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Abstract—Modern Smart Health Systems (SHS) involve the
concept of connected personal medical devices. These devices
significantly improve the patient’s lifestyle as they permit remote
monitoring and transmission of health data (i.e., telemedicine),
lowering the treatment costs for both the patient and the
healthcare providers. Although specific SHS communication stan-
dards (i.e., ISO/IEEE 11073) enable real-time plug-and-play
interoperability and communication between different personal
medical devices, they do not specify any features for secure
communications. In this paper, we demonstrate how personal
medical device communication is indeed vulnerable to different
cyber attacks. Specifically, we show how an external attacker
can hook into the personal medical device’s communication and
eavesdrop the sensitive health data traffic, and implement man-
in-the-middle, replay, false data injection, and denial-of-service
attacks. Furthermore, we also propose an Intrusion Detection
System (IDS), HEKA, to monitor personal medical device traffic
and detect attacks on them. HEKA passively hooks into the
personal medical traffic generated by medical devices to learn
the contiguous sequence of packets information from the captured
traffic and detects irregular traffic-flow patterns using an n-gram-
based approach and different machine learning techniques. We
implemented HEKA in a testbed consisting of eight off-the-shelf
personal medical devices and evaluated its performance against
four different attacks. Our extensive evaluation shows that HEKA
can effectively detect different attacks on personal medical devices
with an accuracy of 98.4% and F1-score of 98%.

Index Terms—Smart health system, Personal medical device,
Cyber attacks, Intrusion detection, Medical security

I. INTRODUCTION

Modern Smart Health Systems (SHSs) significantly increase
the efficacy of patients’ treatment while reducing healthcare
costs for both patients and healthcare providers. In this ecosys-
tem, Personal Medical Devices (PMDs) play a key role in the
SHS’s success. The PMDs are highly interconnected entities
capable of performing traditional healthcare operations while
enabling remote monitoring and transmission of health data.
Indeed, the global PMD market is expected to reach U.S. $
35.6 Billion by 2024, registering a Compound Annual Growth
Rate (CAGR) of 8.6% during 2019-2024 [1].

As several different manufacturers and technologies compete
for a share into the PMD’s market, the integration of diverse
PMDs into a common healthcare ecosystem can be challenging.
As a result, the ISO/IEEE 11073 medical standard [2] has been
developed to provide real-time plug-and-play interoperability
and communications between PMDs and external systems. As
the ISO/IEEE 11073 standard is transport layer agnostic, it
is supported by almost any packet-based technology such as

TCP/IP, Bluetooth Low Energy (BLE), and Zigbee. However,
the ISO/IEEE 11073 standard does not provide any security fea-
tures for healthcare data exchange and patient monitoring [3].
Instead, it fully relies on the transport layer implementations of
already-known protocols to secure the communications. In fact,
an attacker capable of exploiting well-known vulnerabilities
in communication protocols like BLE or Wi-Fi could gain
access to sensitive healthcare data from PMDs devices [4]–[6].
Similarly, in recent years, security concerns for modern SHSs
have been rising in both the healthcare sector and academia.
Researchers demonstrated that cyber attacks against commer-
cially available PMDs, including attack scenarios like remotely
disabling and reprogramming the behavior of the PMDs, are
possible [7]. However, the majority of the studied attacks are
device-specific and only apply for a specific type of PMDs.
As developers and vendors are adapting general standards for
interoperability in PMDs, more generalized approaches are
needed to understand the security vulnerabilities of the diverse
PMDs properly.

In this paper, we first demonstrate that different types of
PMDs are vulnerable to cyber attacks by implementing five
different attacks on commercially available real-life medical
devices. We show how an external attacker can gain ac-
cess to PMD traffic simply using publicly available tools [8]
and software [9] to eavesdrop sensitive patient information,
while also disrupting the PMD’s communication via Denial-
of-Service (DoS), Man-in-the-Middle (MITM), replay, and
false data injection attacks. Further, we design and implement
an intrusion detection system, HEKA, specifically tailored to
monitor PMD’s traffic and detect cyber attacks. First, HEKA
passively hooks into the PMD’s communication and generates
different size n-grams from different traffic features such as
PDU types, sequential traffic patterns, etc. Then, these features
are fed to different Machine Learning (ML) techniques to detect
irregular traffic-flow patterns in PMD communication. To test
the efficacy of HEKA, we built a PMD communication testbed
consisting of 8 off-the-shelf medical devices and implemented
HEKA to monitor PMD traffic and detect malicious events using
four different ML techniques. Furthermore, we evaluated the
performance of HEKA against four different cyber attacks. Our
evaluation shows that HEKA can detect malicious activities in
PMD’s communication with an average accuracy of 98.4% and
F1-score of 98%.

Contributions: Our contributions are three-fold:
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• We effectively performed five different attacks to four dif-
ferent types (eight in total) of commercially available PMDs
and uncovered vulnerabilities of real PMDs.

• We proposed HEKA, an Intrusion Detection System to iden-
tify different cyber attacks on real-life PMDs. We generated
multiple-size n-grams by combining different PMD traffic
features (e.g., PDU types, PDU patterns, etc.) and train
different ML models using these features to detect malicious
network events on PMDs.

• We built a testbed with eight different PMDs to implement
and test our proposed framework against four different types
of attacks. Our evaluation results from different ML algo-
rithms demonstrate that HEKA is very effective in detecting
different threats to PMDs with high accuracy and F1-score.

Organization: The rest of the paper is organized as follows:
We provide an overview of security vulnerabilities in PMDs
and existing solutions in Section II. The detailed overview
of the communication architecture of PMDs in Section III.
In Section IV, we discuss our attack environment and how
we perform our attacks on PMDs. In Section V, the detailed
overview of HEKA is provided. We illustrate the efficiency of
HEKA in detecting several malicious activities by analyzing
several performance metrics in Section VI. We discuss the
benefits of HEKA and future work in Section VII. Finally, we
conclude the paper in Section VIII.

II. RELATED WORK

In this section, we discuss different attacks on PMDs and
explain the shortcomings of existing security solutions available
for PMDs.

A. Existing Attacks
The latest advancements in healthcare with the incorporation

of smart health systems and the introduction of PMDs are
promising, but at the same time, they introduce unforeseen
security risks to healthcare organizations and patients under
their care. Recent works have reported several threats to smart
health systems, including PMDs. These threats target either the
implementation flaws in communication protocols [10]–[13] or
device-specific vulnerabilities [14], [15] to perform malicious
activities in PMDs. Wood et al. [16] proposed a method to
capture network traffic from PMDs and detected plain text
transmission of the packet payload that could leak sensitive
medical information. Classen et al. [17] analyzed the entire
Fitbit ecosystem and combine different approaches such as
protocol analysis, software decompiling, static, and dynamic
embedded code analysis to reverse engineer the communication
protocol used in the device. Here, researchers have been able
to get all recently recorded fitness measurement data, inject
malicious firmware, and modify the associated smartphone app
to disable supported security mechanisms (i.e., authentication
and encryption). In another work, a group of researchers
illustrated how an attacker could possibly intercept and modify
medical and patient data before it has stored in the cloud [18].
Li et al. performed both passive (eavesdropping) and active
attacks (impersonation and control of the medical devices to
alter the intended therapy) on diabetes therapy systems using
public-domain information and widely available off-the-shelf
hardware [19]. Halperin et al. reported a potential DoS threat on

battery-powered implantable cardioverter-defibrillators (ICDs)
by reverse-engineering the communication protocol and per-
forming software radio attacks [7].

B. Existing Solutions
Although researchers and developers have reported several

attacks on PMDs, there are no comprehensive security solu-
tions for PMDs. Most of the proposed solutions are device-
specific [17] or attack-specific [20], which can not address
the security needs of PMDs in a holistic way. Li et al. [19]
proposed three possible defense mechanisms based on rolling
codes, body-coupled communication, wireless communication
monitoring, and anomaly detection to mitigate the security risks
associated with medical devices significantly. Siddiqi et al. [21]
developed a scheme to ensure the reliability of the timestamp
processes in medical data that operated within the resource-
limited wearable devices, and accommodated variable latencies
over Internet paths. Oconner et al. [22] presented a Bluetooth
intrusion detection system to identify reconnaissance, DoS,
and information theft attacks on Bluetooth enabled devices,
using signatures of the attack. In a recent work, a group
of researchers proposed an anomaly-based intrusion detection
system for Bluetooth networks that used n-gram based approach
to characterize the normal behavior of the protocol [23].

C. Difference with Existing Attacks and Solutions
The main differences between the prior works and our work

are as follows: (1) while existing attacks mostly performed
MITM or replay attacks [12], [14]–[16], [18], we perform five
different attacks on BLE-based PMDs; (2) unlike attacks that
targeted specific devices [11], [17], [18], [24], we perform
attacks on four different types of real-life PMDs illustrating
broader impact of our proposed attacks. In addition, the intru-
sion detection system that we are proposing constitutes a novel
approach to detect malicious attacks in PMDs. Specifically, our
approach aims to identify four different types of attacks for
PMDs targeting not only specific fitness tracker devices, but
commodity PMDs. Although other works propose IDS for Wi-
Fi and Bluetooth enabled devices [20], [22], [23], we introduce
a novel intrusion detection system for medical devices that use
BLE as the targeted communication protocol.

III. BACKGROUND

In this section, we discuss how a PMD communicates with a
manager (smartphone) following the ISO/IEEE 11073 standard
[2] and the underlying transport layer protocol stack.

A. PMD Communication Architecture
The ISO/IEEE 11073 medical standard is used to define

and monitor the real-time communication processes between
PMDs and the controlling applications (Figure 1). PMD’s
communication involves two main entities: the agent and the
manager. In the example shown in Figure 1, the agent (i.e.,
PMD device) features an A&D blood pressure monitor [25]
that measures the blood pressure and heart rate of the patient.
On the other side of the communication channel, the manager is
represented by a smartphone, which is assumed to have a higher
availability of computing resources if compared with the PMD
device. ISO/IEEE 11073 defines an asymmetric communication
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Fig. 1: An example of data exchange diagram between a PMD and
its manager.

principle where agents can communicate with only one single
manager at any time. In contrast, managers are normally
capable of communicating with multiple agents simultaneously.
Right after the blood pressure monitor is turned on, it sends
an association request to the corresponding manager. In cases
where this is the first time the agent is requesting association
to the manager, the agent also has to send a configuration
report containing details of all the healthcare-related objects
and their static attributes that the agent is capable of handling
(e.g., systolic pressure, diastolic pressure, and pulse rate). The
manager may also request the Medical Device System (MDS)
object, which contain host-specific information, unique for
every PMD. After receiving the requested information, the
manager stores the PMD data as a device profile for future
communication requests, and sends a confirmation event report
back to the agent. Then, this report has to be acknowledged
by the agent with updated values of the healthcare-related data.
Finally, once the communication and data transfer is completed,
the agent sends an association release request to the manager
to release the connection.

B. Communication Protocol Stack

We discuss the Health Device Profile (HDP) for BLE-based
communications as the PMDs included in our testbed imple-
ment BLE communication. Figure 2 details the elements that
form a BLE HDP. The medical application features the actual
device application used to control the PMD, which contains
the User Interface (UI) used to convert the medical data into
a human-readable representation and provides integration to
the ISO/IEEE 11073 standard. The ISO/IEEE 11073 standard
stack performs building, transmission, and parsing of the IEEE
format Protocol Data Unit (PDU) for the agent/manager asso-
ciation and directly links to the HDP. The HDP is the core BLE
profile designed to facilitate the transmission and reception
of medical device data among agents (PMDs) and managers
(recipient of the information). Also, the Generic Access Profile

ISO/IEEE 11073 Standard

Generic Access
Profile (GAP)

Generic Attribute
Profile (GATT)

Security Manager
Protocol (SMP)

Attribute Protocol
(ATT)

Logical Link Control and Adaptation Protocol (L2CAP)

Health Device Profile
(HDP)Host

LE Physical Layer (PHY)Link Layer (LL)Controller

Host Controller Interface (HCI)

Transport Layer

Medical Application

Presentation and Session Layer

Application Layer

Fig. 2: Health device profile for BLE-based communications between
medical agents and managers as defined by the ISO/IEEE 11073
standard.
(GAP) specifies the roles, modes, and procedures of a PMD
device. Besides, it manages the connection and advertising
procedures of the agent device. The Generic Attribute Profile
(GATT) is used by the HDP to define how device data is
stored and exchanged between BLE-based devices utilizing the
principle called services and characteristics. Service breaks
the device data in logic entities that contain a specific portion
of medical data called characteristics. The Attribute Protocol
(ATT) transfers the attribute data between the agent and the
manager while the Security Manager Protocol (SMP) manages
the pairing procedure among BLE-based devices (PMD and
the smartphone for instance), such as exchange of pairing
information, authentication, and distribution key to encrypt
and decrypt the transferred packets containing the medical
data. Specifically, the authentication step follows three main
mechanisms to connect with the manager: (1) just works, (2)
passkey entry, and (3) out of band method. All of the PMDs
included in this research use the ”just works” pairing method,
which is a very simple authentication mechanism that has been
proven to be vulnerable to brute force attacks and eavesdrop
on the connection. Likewise, this method also offers no way
of verifying the devices taking part in the connection, and
thus it offers no MITM protection. Finally, the Logical Link
Control Adaptation Protocol (L2CAP) encapsulates the data
from the BLE-higher communication layers into the standard
BLE packet format for transmission.

IV. ATTACK MODEL

In this section, we explain the attacker’s goals and the
methodology to perform different attacks on real-life PMDs.

A. Attacker Goals
This work assumes an attacker that attempts to intercept

the communication of PMDs in a way that allows her to
perform different active and passive malicious attacks such as
eavesdropping, false data injection, etc. We categorize the goals
of this attacker in the following three categories based on the
impact of the attacks on normal PMD’s operations:
• Connection Delay: An attacker tries to connect with the

PMD using a malicious app installed in the manager (smart-
phone/laptop), and make the device unavailable for an autho-
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rized app. For instance, an unknown mobile app scans and
connects to an available pulse oximeter while the authorized
app fails to find the targeted medical device in the device list
as the device is no longer advertising for connection.

• Data Interception: An attacker sniffs the PMDs’ communi-
cations to eavesdrop and collect sensitive information such
as the patient’s vitals and device information. For example,
while a blood pressure monitor connected to an associated
mobile app is sending measured blood pressure data, the
attacker can capture the communication packets using a
sniffer to extract the device and patient-related information
(e.g., device model, firmware version, mac address, systolic
and diastolic pressure, etc.). This information can be used to
intercept communication and initiate different attacks such
as replay attacks, false data injection, etc.

• Data Modification: An attacker attempts to modify the
patient’s vitals measured by a PMD to perform malicious ac-
tivities such as triggering false alerts, altering treatments, etc.
For example, the attacker targets to alter the measured value
of a smart insulin pump to change the dose administrated to
the patient. The attacker performs this attack by intercepting
and modifying the communication packet between the pump
and the mobile app.

Fig. 3: Our attack environment for PMDs.

B. Attack Environment

We consider the following capabilities for an attacker to
successfully implement different attacks on PMDs.
• An attacker has the knowledge of which communication

standard and protocol are used by the PMD to establish
communication with the manager.

• An attacker has passive access to the communication channel
using third-party devices (e.g., sniffer, rogue scanners, etc.).
Figure 3 illustrates the overall attack environment considered

in this work. We assume a medical environment consisting of
8 PMDs (e.g., blood pressure monitor, pulse oximeter, weight
scales, etc.) on which the attacker implements different attacks.
These devices measure different vitals of the patients and com-
municate with a smartphone (manager) via associated mobile
apps. The communication between the PMDs (agent) and the
smartphone (manager) uses IEEE 11073 as communication
standard and Bluetooth 4.0 (BLE) as the communication pro-
tocol. We consider BLE as the devices included in our medical
environment use this specific protocol to communicate with the
manager. However, the attacks and security solutions proposed
in this work can be easily extended to other communication

Fig. 4: Captured device information after performing eavesdropping
attack.

protocols. Specifically, we used three specific tools to set up the
attack environment: (1) an unauthorized BLE scanner installed
in a rogue device (smartphone), (2) a BLE sniffer to capture
the BLE traffic passively, and (3) the BtleJuice framework [9].
For the BLE scanner, we used the nRFConnect app on an
Android smartphone, which is a universal scanner to discover
and connect BLE devices in close proximity [8]. To capture
the BLE traffic, we used the Hollong BLE sniffer [26], which
can capture the complete set of BLE communication packets
between an agent and a manager. Lastly, we used BtleJuice,
which is a free, publicly available framework to perform Man-
in-the-Middle (MITM) attack on BLE devices. To set up
this framework, we used two laptops running a Linux-based
operating system (Ubuntu 16.04) and BLE adapters. Using the
first laptop and a BLE adapter, BtleJuice creates a dummy
PMD device that further establishes a connection with real-life
PMDs. The second laptop builds a proxy server and connects
with the dummy PMD device to create a bridge connection.
Finally, using a BLE adapter, the proxy server connects with
the smartphone that runs the authorized apps for real-life PMD
devices. As the communication between the PMD devices and
the manager passes through the dummy device and the proxy
server, BtleJuice framework is able to capture the end-to-end
communication and perform malicious attacks.

C. Attack Methodology

In this work, we performed five different types of attacks
to actual commodity PMDs. The following discussion explains
our attack methodology for each attack. For illustration pur-
poses, we use i-health Pulse Oximeter [27] as our targeted
PMD.
Eavesdropping: The main goal of the eavesdropping attack is
to passively capture the network traffic between the PMD (i.e.,
pulse oximeter) and the smartphone without interrupting normal
communication. Here, we used a BLE sniffer (Hollong BLE
sniffer) to capture the PMD traffic from the pulse oximeter.
The captured traffic contained sensitive information such as
device information, header information, payload size, etc. For
example, in Figure 4, we illustrate a sample of a captured packet
between the pulse oximeter and its associated mobile app. By
simply analyzing the packet in Wireshark, we can extract the
MAC address of the pulse oximeter (18:93:D7:0D:E9:13) and
the smartphone (78:5b:57:d7:96:c9), firmware version (214),
hardware version (6), and access address (0xa441453d) of
the BLE communication. However, we cannot extract any
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Fig. 5: nRFConnect app denied authorized app to connect with PMD.

payload information in the eavesdropping attack as the payload
is encrypted using the BLE link-layer encryption (AES-128
encryption scheme).
DoS attack: The majority of the PMDs use the ”Just Work”
pairing method, which does not require any authentication
process to connect with the associated manager. In a DoS
attack, we target this feature to pair an unauthorized app with
a targeted PMD. We used nRFConnect, a free mobile app,
as an unauthorized app to scan PMDs in close proximity.
This unauthorized app scans and connects with any available
PMD making the device unavailable to the authorized manager
app. Figure 5 shows an example of the DoS attack. Here,
a pulse oximeter is connected to the unauthorized app, and
a connection request initiated from the authorized manager
(iHealth MyVitals app) gets denied. In addition, using the
nRFConnect app, we can extract different device information
including model number (PO3M 11070), firmware revision
string (214), hardware revision string (600), software revi-
sion string (108), manufacturer name (iHealth) and its un-
derlying IEEE 11073-20601 regulatory certification number
(0xFE006578706572696D656E74616c).

(a) Two pulse oximeter including a dummy device

(b) Captured packet from pulse oximeter
Fig. 6: Captured pulse oximeter packet in proxy server.

Man-in-the-Middle (MITM) attack: To implement the MITM
attack, we used the BtleJuice framework to establish a proxy
connection between the PMD and the manager. As discussed
earlier, BtleJuice uses two Linux-operated machines to act
as a dummy device and a proxy server. The targeted PMD
which does not perform any authentication process pair with
the dummy device running on the first Linux machine via a
BLE connection. The second Linux machine initiates a proxy
server that is connected with the dummy device via Wi-
Fi. Finally, the proxy server acts as a bridge and connects
with the manager to complete the connection. Hence, all the
communication packets between the PMD and manager reroute
through the dummy device and the proxy server. An attacker
can observe the BLE packets and extract sensitive information,
including device information, payload, etc. forwarded by the
PMD. For instance, Figure 6 illustrates a MITM attack on a
pulse oximeter. Here, one can observe two pulse oximeters:

the real device is connected to the BtleJuice framework, and
the dummy device is available for connection. As soon as the
dummy device connects with the manager, the BLE sniffer
shows only one device disguising the MITM attack from any
security tools. One can also see the captured BLE packets in
the proxy server in Figure 6.

(a) Captured GATT Operation

(b) Same packet captured at manager end
Fig. 7: Write command sent twice to perform a replay attack.

Replay attack: In a replay attack, an attacker aims to send a
specific packet in a recurring manner to interrupt normal com-
munication between a PMD and the manager. To implement
this attack, we captured the PMD traffic using the BtleJuice
framework and select a specific packet to send to the manager
app in a loop. This results in the same measured vitals of the
patient being shown on the manager’s UI, as the connected
app is unable to receive new updated patient’s health informa-
tion. Figure 7 illustrates a replay attack in a pulse oximeter.
Here, we intercepted a GATT operation between the pulse
oximeter and the manager with vendor-specific service and
characteristics ID. The payload of the captured GATT operation
is ”b00610ac742e3d9e” in HexII format, which indicates a
write command in the manager’s UI - sending this packet in
a recurring manner results in same pulse rate being shown on
the UI, interrupting the continuous vital update from the pulse
oximeter. We can see the multiple occurrences of the same
packet on the manager end using Wireshark (Figure 7b).

(a) Modifying payload in packet (b) False pulse rate in manager
Fig. 8: Modified pulse rate showed in the pulse oximeter app.

False data injection: In the false data injection attack, we
aimed to change the payload of the captured packet from the
PMD. Here, we captured the communication packets from the
PMD using the BtleJuice framework and determined the GATT
operation, including service and characteristic values. As most
of the PMD only sends a numerical value to write on the
manager’s UI, it is simple to determine the targeted packet
containing vital information. We modified the packet manually
to change the payload and send it to the manager using the

2020 IEEE Conference on Communications and Network Security (CNS)

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 17:08:22 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 9: Our proposed HEKA framework.

proxy server. An example false data injection attack is shown
in Figure 8. Here, the captured payload is ”b00610ac742e3d9e”
in HexII format, where ”3d” represents the pulse rate of the
patient (46 in decimal format). We manually changed the value
to ”47” (71 in decimal) and forwarded the modified packet to
the manager. In Figure 8b, one can see the modified pulse rate
of the patient on the manager’s UI.

V. HEKA OVERVIEW

In this section, we present the general architecture of HEKA,
a passive intrusion detection system to detect malicious attacks
on PMDs. Figure 9 illustrates the overall architecture of HEKA,
which includes five main modules: (1) sniffer module, (2) data
preprocessing, (3) n-gram generator, (4) anomaly detector, and
(5) notification module. The sniffer module captures network
traffic between PMDs and manager devices using a sniffer.
These collected traffics are preprocessed to remove the noises
(e.g., advertise communication and response) in the data pre-
processing module and forwarded to the n-gram generator. The
n-gram generator uses a sliding window technique to extract
sequential patterns in PDU types, which is used as features to
detect malicious events in HEKA. The features extracted from
the captured traffic are then merged into arrays, so the anomaly
detector module can use the feature arrays to train different ML
algorithms and builds the detection system. Anomaly detection
module also detects whether or not any malicious activities oc-
cur within the PMD and the manager communication. Finally,
the notification module sends a notification to the manager in
the events of an attack detected in the network.
A. Sniffer Module

Sniffer module passively captures PMD traffic from different
PMDs without interrupting normal communication. The cap-
tured traffic includes control PDUs, data channel PDUs, and
empty PDUs. The following equation represents the captured
traffic from PMDs: Captured Traffic, D = {P1, P2, P3, ..., Pn},
where, Pn represents the captured packet at time is the captured
packet at time tn. These captured traffic are forwarded to the
data preprocessing module for data sampling and cleaning.

B. Data Pre-processing
Similar to other regular Bluetooth, BLE, or ZigBee devices,

PMDs always send advertising packets to connect to a nearby
manager device. Additionally, if any nearby manager wants to
establish the communication channel, it sends a scan request
to the PMDs. Hence, the captured PMD traffic by the sniffer
module includes insignificant packets such as advertising pack-
ets, scan requests, and scan responses from nearby PMDs. The
data preprocessing module collects the PMD traffic captured in

the sniffer module and removes the irrelevant packets from the
dataset. We only consider complete communication between
PMDs and the manager to extract features of benign commu-
nication and train HEKA. The data preprocessing module de-
tects complete communication by detecting CONNECT REQ
Protocol Data Unit (PDU) and CONNECT TER PDU in the
dataset. These captured traffic between PMDs and the manager
are forwarded to the n-gram generator for feature extraction.

C. N-gram Generator

N-gram generator considers the captured traffic as a con-
tiguous sequence of n items, where items refer to the PDU
types of traffic. We consider different sliding windows to extract
features from the preprocessed PMD traffic forwarded by the
data preprocessing module. We start our sliding window after
a CONNECTION REQ PDU is sent from the manager to the
PMD and continue moving it till CONNECTION TER PDU,
which indicates the termination of the communication. We
consider 13 different types of PDUs included in the n-gram
feature set. Figure 10 shows an example of a 3-gram sequence
considered in HEKA. The size of the sliding window in the
n-gram generator is configurable and varies from 3 to 6. This
configurable feature makes our framework adaptive for different
data formats and traffic characteristics. The sequential patterns
and the frequencies of PDU types extracted by the n-gram
generator are forwarded to the anomaly detector module to
train the analytical model and detect malicious events in the
PMDs.

CONNECT_REQ LL_CONNECTION
_UPDATE_REQ

3-Gram Sequence
(CONNECT_REQ, LL_FEATURE_REQ, LL_FEATURE_RES)
(LL_FEATURE_REQ, LL_FEATURE_RES, Empty PDU)
(LL_FEATURE_RES, Empty PDU, LL_VERSION_IND)
(Empty PDU, LL_VERSION_IND, LL_CONNECTION_UPDATE_REQ)

LL_FEATURE_
 REQ

LL_FEATURE_
 RES    EMPTY PDU LL_VERSION

 _IND

Fig. 10: Our generated 3-gram traffic feature sequence.

D. Anomaly Detector Module

The anomaly detector module uses the generated n-grams
from the captured traffic to train different ML algorithms and
detect malicious events in the PMD traffic. HEKA aims to detect
any malicious events in real-life communication, which requires
low detection latency and easy implementation. Based on these
needs, we have selected four supervised ML algorithms such as
Support Vector Machine (SVM), Decision Tree (DT), Random
Forest (RF), and K-Nearest Neighbors (KNN) algorithms to
integrate into our framework, as these offers fast computation
and easy implementation feature [28]. We briefly discuss these
ML algorithms and our rationale to choose them below:
• Multi-class Support Vector Machine (SVM): SVM is a super-

vised machine learning algorithm that maps data to a high-
dimensional feature. In contrast, Multi-class SVM is a classi-
fication model that can be implemented by converting single
class SVM into multiples of the binary classifications [29].
We chose Multi-class SVM because of non-linearity in our
dataset and numerical values for our dependent variables
(traffic state: benign, MITM, replay, and false data injection).
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TABLE I: Our considered feature set for HEKA.

Feature Description
CONNECT REQ Establishment of the connection
LL FEATURE REQ Features set up by the manager’s Link Layer
LL CHANNEL MAP Check Link Layer State for any pending real time control
LL FEATURE RSP Feature response from the agent
Empty PDU Packet acknowledgement, if the agent device has a value
LL VERSION IND Contain company identifier of the manufacturer of the BLE Controller
LL CONECTION UPDATE REQ Check the state of Link Layer to avoid any rejection from BLE stack
Read By Type Request manager sends the Read By Type Request to obtain the attribute handler
Read By Type Response Contain attribute data handles, characteristic handles and UUID’s:
Write By Type Request Request the server to write the value of an attribute
Write By Type Response Write Request works
Handle Value Notification Send only when characteristics value changed in the packet
CONNECT TER Terminate connection

We use the Radial Basis Function (RBF) as our kernel space
because of the minimum number of feature sets.

• Decision Tree (DT): DT uses a graph branching method
to explain every possible outcome of a decision. It uses
the divide and conquer approach, and recursively selects
the attribute that is used to partition the training dataset
into subsets until each leaf node in the tree has a uniform
class membership [30]. We consider the frequency pattern of
our feature set. For every dependent variable, the frequency
pattern of our independent variables (CONNECTION REQ,
LL FEATURE REQ, etc.) is different from each other.
Different frequency pattern helps the decision tree to find
important features in the dataset.

• Random Forest (RF): RF is an ensemble learning method
consisting of many decision trees to model the classifier.
Here, a different subset of training data is selected with
a replacement to train each tree [31]. RF model is also
effective for estimating missing data. As our framework uses
a sniffer to collect the data, we chose RF as it maintains
accuracy to mitigate the possibility of missing packets in the
communication.

• K-Nearest Neighbor (KNN): The KNN algorithm is an
instance-based learning algorithm that stores the training
samples but does not generate a specific classification model
[32]. During classification, distances between test and train-
ing samples are calculated, and the test sample is assigned
the same class label as its nearest neighbor. KNN offers
high accuracy and the faster creation of a raining model for
unknown traffic data, which is suitable for HEKA.

E. Notification Module
The notification module of HEKA notifies the manager in the

event of any malicious attack against PMDs.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness and feasibility
of HEKA in detecting malicious activities in PMDs. We con-
sider several research questions to evaluate HEKA in detecting
malicious activities.

• RQ1 What is the performance of HEKA in detecting a
single attack to the PMDs? (Sec. VI-C)

• RQ2 What is the performance of HEKA in detecting
combined attacks at once to the PMDs? (Sec. VI-D)

• RQ3 What is the impact of different n-grams on the
performance of the HEKA? (Sec. VI-E)

A. Training Environment and Methodology
To test the efficacy of HEKA, we collected data from

four different types (eight in total) of PMDs (iHealth Air

Wireless Pulse Oximeter [27], A&D blood pressure monitor
[25], QuardioArm blood pressure monitor [33], A&D wireless
weight scale [34]) while measuring patient’s vitals such as pulse
rate, blood pressure, blood oxygen, and weight monitoring.
Note that we only collected data from normal users in a lab en-
vironment, and no medical and personal data has been recorded
other than the captured traffic. While collecting data from the
PMDs, we considered variable data collection time as the data
stream, and sampling time varies from device to device. For
example, pulse oximeter sends a continuous data stream to the
manager, while weight scale measures discrete values. Again,
some PMDs (e.g., blood pressure monitor) need initialization
time to measure the patient’s vital properly. To capture the
complete PMD traffic properly, we considered three different
time windows (10 minutes, 5 minutes, and 2 minutes). We
consider the PMD traffic captured while measuring the vitals
as benign data. For collecting the malicious data, we performed
four different attacks (MITM, replay, false data injection, and
DoS) against PMDs, as described in Section IV. Here, we did
not consider any passive attacks (e.g., eavesdropping) as passive
attacks do not affect the normal communication between PMDs
and the manager [35], [36]. We specified the MAC address of
the PMDs while capturing PMD traffic in the BLE sniffer to
avoid irrelevant packet capture from nearby BLE devices. We
used Wireshark and t-shark, two well-known network packet
analyzer to pre-process and analyze our captured traffic. As we
aimed to detect malicious events on real-life communication,
we reduced the feature space to achieve low processing and
detection time [37]. Upon analyzing the captured packet, we
considered 13 different PDU types as a selected feature for
our IDS (illustrated in Table I). We used different n-grams (3
to 6 gram) to extract sequential patterns on selected PDUs.
We calculated the frequency of the generated n-grams in the
complete packet capture and then considered the top twenty
frequency patterns in that traffic flow as features. Finally, we
used these features to train different ML models and detect
malicious activities on PMDs. We captured 1039 instances of
communication consisting of total number packets transmitted
between the PMDs and managers, where 731 instances were
for benign communication, and 308 instances were captured
while performing malicious attacks. We also note that we used
70% of the collected benign traffic to train the ML-models and
the remaining 30% of the data along with malicious dataset to
test the IDS, which is a common practice [38], [39].
B. Performance Metrics

In the evaluation of HEKA, we used four different perfor-
mance metrics: Accuracy, Precision, Recall, F1-score. Accuracy
refers to the degree of closeness of a measured quality to that
quality’s true value, and precision calculates the fraction of
correct positive identifications. Recall identifies the portion of
correctly identified positives while F1-score measures a test’s
accuracy considering both precision and recall.

C. Performance of HEKA Against Individual Attacks
We evaluate the effectiveness of HEKA against the different

types of attacks implemented in Section IV. To do so, we
performed every single attack separately against the PMDs
included in our testbed. Table II shows performance metrics
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TABLE II: Performance of different ML-based single attack detection techniques using 4-gram sequence in HEKA.
Attack MITM Replay False data injection DoS
Algorithm Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score
SVM .971 .97 .97 .97 .983 .98 .98 .97 .972 .97 .97 .97 .967 .97 .97 .97
KNN .93 .93 .93 .93 .939 .94 .94 .94 .944 .94 .93 .93 .941 .929 .94 .94
DT .975 .98 .98 .98 97.3 .97 .97 .97 .969 .97 .96 .97 .967 .97 .97 .97
RF .967 .96 .97 .97 .98 .98 .98 .98 .974 .97 .97 .97 .984 .98 .98 .97

TABLE III: Performance of HEKA in detecting multiple attacks at the
same time.

Attacks MITM and False data injection MITM and Replay
Algorithm Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score
SVM .964 .96 .96 .96 .922 .91 .92 .92
KNN .937 .94 .94 .94 .903 .90 .90 .90
DT .957 .96 .96 .96 .922 .92 .92 .92
RF .949 .95 .95 .95 .943 .94 .94 .94

(a) Individual attack (b) Combined attacks

Fig. 11: Impact of different N-grams sizes in HEKA.

results after evaluating HEKA using the 4-gram approach for
different attacks. One can observe that HEKA achieves the
highest accuracy of 98.4% and 97.4% using RF algorithms for
the case of DoS and false data injection attacks, respectively.
Also, SVM achieves the highest accuracy of 98.3% and F1-
score of 98% for the case of replay type of attacks. For
MITM attack detection, DT algorithms provided the better
accuracy results of 97.5%. KNN achieved high false positive
and negative rates for MITM and replay attacks because few
PMD sent several similar packets to the manager to confirm that
the manager receives the patients’ vital accordingly. Finally, it
is worth noting that KNN achieved the lowest performance
results for all the considered attacks.

D. Performance of HEKA Against Combined Attacks

While using the BtleJuice framework, it is possible for
an attacker to perform more than one attack on the PMDs
simultaneously. Specifically, we found that attackers may be
able to combine MITM-False data injection and MITM-Replay
types of attacks. To perform both combined attacks, the PMD
has to connect first to the core device via the BLE connection.
In contrast, the associated smartphone app connects to the
interception proxy featured by the BtleJuice framework. We
again tested the performance of HEKA against combined attacks
while using the 4-gram approach. From Table III, one can
observe that SVM performs with the highest accuracy of 96.4%
against MITM-False data injection attacks. On the other hand,
RF achieved 94.3% accuracy while identifying MITM-Replay
type of combined attacks. Also, one can observe that the
general performance of HEKA degrades when trying to identify
anomaly behaviors of BLE-based PMD communications as a
result of combined attacks. Finally, as in the case of single
attacks, KNN achieved the lowest performance results.

E. Performance of HEKA with Different N-gram Sequences
We tested the impact of n-gram sizes on the HEKA perfor-

mance. To do so, we performed anomaly BLE traffic detection
while implementing HEKA using four different n-gram sizes: 3-
gram, 4-gram, 5-gram, and 6-gram. We performed n-gram size
analysis using the RF algorithm only, as it appears to be the
one achieving better results on average for the four different
single attack cases and the two combined attacks analyzed.
For individual attacks, HEKA achieved the lowest accuracy
for a 3-gram sequence pattern when identifying the MITM
attack (Figure 11a). For the 4-gram sequence, it achieved the
highest accuracy of 98.4%. Also, for the case of the 6-gram
sequence, HEKA can detect DoS attack with 98% accuracy.
For the instance of combined attacks, the HEKA framework
obtained the lowest accuracy of 92% for a 3-gram sequence
when identifying MITM-Replay type of combined attacks. In
contrast, it achieved 96% accuracy for the case of MITM-False
data injection attack identification. Finally, both types of attacks
obtained degraded performance for the 6-gram sequence, if
compared with the 5-gram case (Figure 11b).

VII. DISCUSSION
In this section, we illustrate how HEKA can be effective in

real-time malicious activity detection in PMDs.
Scalability- HEKA uses PMD traffic patterns to extract PDU
types and detect malicious activities in the network. For a
similar type of PMDs, PMD traffic patterns remain almost the
same. Hence, HEKA can detect malicious activities in different
PMDs without retraining. For connected SHS where multiple
PMDs share the same ecosystem, HEKA can be an efficient
solution in terms of scalability. Additionally, HEKA uses traffic
patterns as a feature to detect malicious activities which can be
easily adapted by new communication standard and protocols.
Effectiveness- HEKA achieves high accuracy in detecting dif-
ferent types of malicious attacks on PMDs. One interesting
observation is that different ML models achieve high accuracy
for different types of attacks in HEKA. As HEKA extracts
features from PMD’s traffic patterns to detect malicious ac-
tivities, it is expected that different traffic patterns (caused by
the type of attack being performed) will have an impact on
the machine learning algorithm achieving the highest accuracy.
To avoid tailoring HEKA model to specific attacks, modern
ML approaches like AutoML could be a viable solution to
automatically select the best ML algorithm for HEKA and
ensure the maximum effectiveness for diverse attacks in real-
life implementation [39].
Passive analysis- HEKA uses sniffing techniques to passively
observe the network traffic between PMDs and the manager
without obstructing the normal communication to detect ma-
licious activities. As there is no need to implement HEKA
on PMDs or the manager, it is very efficient in terms of
performance overhead.
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VIII. CONCLUSIONS

Personal medical devices (PMDs) offer remote monitoring
and automated treatments for the patients improving patient’s
quality-of-life while lowering the cost. However, communi-
cation standards and protocols used by these PMDs raise
many security concerns, and attackers can perform different
attacks to compromise sensitive information. In this paper,
we illustrated different vulnerabilities of PMDs by performing
five different types of cyber attacks on commercially available
healthcare devices. These attacks demonstrate how an attacker
can compromise the communication system of PMDs and
perform malicious activities such as denial-of-service, false data
injection, etc. Additionally, we presented HEKA, a passive IDS
to monitor and detect cyber attacks on the network traffic of
PMDs. HEKA passively hooks to the PMDs communication
and detects malicious activities by (1) generating different
sizes of n-gram using the sequential patterns in PDU types
and (2) training different ML models to differentiate benign
and malicious communication traffic. We evaluated HEKA on
different real-life PMDs and against different cyber attacks. Our
evaluation showed that HEKA is highly effective and efficient
in detecting different attacks with over 98% of accuracy.
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