 1999 and 2003, respectively. He is an associate
professor in the School of Electrical and Com-
puter Engineering at Georgia Tech where he
leads the Georgia Tech Communications Assur-
ance and Performance Group and is a member of
the Georgia Tech Communications Systems Cen-

ter (CSC). He served as a guest editor for MONET. He is an associate
editor of several journals including the (Wiley)Wireless Communications
and Mobile Computing Journal. His research interests include network
security, wireless networks, network traffic characterization and perfor-
mance, and security visualization. He received the National Science
Foundation CAREER Award in 2009 and was selected for DARPA’s
Computer Science Study Panel in 2010. He is a member of ASEE, a life-
timemember of NSBE, and a senior member of ACM and IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

532 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2015

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:08:39 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

