
J Hardw Syst Secur
DOI 10.1007/s41635-017-0013-2

A Survey on Function and System Call Hooking Approaches

Juan Lopez1 ·Leonardo Babun1 ·Hidayet Aksu1 ·A. Selcuk Uluagac1

Received: 26 January 2017 / Accepted: 18 August 2017
© Springer International Publishing AG 2017

Abstract Functions and system calls are effective indica-
tors of the behavior of a process. These subroutines are
useful for identifying unauthorized behavior caused by mal-
ware or for developing a better understanding of the lower-
level operations of an application. Code obfuscation, how-
ever, often prevents user monitoring and modification of
subroutine calls. Subroutine hooking offers a solution to this
limitation. Function and system call hooking approaches
allow for subroutine instrumentation, making hooking a
valuable and versatile skill across industry and academia.
In this survey, we present several criteria for the classifica-
tion and selection of hooking tools and techniques as well
as an examination of the major hooking approaches used
on Windows, Linux, macOS, iOS, and Android operating
systems. We also evaluate and compare the performance of
different subroutine hooking tools and techniques based on
computing resource utilization such as CPU time, memory,
and wall-clock time. To the best of our knowledge, this is
the first paper that encompasses both system call and func-
tion hooking techniques and tools across the major desktop
and mobile operating systems.

� Leonardo Babun
lbabu002@fiu.edu

Juan Lopez
jlope518@fiu.edu

Hidayet Aksu
haksu@fiu.edu

A. Selcuk Uluagac
suluagac@fiu.edu

1 Florida International University-Engineering Center, Miami,
FL 33174, USA

Keywords System calls · API calls · Hooking techniques ·
Function interposition · Function interception · Binary
instrumentation · Function instrumentation

1 Introduction

Function and system call hooking approaches are useful
techniques used in both research and software development
to monitor or modify a program’s execution. There are a
variety of situations where hooking is advantageous includ-
ing malware identification [27, 33, 40, 60, 68, 70], software
testing [43, 55, 61, 64], and software distribution [38]. The
main reason behind function and system call hooking is the
fact that the source code of most application are unavail-
able, making hooking one of the most utilized techniques
for binary instrumentation [3, 54, 59] as well as malware
reverse engineering [52, 69]. In essence, hooking a sub-
routine (function or system call) involves (1) identifying a
subroutine in a process that needs to be instrumented (the
target subroutine) and (2) performing modifications to the
operating system, run-time environment, program libraries,
or the executable program itself. These changes may be
done before program execution or at run-time, and they will
guarantee that the target subroutine will be instrumented
whenever it is called.

This work presents a detailed catalog of the existing tech-
niques and tools available to implement function and system
call hooking on the most commonly used operating systems:
Windows, Linux, macOS, iOS, and Android. At the time of
writing this article, there was not any previous work that
covered both function and system call hooking tools and
techniques across the major operating systems. Moreover,
improvements in technology have led to the development
of new hooking tools and techniques, some of which have

(2017) 1:1 –114 36

/ Published online: 21 September 2017

http://crossmark.crossref.org/dialog/?doi=10.1007/s41635-017-0013-2&domain=pdf
http://orcid.org/0000-0002-7082-8423
mailto:lbabu002@fiu.edu
mailto:jlope518@fiu.edu
mailto:haksu@fiu.edu
mailto:suluagac@fiu.edu

not been examined in any previous work. We solve this lim-
itation by (1) presenting a comprehensive explanation of
hooking, covering the most important theoretical aspects of
the technique, supported by other relevant work that has
been done on the topic; (2) defining several different cri-
teria used for the classification and selection of hooking
techniques and tools; (3) examining and describing some of
the most popular tools and techniques used for both func-
tion and system call hooking; and (4) presenting the results
of our performance analysis on the overhead introduced by
several of the hooking tools and techniques analyzed.

Organization The remainder of the paper is organized as
follows. Section 2 presents background information about
hooking. In Section 3, we examine some related work. In
Section 4 , we propose different criteria for the classification
and selection of hooking tools and techniques. Sections 5
and 6, examine specific function and system call hooking
techniques and tools, respectively. In Section 7, the over-
head introduced by several of these hooking techniques and
tools is evaluated on the most commonly used operating
systems. Lastly, Section 8 concludes the paper.

2 Background

In this section, we present some operating system concepts,
including user-space, kernel-space, and shared libraries,
which are fundamental in understanding the hooking pro-
cess. In addition, we provide an overview of subroutine
hooking.

2.1 Operating System Concepts Relevant to Hooking

Before presenting specific hooking concepts, we need to
define the two segregated layers used in all operating sys-
tems and explain the use of shared libraries across various
operating systems.

2.1.1 User-Space vs. Kernel-Space

Operating systems provide two modes of operation, a low-
privileged user-mode to execute user-defined programs that
are not part of the operating system, and a high-privileged
kernel-mode to execute operating system code such as sys-
tem drivers and services [56]. Because kernel-mode has
direct access to the system hardware, it is important to
restrict access to this mode. Typically, this is accomplished
through the use of protection or privilege rings which are
enforced by the hardware. Nearly all user programs require
services provided by kernel such as a user interface, I/O
operations, file management, and communication with other
processes [58]. In this environment, system calls provide an

interface to the operating system services, allowing user-
mode programs to request services from the kernel. System
calls may be called either directly from a user program
or through the use of an application programming inter-
face (API), which provides users with a set of abstracted
functions that initiate the system calls necessary to link the
higher-level requests with the operating system services.
As a result of this operating system organization, we need
to examine hooking techniques for both functions (partic-
ularly system call APIs) in user-space and system calls in
kernel-space. Most system calls have user-space wrapper
functions [31], so we can hook either the function or the
actual system call. For example, to create a new process
in Windows, a user can utilize the Windows API func-
tion, CreateProcess, which ultimately calls the system call
NTCreateProcess in the kernel. Consequently, we could
hook the Windows API using a function hooking technique,
or we could directly hook NTCreateProcess using a system
call hooking technique.

2.1.2 Shared Libraries

Most operating systems including Windows, macOS, Linux,
iOS, and Android allow processes to use static and shared
libraries. Programs that use static libraries are considered
self-contained because these libraries are linked at compile-
time. However, there are numerous libraries that may be
used by more than one program such as those defined in the
Windows API [23] or POSIX API [15]. Therefore, it would
be wasteful to have every program contain their own copy
of the same library. Shared libraries, as their name implies,
allow multiple programs to access the same library file,
reducing both memory and disk usage [51]. Furthermore,
because shared libraries are linked at either program load-
time or run-time, it is possible to make modifications to a
shared library file without the need to modify or recompile
any program that is dependent on this library. The flexibility
provided by shared libraries can be exploited with a variety
of techniques that allow for function hooking. On Win-
dows, a shared library is known as a dynamic-link library
(DLL). In Linux and Android, these libraries are identi-
fied with the .so extension, while in macOS and iOS, the
.dylib extension is used. The differences in the implemen-
tation of shared libraries across different operating systems,
in part, determine the available hooking techniques for each
platform.

2.2 An Overview of Subroutine Hooking

We define hooking as the interception of specific functions
or system calls to monitor and/or alter the execution of
the specified call. Typically, this is accomplished through
the use of detour functions or detour system calls [46]. For

J Hardw Syst Secur (2017) 1:114–136 115

simplicity, throughout this paper, we use the term subrou-
tine to refer to both functions and system calls. Furthermore,
we refer to the specific subroutine that will be hooked as the
target subroutine and the process containing this subroutine
as the target process. Moreover, we define instrumentation
as code in a detour subroutine that monitors and/or modi-
fies the target subroutine. Finally, we refer to the subroutine
in the program code that calls the target subroutine as the
caller. All hooking operations will eventually need to return
control to the target subroutine caller.

Because most source code is unavailable, subroutine
hooking is sometimes the only way to instrument a process.
Figure 1 provides an overview of the typical steps involved
in hooking a subroutine. As this figure shows, the hook-
ing process first identifies the subroutine in a process that
needs to be instrumented (the target subroutine). Then, it is
necessary to select an existing detour subroutine or define
a new one. This subroutine includes the instrumentation to
trace and/or alter the target subroutine [39]. Changes to the
target subroutine may include modifications to subroutine
parameters and/or return values. Next, certain modifications
must be made to the operating system, run-time environ-
ment, libraries, or executable file to install the hook. These
necessary alterations will depend on a number of factors
including the operating system, the subroutine type, either
a function or system call, and the moment when the hook
will be inserted (before program execution or at run-time).
After the hook is installed, whenever a subroutine in the
process calls the target subroutine, the code execution will
jump to the detour subroutine. Therefore, the caller subrou-
tine will effectively be calling the detour subroutine instead
of the target subroutine. Finally, instrumentation of the tar-
get subroutine in the detour subroutine can occur before
the target subroutine executes (pre-processing), after the tar-
get subroutine has executed and returned (post-processing),
or in both cases [39]. For instance, with pre-processing
instrumentation, the detour subroutine can change the input
parameters to the target subroutine and call it with these

Identify target subroutine to hook

Define or use an existing detour subroutine to
instrument subroutine

Make modifications to hook target subroutine,
redirecting execution to detour subroutine

Perform preprocessing and/or postprocessing in detour
subroutine

Return control to caller

Fig. 1 The typical steps involved in subroutine hooking. The user
must always select the target subroutine(s), but the rest of the steps
may be automated by a hooking tool or utility

modified parameters [12]. After the target subroutine exe-
cutes completely, it once again jumps to the detour subrou-
tine to execute post-processing instrumentation code such
recording the subroutine return value. Consequently, a hook
implementation that includes both pre- and post-processing
will redirect execution to the detour subroutine multiple
times. Ultimately, the detour subroutine will return control
to the target subroutine caller [36].

3 Related Work

There has been significant research on different mecha-
nisms for subroutine hooking. A number of articles examine
user-space techniques used for function hooking. Kim [42]
discusses two techniques for intercepting functions, inline
hooking (target function modification) using Microsoft
Detours [13] and Import Address Table (IAT) hooking using
Syringe, developed by the OK Thinking Software. Hunt and
Brubacher provide a thorough explanation of inline hooking
used by the library Microsoft Detours to intercept Win32
functions [39]. These authors also discuss Detours’ mech-
anism to modify the IAT of Win32 binaries, allowing for
function interception. Furthermore, Willems et al. [64] pro-
vide an overview of Windows API hooking, focusing on
inline code overwriting and DLL code injection. Richter
and Nasarre [53] also discuss Windows hooking, includ-
ing an entire chapter on numerous Windows DLL injection
techniques and different API hooking techniques includ-
ing inline hooking and IAT modification. Mohd and Maarof
[57] present three Windows API hooking techniques: inline
hooking, IAT hooking, and debugger hooking. Crucially, the
authors analyze the ease with which malware can detect the
use of these techniques.

Other publications further discuss the use of function
hooking in other operating systems. Myers and Bazinet
[51] present several function hooking techniques across
several operating systems, including the Detours library
for Windows and the run-time environment variables for
macOS and Unix systems. Zdziarski [71] examines the
tool Cyscript, which can hook Objective-C methods in iOS
applications. The author also describes how iOS dynamic
libraries can be injected with the GNU debugger to intercept
functions. For system call hooking, Wampler [63] examines
three rootkit attacks on both Linux and Windows: system
call modification, system call target modification, and sys-
tem call table redirection, which can be used to hook system
calls. Moreover, Tan et al. [45] investigate system call trac-
ing tools on Android and iOS. The authors compare the
utility strace to utrace on Android. They also discuss Dtrace
and Apple Instruments tools for Mac OS and iOS. Because
of several disadvantages with existing tools on iOS, the
authors developed their own system call tracing tool named

116 J Hardw Syst Secur (2017) 1:114–136

iTrace. Andersson et al [28] examine code injection tech-
niques on Windows and Unix, describing both function and
system call hooking.

A major component of this paper is the evaluation of
the performance overhead introduced while utilizing vari-
ous hooking techniques and tools. Hunt and Brubacher [39]
describe alternative function hooking approaches including
DLL redirection and breakpoint trapping and compare the
performance of these techniques to the Detours library using
function invocation time. Marhusin et al. [48] analyze the
performance of the Deviare API hooking engine on Win-
dows, comparing it against a plain system (no hook) and a
system running an antivirus. They instrument several func-
tions in kernel32.dll related to file operations and examine
differences in startup time across ten Windows programs.
Tan et al. [45] examine the performance overhead of the
system call tracing tools, strace on Android and iTrace on
iOS.

Subroutine hooking is a major process in security appli-
cations widely used in malware detection, application
behavior analysis, and compromised software monitoring.
In [49], Mehdi et al. present a novel variable-length rep-
resentation of system calls intended for malware detection.
In [29], hooking techniques are utilized to create system
and function call signatures of deterministic Cyber-Physical
Systems (CPS) processes in order to detect compromised
smart grid devices. Additionally, Xu et al. propose a novel
malware detection mechanism based on API/system call
tracing and malicious behavior of malware in [66]. More-
over, researchers in [47] utilize subroutine hooking tech-
niques to trace system calls and detect malware instances
and their corresponding malware families. Finally, authors
in [44] examine system call lists to improve malware detec-
tion rates, and they use MapReduce to reduce the overhead
of this analysis.

Differences from the Existing Works While various pub-
lications have investigated either user-space (function calls)
or kernel-space (system calls) hooking, we have not found a
single article that provides a thorough examination of both
types of subroutine hooking. To the best of our knowledge,
this is the first work that focuses on surveying the currently
available hooking tools and techniques in both user-space
and kernel-space across the five major operating systems:
Windows, Linux, Mac OS, iOS, and Android.

4 The Classification and Selection of Hooking
Approaches

In this section, we present several characteristics useful for
the classification and selection of hooking tools and tech-
niques based on specific user applications. These properties
are summarized in Fig. 2.

4.1 Subroutine Type

The operating system’s separation between the user and
kernel processes allows to define two types of subroutine
hooking: function hooking and system call hooking. Func-
tion hooking generally occurs in user-space and typically
does not require root or administrator privileges. Function
hooking is primarily concerned with functions from system
call APIs such as the POSIX [15] or Windows API [24].
Some examples of function hooking tools include Micro-
soft Detours, EasyHook [8], WinAPI Override32 [22], and
Frida [9].

In contrast, system call hooking occurs in kernel-space,
and consequently most techniques require higher privileges.
Dtrace and strace are two operating system tools that allow
for this type of hooking.

Fig. 2 A summary of the major
attributes that should be
considered when classifying or
selecting a hooking tool or
technique

Subrou�ne
Hooking

Subrou�ne Type Function

System Call

Hook Inser�on Static

Dynamic

Instrumenta�on Type Active

Passive

Hooking Loca�on On-device

Off-device

Hooking Scope Inner Functions

Exported Functions

OS Modifica�on Required

Not required

Availability of Source Code Open-source

Closed-source

Pricing Model Free

Paid

J Hardw Syst Secur (2017) 1:114–136 117

4.2 Hook Insertion

Hooking techniques can also be organized based on the
moment when the hooking code is inserted. With static
hooking [65], certain adjustments must be made prior to
the target program’s execution. In this paper, we consider
any hooking technique or tool that requires the modi-
fication of the binary executable, operating system files
(including libraries), or run-time environment to be static.
These changes are generally permanent. However, changes
to the run-time environment can be temporary, persisting
only during the execution of the process. There has been
considerable research on static caller-side rewriting tech-
niques which perform physical modifications (on disk) to
a binary executable by dissembling it, inserting instru-
mentation code, and recompiling the program [30, 32, 34,
67]. However, because of the disadvantages of caller-side
rewriting [60, 65], we only examine the static hooking tech-
niques that do not modify the executable file. A common
static hooking approach is to use the Linux environment
variable LD PRELOAD [12] or its macOS counterpart
DYLD INSERT LIBRARIES [7] to alter the run-time envi-
ronment. Contrary to static hooking, the term dynamic
hooking [65] refers to the insertion of the hooking code
at run-time by modifications made in memory. Dynamic
hooking techniques do not require operating system modifi-
cation. One of the common dynamic hooking techniques is
callee-side rewriting, where the hook is inserted by modi-
fying the target subroutine in memory [65]. We explain this
approach in more detail in Section 5. Examples of dynamic
hooking tools include Microsoft Detours, EasyHook, and
Frida.

4.3 Instrumentation Type

The functionality included in the detour subroutine allows
one to distinguish between two types of instrumentation:
passive and active. In passive instrumentation, the user
intercepts a subroutine, examining tracing information such
as the number occurrences of a subroutine, arguments, and
return value, but in general, the original functionality of the
target subroutine is not altered. Typically, the detour func-
tion will include code that writes tracing information to
standard output or to a file, before or after jumping to the
target subroutine. For instance, Dtrace allows users to trace
but not modify system calls.

In contrast, active instrumentation involves modifica-
tions to the functionality of the target subroutine such as
changes to the input parameters or the return value of the
target subroutine. Alternatively, the user may choose not
to call the target subroutine, entirely overriding the behav-
ior of the target subroutine. In this group, we can include

library interposition by using LD PRELOAD. Many hook-
ing approaches allow for both types of instrumentation. For
instance, Microsoft Detours can be used for function tracing
(passive), or alternatively, it can be used to alter functions
(active).

4.4 Hooking Location

Most hooking techniques are considered on-device or local,
where instrumentation is accomplished on the target device
and no additional devices are required. For instance, Intro-
spy allows users to monitor selected functions on an
Android device, and the results of this trace can be exam-
ined on the same device. On the other hand, off-device or
remote techniques require one or more auxiliary devices in
addition to the target device to perform hooking. One of the
best examples of off-device hooking is Frida (see Section 5),
which operates on a client-server model. With Frida, hook-
ing a subroutine on a mobile device requires two devices,
the target mobile device which acts as the server and a client,
normally a desktop system.

4.5 Hooking Scope

A crucial characteristic of function hooking techniques is
their hooking scope, which defines the possible functions
in a program that can be instrumented. Programs may
call exported functions, which are imported from shared
libraries such as libc or the Windows API, or they can
call inner functions, which are defined in the program
itself. While nearly all techniques can hook exported func-
tions, few techniques can instrument inner functions. Pro-
grams such as WinAPIOverride [22] can hook any function,
including Windows APIs (exported functions) and inner
functions.

4.6 Operating System Modification Requirement

Some hooking techniques, largely techniques which hook
system calls, require operating system modification. For
example, most mobile operating system hooking tools such
as Cydia-Substrate [4] require changes to operating system.
In most operating systems, however, users cannot mod-
ify critical operating system structures. Therefore, these
types of techniques can be used on a limited number of
devices and require administrative or root privileges. In
contrast, hooking approaches that do not require operating
system modifications will be more accessible to a greater
number of devices and users. Most function hooking tools
on desktop operating systems such as Microsoft Detours
and WinAPI Override32 do not require operating system
changes. Moreover, most desktop operating systems provide

118 J Hardw Syst Secur (2017) 1:114–136

hooking utilities such as strace and environment variable
modification mechanism, both of which allow the user to
perform hooking without altering the operating system.

4.7 Availability of Source Code

This criterion indicates whether the source code of the
hooking tool is open source or closed source. An open-
source application allows the user to further understand
the mechanism behind the hooking process and adjust the
code to implement desired functionality that may not be
included or fully developed in the existing implementation.
For instance, Easyhook and Frida are both open source. The
closed-source tools such as Microsoft Detours and Nektra
Spystudio [14], however, must be utilized in their current
format and do not allow for individual adjustments.

4.8 Pricing Model

The price criterion defines if the tool under consideration
is sold for profit or is available for free. Often, this met-
ric can be coupled with the previous criterion of source
code availability as most ”for profit” software is also closed
source, though, this is not always the case. All the tools and
techniques discussed in this paper are free. However, two
tools, Microsoft Detours and Nektra Spystudio, offer both
a free version and a paid commercial edition, which offers
additional features over the former.

5 Function Call Hooking Tools and Techniques

In this section, we provide an overview of various function
hooking techniques and tools used across Windows, macOS,
Linux, iOS, and Android.

5.1 Dynamic Function Hooking Approaches

5.1.1 Inline Hooking

Inline hooking is a dynamic callee-side rewriting technique
that typically requires three functions: (1) a target func-
tion, (2) a detour function, and (3) a trampoline function.
To initiate the process, one must first identify the target
function. Next, a section of the target function must be over-
written with new instructions that redirect execution to a
new detour function. The way a target function can be effi-
ciently overwritten mostly depends on the specifics of the
operating system and the processor architecture. Typically,
on x86 systems, the first five bytes are overwritten with a
five byte jump instruction (JMP) to a user-defined detour
function. More efficient ways of hooking also use NOP,
CALL, and PUSH/RETN instructions to overwrite original

function code and provoke execution redirection [57]. While
the implementation of inline hooking on the x86 architec-
ture, especially with Windows, is straightforward, it is more
difficult on ARM devices [60].

Because part of the target function’s code has been over-
written, the overwritten instructions must be saved in a
new function, the trampoline. A trampoline function must
include the instructions that were overwritten and a jump
to the instructions following the jump in the target func-
tion. If the trampoline is correctly implemented, calling the
trampoline should work exactly the same as calling the
unhooked target function. With the hook in place, execution
will be redirected to the detour function, which may already
be defined by a hooking tool or may need to be created
by the user. This detour function allows for the implemen-
tation of passive and/or active instrumentation. In Fig. 3,
we present the typical steps followed by an inline hooking
implementation with both pre- and post-processing in the
detour function.

Inline Hooking on Windows: Detour functions are nor-
mally encapsulated in a shared library attached to the
address space of the process. In Windows, one can place
the detour function(s) in a DLL file, which then needs
to be injected into the process. Richter and Nasarre [53]
explain several techniques for DLL injection. Inline hook-
ing is simplified on the Windows operating system because
of Hotpatching [56]. This Microsoft-developed mechanism
essentially leaves space at the beginning of functions by
prepending seven bytes (a mov edi, edi instruction, fol-
lowed by five nop instructions) before the actual function
code. This space is used to insert hooking code using JMP
instructions. The primary advantage of hooking hotpatched

Instrumented

Target

Function

1 3

4

5

Pre-processing

Post-processing

Detour

Function

Overwritten

code

Trampoline

Function

Jump to

instrumented

function

Call to

instrumented

target

function

Caller

Function

Rest of

function code

2

6

Rest of

function code

Jump to

detour

function

U
su

al
ly

 fi
rs

t 5
 b

yt
es

5

Fig. 3 An example of the normal procedure followed by an inline
hooking implementation that includes both pre- and post-processing.
It consists of six steps: (1) a caller function calls the target function;
(2) a jump instruction in the target function redirects execution to the
detour function; (3) pre-processing occurs followed by a call to the
trampoline, and the trampoline executes and jumps to the remaining
instructions in the target function; (4) after the target function executes,
it returns to its caller, the detour function; (5) the detour function per-
forms post-processing; and (6) the detour function returns control to
the original caller function

J Hardw Syst Secur (2017) 1:114–136 119

functions is that there is no need for overwriting actual func-
tion code, so overwritten instructions are not copied to a
trampoline function.

5.1.2 Import Address Table Modification

All Windows executables and DLLs are encapsulated in a
data structure known as a Portable Executable (PE) [50].
A PE file contains several sections including text (program
code), data, debug symbols, and two crucial tables: the
Import Address Table (IAT) and the Export Address Table
(EAT) [50]. Typically, Windows applications import DLLs
defined by other programs or in the operating system. All
imported functions along with function addresses are stored
in the IAT. Similarly, all functions that the program itself
wants to export are placed in the EAT. For example, a DLL
would include all defined functions in the EAT so that other
programs can reuse these functions.

As the name suggests, the IAT modification focuses on
altering a Windows program’s IAT. The critical section of
the IAT is the function address, which is used by an appli-
cation when a function is called. To hook a function using
this technique, one needs to change the address of the tar-
get function in the IAT to the address of the detour function
[35]. Whenever the target function is called, execution will
be redirected to the new address in the IAT (the detour func-
tion). Before modifying the IAT, a DLL needs to be injected
into the instrumented process. The DLL must contain the
detour function, which must have the same function pro-
totype (name, parameters, and return value) as the original
function. There are numerous techniques for DLL injection
[53].

IAT hooking has four important drawbacks. First, if the
target function is an inner function, then it is defined in the
program and it does not need to be imported, so there will
be no entry in the IAT. Therefore, inner functions cannot be
hooked using IAT. Second, IAT hooks are easily detected.
This is an important shortcoming when performing malware
identification [57]. Third, instead of loading all DLLs at
load-time, some programs will load a DLL only when it is
actually called inside the program. This is known as delay
import and will prevent the use of IAT hooking since DLLs
cannot be modified before the application execution. Lastly,
some programs utilize manual loading of DLLs using Win-
dows APIs such as LoadLibrary and GetProcAddress. When
DLLs are loaded manually, there are no entries for the
DLL in IAT. Consequently, there is no address that one can
modify in the IAT to achieve hooking.

5.1.3 Sample Tools for Dynamic Function Hooking

The following dynamic hooking tools are grouped by oper-
ating system. We first present platform-specific tools for

Windows, followed by Frida, a cross-platform tool that can
be used in several OSes.

Microsoft Detours—Windows

Overview: Microsoft Detours [39] is a hooking library
that uses inline hooking to intercept Win32 functions.
There are two versions of Detours (Version 3.0, Build
338), a free Express edition released under the Microsoft
Research Shared Source Licence Agreement (MRS-
SSLA) for non-commercial use and a paid professional
version. The Express edition can instrument 32-bit pro-
cesses on x86 processors while the Professional version
can instrument both 32-bit and 64-bit processes on x86,
x64, IA64, and ARM systems. Detours allows for both
active and passive instrumentations.

Usage: The user must package the detour function(s) in a
DLL. User-defined detour functions must have the exact
same call signature as the target function. Furthermore,
the DLL file must include the detours.h header file, which
provides access to the Detours API. Inside the DLL-
Main, the user must execute the DetourAttach() API call,
which takes two arguments: the address of the target Win-
dows API function and the detour function. This call will
alter the target function allowing for API hooking. At
this point, the user needs to insert the DLL with detour
functions into the application. Normally, this can be
accomplished by using the withdll.exe program, included
in the Detours installation package. If the user does not
want to perform API hooking, DetourDetach() can be
used inside the DLL to restore the original program flow.

Disadvantages: Detours does not support system-wide
hooks. Each process must be manually configured by
injecting the DLL file that contains the detour functions.
Therefore, it is difficult to hook a specific API on sev-
eral processes. In addition, Detours cannot hook inner
functions.

EasyHook—Windows

Overview: EasyHook (v2.7.6035.0) [8] is a free open-
source hooking library for 32-bit and 64-bit Windows
processes released under the MIT license. Similar to
Microsoft Detours, EasyHook uses inline hooking and
allows for both types of instrumentation, but it has a
few advantages. Notably, EasyHook can hook unman-
aged code with either unmanaged or managed functions.
Managed code hooks provide important benefits such
as automatic hook removal and memory management to
prevent memory leaks. In addition, EasyHook guarantees
thread safety by using a thread deadlock barrier.

Usage: The process to hook an API using EasyHook is
very similar to the one from Microsoft Detours. The user
must first define the detour function inside a DLL with

120 J Hardw Syst Secur (2017) 1:114–136

the same call signature as the API. The main method
of the DLL must call the function LocalHook.Create(),
defined in the EasyHook API. This will create the hook
using the addresses of both the target and the detour func-
tions. Subsequently, one must create an injector process,
which calls RemoteHooking.Inject(). This function then
uses the process id to insert the DLL file into the specified
process, allowing the function hook to work.

Disadvantages: Like other hooking libraries, EasyHook
does not support system-wide hooks and hook installa-
tion requires more effort than tools with a GUI. More-
over, EasyHook cannot inner functions.

Nekra SpyStudio API Monitor—Windows

Overview: Nektra SpyStudio API Monitor (v2.9.2 x64)
[17] is a free closed-source (released under a proprietary
license) hooking tool for Win32 API calls based on the
Deviare open-source hooking engine. There is, however,
a paid version with the same functionality as the free ver-
sion, but it includes priority support from the developer.
This tool can trace Windows APIs on 32-bit and 64-bit
processes, only allowing for passive instrumentation.

Usage: This application presents a simple GUI with a
list of running processes and a menu for target Win-
dows API selection, organized by function category. The
user can hook an already running process or a new pro-
cess at the start of its execution. Moreover, the user
can simultaneously instrument several APIs on multiple
processes.

Disadvantages: As noted by the developer of Spystudio
[17], it cannot intercept Internet Explorer (version 8 or
11) nor Chrome. During our testing, trying to hook a
Chrome process resulted in Chrome unexpectedly crash-
ing. In addition, this tool cannot hook inner functions
and cannot perform active instrumentation. Lastly, did
not include this program in our performance test because
our test program would repeatedly terminate when we
attempted to hook it using this tool.

WinAPIOverride—Windows

Overview: WinAPIOverride [22] is a free Windows hook-
ing tool released under the GNU GPL license that allows
for both active and passive instrumentations of 32-bit and
64-bit processes. As of this writing, the current version
of WinAPIOverride (v6.5.2) is closed source. However,
previous versions are open source, and they are still avail-
able from the developer’s website. Some of the major
features of WinAPIOverride include the ability to (1)
hook both Windows API calls and inner function calls,
allowing for the analysis or override of any function; (2)
hook assembly functions; (3) hook hardware and soft-
ware exceptions; and (4) view and modify register values

used in function calls. In general, this tool provides two
types of hooks: a monitoring hook and several overriding
hooks. The monitoring hook simply logs function calls
and can be modified by defining custom filters so that the
user only sees selected function calls. Overriding hooks
make actual modifications to the functionality of target
functions, allowing for active instrumentation.

Usage: This tool can be used with the GUI interface or
from the command-line terminal. Initially, the user has
three different options: (1) hook an existing process, (2)
initiate a process so WinAPIOverride immediately hooks
it, or (3) automatically hook all starting processes. Once
a process is hooked, a user must decide if function calls
will be monitored or overridden. To monitor function
calls, the user must specify the APIs that wished to be
logged from the monitoring configuration. If the function
calls need to be altered, the overriding configuration must
be specified.

Disadvantages: During our testing, we experienced some
sluggish application performance when tracing too many
Windows APIs on various programs. In addition, when
we performed our hooking performance test (Section 7),
our test program became unresponsive several times.

Rohitab API Monitor—Windows

Overview: Rohitab API Monitor (v2 Alpha-r13 x64) [1] is
a closed-source hooking tool released under a proprietary
license. It allows for passive and/or active instrumenta-
tion of Windows API calls in 32-bit and 64-bit processes.
This tool can hook target processes with three different
methods: Context Switch, Internal Debugger, or Remote
Thread. Moreover, the program displays the trace results
in summary tables and call trees, which show the hierar-
chy of API calls.

Usage: First, the user must select the target function(s)
from a database of over 13,000 Windows API definitions.
Then, users must select the target process from a list of
running processes to hook, or they can choose to execute
a new process. Users can examine API input parame-
ters and return values, and by setting pre-call or post-call
breakpoints, these values can be modified.

Disadvantages: This program can only hook Windows
API functions. Furthermore, as of this writing, this tool
has not been updated in several years. Nevertheless, dur-
ing our performance testing, it was very reliable and
successfully instrumented our test program.

Frida—Windows, macOS, Linux, iOS, Android

Overview: Frida (v6.5.2) [9] is a multi-platform dynamic
instrumentation tool for Windows, macOS, Linux,

J Hardw Syst Secur (2017) 1:114–136 121

Android, and iOS. This tool is a free open-source frame-
work that allows for both active and passive instrumenta-
tions of exported and inner functions. It hooks functions
by injecting a shared library into the target process and
uses inline hooking to redirect execution. Additionally,
Frida operates on a client-server model. The client must
be a system running Windows, macOS, or Linux, with the
Frida Python package installed on it. The Python package
is in charge of executing a Javascript file containing the
instrumentation code and also managing the communica-
tion with the server. The server will be the target process
running on any of the supported platforms.

Usage: Note that we only focus on Android and iOS
hooking using Frida since we provided several tools for
hooking on Windows in previous subsections. In the case
of Android and iOS, Frida requires two devices, the client
device (desktop operating system) and a server device
(iOS or Android) executing the target process. Typical
installation of Frida on Android requires a rooted device.
The user must simply download the Frida-server binary
onto the device and execute it to start the server. This
can be accomplished with a terminal emulator or through
Android Debug Bridge (ADB). On the other hand, the
iOS version of Frida supports two modes depending on
the user’s device. If the target device is jailbroken, Frida
will work exactly the same as its Android counterpart,
giving the user complete liberty to instrument any appli-
cation. To use Frida on a jailbroken device, users must
install the Frida package through Cydia [4]. Frida’s other
mode of operation, however, is more limited as it is
designed to work with unjailbroken iOS devices. Because
of iOS restrictions, users can only instrument functions
using Xcode [25]. To instrument an application in Xcode,
users need to download the FridaGadget.dylib and import
it into an existing Xcode project. This shared library
will now be loaded whenever the application is executed,
allowing for function hooking.

After connecting the mobile device (iOS or Android)
via USB to the client system, the user can execute scripts
using a combination of Python and Javascript. In the
scripts, the users must specify the target process and the
target function(s). With Frida, users can hook running
processes, or they can launch a new process, immediately
suspending the main thread, injecting the Frida shared
library into the process, and resuming execution. Passive
and/or active instrumentation code must be included in
the script.

Disadvantages: Using Frida with mobile operating sys-
tems requires rooted Android devices or jailbroken iOS
devices. While Frida for unjailbroken for iOS devices
is possible, it is far too limited because the user can
only hook functions in applications for which the source
code is available (Xcode project). Furthermore, Frida

usage yields considerable performance overhead on all
platforms, especially on desktop operating systems as
our performance evaluation indicated. We provide more
details on Frida’s performance in Section 7.

5.2 Static Function Hooking Approaches

5.2.1 Injecting Proxy Libraries

Another approach to function hooking is the use of detour
shared libraries, which contain new definitions for one or
more target functions. These detour libraries are known
as proxy libraries [28]. In this case, the user must make
modifications to run-time environment, usually by chang-
ing environment variables, to force the dynamic linker to
load the proxy libraries. Consequently, when a program
calls a particular function, the program will call the function
defined by the proxy library instead of one defined in orig-
inal library. In general, the user is free to implement active
and/or passive instrumentation in the detour functions.

To load shared libraries, Linux, macOS, and iOS provide
environment variable directives. In the case of Windows,
the operating system does not provide an explicit command
to load new libraries at program run-time, but it is pos-
sible to modify the AppInit DLLs entry in the Windows
Registry to force the loading of detour DLLs [27]. This
workaround, however, is restricted on Windows 8 and later
versions [2].

There are two major disadvantages of using proxy
libraries. First, only exported functions from shared libraries
such as libc can be hooked (inner functions cannot be
hooked). Second, this technique can only instrument new
processes which are launched with the modified run-time
environment. Already running processes cannot be hooked
using proxy libraries.

5.2.2 Modifying the Operating System

Some function hooking techniques require the modification
of certain operating system files or structures. This some-
times constitutes a limitation since techniques that alter the
operating systems normally require high user privileges,
restricting the number of user that can utilize them. For
instance, operating system changes to iOS require a jailbro-
ken iOS device, and similarly, Android requires the device
to be rooted. Unfortunately, obtaining root privileges is not
possible on all devices.

5.2.3 Sample Tools for Static Function Hooking

In this subsection, we describe some sample function hook-
ing techniques that make use of run-time environment and
operating system modifications.

122 J Hardw Syst Secur (2017) 1:114–136

Sysinternals Process Monitor—Windows

Overview: Sysinternals Process Monitor or ProcMon
(v3.31) [56] is a free closed-source application that can
monitor specific Windows APIs related to the file system
such as CreateFile, ReadFile, and LockFile. It utilizes
a Windows driver to implement its hooking mechanism
and is one of the few hooking tools with a user-space
front-end and kernel-mode hooking mechanism in the
back-end.

Usage: Executing the program immediately presents the
user with a real-time list of system calls and Registry
changes from all processes. This means that the user does
not select a specific process to hook. Instead, all pro-
cesses are monitored by default. The user can search for
specific APIs, or examine all APIs executed by a specific
process. The resulting trace can be saved to a text file.

Disadvantages: Procmon is limited to Windows systems,
and it only supports very few Windows APIs (file system
or networking), making it unsuitable for users interested
in other types of APIs. In addition, users cannot hook
inner functions.

LD PRELOAD—Linux

Overview: The environment variable LD PRELOAD [12]
allows users to force the dynamic linker to load one
or more specified proxy libraries. Passive and/or active
instrumentation code can be included in the proxy library.

Usage: To hook an API call, the user needs to create a
proxy library. First, the user must define a detour func-
tion in a C source file with the same function prototype as
the target function. This source file must be compiled as a
shared library with the (.so) extension. Assuming that the
shared library is in the same directory as the target exe-
cutable, the proxy library can be injected into the target
process using the command:

When the target process calls the target function, it
will use the detour function defined in the proxy library
instead of original function defined in a system library
such as libc. Users, however, can use the dlsym func-
tion [5] inside the proxy library to call the original target
function defined in a system library.

Disadvantages: The main limitations of this technique are
that only new processes can be hooked and only exported
functions (defined in system libraries) can be intercepted.
In addition, Myers and Bazinet [51] noted that using C++
detour functions with C binaries is unreliable.

DYLD INSERT LIBRARIES—macOS and iOS

Overview: The DYLD INSERT LIBRARIES directive
[7] forces the dynamic linker on macOS and iOS to load
user-specified libraries first. It is the equivalent to the
Linux environment variable LD PRELOAD. Similar to
its Linux cousin, it allows the user to hook any exported
function, and it is up to the user to implement the detour
function with the instrumentation code.

Usage: Similar to LD PRELOAD, the user must first cre-
ate a proxy library with detour function(s) that have
the same function prototype as the target function. This
library will need to be compiled as .dylib file, which is
similar to the Linux .so shared library file. The user can
force the dynamic linker to load the proxy library with
the following command:

Known Issues or Disadvantages: Using shared libraries
in macOS has the same disadvantages as in Linux, that is,
the capacity to only hook new processes and the inabil-
ity to hook inner functions. Furthermore, recent versions
of macOS allow binary files to be flagged as restricted,
preventing the dynamic linker from loading new shared
libraries. Any program with this flag cannot be hooked
with this technique.

Cydia Substrate—iOS and Android

Overview: Cydia Substrate [4] is a free closed-source
instrumentation framework that allows users to install
Substrate extensions, which can be used to hook inner
and exported functions in jailbroken iOS devices and
rooted Android devices [4]. Root privileges are required
because this framework makes changes to the operat-
ing system. On iOS, Cydia Substrate will change the
launchd manifest for SpringBoard so that when the
device reboots, SpringBoard loads the Cydia Substrate
dynamic library [71]. Consequently, this library will
be injected into every new process, and Cydia will be
able to load the user’s extensions [71]. These extensions
can contain detour functions for instrumentation and are
compiled as shared libraries [4].

Usage: We are focusing on Cydia usage on iOS. To hook
C functions, users can use Theos [21], a macOS toolkit
that allows users to develop and deploy iOS applications.
Users can then create C source files with Theos that
contain the detour function definition(s) along with orig-
inal function prototype(s), in case the user is interested
in calling the original function definition. After including
the substrate.h header into the C file, the user will have

J Hardw Syst Secur (2017) 1:114–136 123

access to Cydia Substrate API. The most commonly used
APIs are MSHookFunction and MSFindSymbol. The for-
mer method scans the target application binary for a
user-specified function and returns the symbol pointer of
the function. The user must pass this symbol pointer, the
address of the detour function, and a pointer to the orig-
inal function to the function MSHookFunction, which
performs the actual hooking. The user can then use Theos
to create dynamic library (.dylib) from the source file
and install it on the target device. By using a termi-
nal on the device or by using SSH, the user can utilize
the DYLD INSERT LIBRARIES environment variable
to load the .dylib library.

Disadvantages: Cydia Substrate only works on jailbroken
iOS. As of this writing, the latest version of iOS cannot
be jailbroken. Jailbreaking requires a device running at
most iOS 9.3.3. Because of all iOS installations must by
signed by Apple, it is usually not possible to downgrade
to jailbreak-compatible iOS versions. Furthermore, this
tool is only supported on rooted Android devices with
version 2.4 through 4.3.

Introspy—Android

Overview: Introspy-Android [11] is a free open-source
tool primarily designed to monitor APIs related to
Android security components. This tool records function
calls, arguments, return values, and sends this data to both
a database and the Android log. A GUI application allows
the user to select which processes and APIs will be mon-
itored. By default, Introspy monitors function calls used
in hashing, keys, SSL, and inter-process communication.
However, the user can add custom hooks to trace other
Android APIs.

Usage: Installation requires a rooted Android device run-
ning versions 4.1 to 4.3 (Android Jellybean). The user
must first install Cydia Substrate, and then, the precom-
piled Introspy-Android Core.apk and IntroSpy-Android
Config.apk, which provides the GUI interface mentioned
above. Additionally, if custom hooks are required, the
user must create a new call handler class and mod-
ify the CustomHookList.java file. After this process is
completed, the program must be recompiled and rein-
stalled on the target device. As API calls are hooked,
data will be recorded in a database file, which is located
in the same directory of the monitored application. The
user can use the auxiliary program, Introspy Analyzer
(preferably on Windows, macOS, or Linux) to convert
a Introspy-Android database file to an easily digestible
HTML report.

Disadvantages: As mentioned above, compatibility with
Introspy-Android is very limited. Using a device with

a version of Android newer than 4.3 may not be com-
patible. In our testing, this tool did not function cor-
rectly on a device running Android 5.1. We attribute
this incompatibility to Substrate, which is only supported
on Android 2.3 to 4.3. Introspy cannot work correctly
without employing functionality provided by Substrate.
An alternative approach to use IntroSpy-Android is to
employ a rooted emulator running Android 4.3. In this
case, the user can install Substrate, Introspy, and the
applications that will be monitored on the emulator. This
option, however, assumes that the target applications are
compatible with this Android version.

Xposed Framework—Android

Overview: The Xposed Framework [26] is a free open-
source tool that allows users to install modules on
Android devices to hook inner and exported functions.
Because Xposed requires the user to alter operation sys-
tem, it will require root privileges. Xposed modifies the
app process executable used when initializing the Zygote
process by adding a new library to the Java classpath
to load both the framework and all necessary modules.
Modules allow users to specify the pre-processing and
post-processing code, which can include both passive
and/or active instrumentation

Usage: To use the Xposed Framework, the user must
first install the XposedInstaller.apk on the target Android
device. Currently, Xposed is compatible with Android
4.0.3 to Android 4.4. There is, however, a Xposed version
available for Android 5.0 or higher, but there exist incom-
patibility issues, and devices from certain manufacturers
are not fully supported. To implement custom hooks,
the users need to create a module, which overrides the
methods, beforeHookedMethod and afterHookedMethod.
As the names suggest, the code in the beforeHooked-
Method will be executed before the original function is
called and the function afterHookedMethod will be called
after the original function. Alternatively, users can over-
ride replaceHookedMethod, which executes the specified
code without ever calling the original function. The user
must then compile the module and transfer it to the tar-
get device. The Xposed GUI application must be used
to enable the module. Lastly, the user must restart the
device, so that the module is loaded at boot time.

Disadvantages: Due to incomplete compatibility with all
Android devices, the Xposed framework may not be ideal
for all users. The most stable version of the Xposed
Framework is designed for a rooted device with rela-
tively old versions of Android. There are workarounds
that allow running Xposed on newer Android versions,
but compatibility is not guaranteed.

124 J Hardw Syst Secur (2017) 1:114–136

6 System Call Hooking Tools and Techniques

In this section, we explore two general approaches to kernel-
space hooking. First, we describe several operating system
utilities which can be used for hooking. Then, we examine
how certain operating system modifications can allow for
system call interposition.

6.1 Dynamic System Call Hooking Techniques

6.1.1 Operating System Utilities and System Calls

Operating systems provide a number of system programs
(or utilities) and system calls that provide important ser-
vices including file management, system status information,
and program compilation, execution, and debugging [58].
Among these, there are particular tools and system calls that
facilitate system call instrumentation. In this subsection, we
present utilities or system calls that either directly allow for
system call interception or are used by other programs to
facilitate system call instrumentation. Many of these sys-
tem utilities such as strace are cross-platform and can be
found in different OSes. Other hooking tools, however, are
platform-specific such as Apple Instruments.

6.1.2 Dynamic System Call Hooking Tools

For this specific topic, we begin our analysis and survey
with system call hooking tools only compatible with macOS
and iOS. Then, we examine the cross-platform system call,
ptrace, and the utility strace, which uses ptrace to hook
other system calls.

Dtrace—macOS and iOS Simulator

Overview: Dtrace [37] is a powerful tracing framework
that was originally part of the Solaris operating system.
Beginning with OS X Leopard, Apple ported Dtrace to
macOS. Dtrace can also be used with the iOS simulator in
Xcode. In general, Dtrace allows users to execute D lan-
guage scripts, which are used to set either system-wide
or process-specific hooking probes. When a particular
probe is triggered, certain actions can be programmed.
For example, a user can set a probe on the system
call open, which will print the function arguments and
return values for any process that implements this system
call. Because Dtrace executes in kernel-space, no context
switching is needed, significantly reducing performance
overhead [37].

Usage: Creating a Dtrace script requires at least two com-
ponents: the probe description and the action section
[37]. The former specifies the conditions under which

the actions will take place. For this, the user can spec-
ify the following conditions or parameters: (1) whether
the probe will be system-wide or process-specific, (2) the
module or library name if the user wants to trace func-
tions inside a specific library, (3) the name of the system
call that will be hooked, and (4) whether actions should
occur before or after the system call is called [37]. A
script with multiple probes can trace several system calls.
In the action section, the user can specify a number of
instructions or actions to be executed on the target sys-
tem call such as printing the input arguments or the return
value.

Disadvantages: To use Dtrace effectively, users must
learn the D scripting language. If a user is not careful,
certain scripts may cause significant performance degra-
dation. In addition, only users with root privileges can
use Dtrace.

dtruss—macOS

Overview: dtruss [6] is essentially a Dtrace script that
makes tracing system calls easier than creating a new D
language script. This tool will display system call names,
arguments, and return values for a specified process, and
it can monitor running processes or execute a new process
with a trace.

Usage: The most basic dtruss script will print all system
calls for a specific process. It can be specified as follows:

$ sudo d t r u s s p [p r o c e s s i d]

There are various options available to customize the
trace results [6]. For instance, to monitor the execu-
tion of a specific system call in a process, the following
command can be used:

$ sudo d t r u s s t [sys tem c a l l name]
p [p r o c e s s i d]

Disadvantages: With dtruss, the user can either monitor
all system calls or one specific system call. However,
dtruss is not appropriate if the user needs to specifically
monitor several specific system calls at the same time. In
this case, a custom Dtrace script is required. Furthermore,
because dtruss uses Dtrace, it requires root privileges.

Apple System Calls Instrument—macOS and iOS

Overview: The Apple System Calls Instrument [10] is
specific tool within Instruments, a Xcode tool set, that
traces system calls using Dtrace, allowing users to instru-
ment a single process or all running processes on a

J Hardw Syst Secur (2017) 1:114–136 125

macOS or iOS device. With this tool, users can exam-
ine key information for each system call including input
parameters, return value, source path, source library, and
time-stamp.

Usage: To use Apple System Calls Instrument, users need
to have Xcode installed on a computer running macOS.
This tool can be executed from Xcode or through the
command-line terminal. Users must select the target
device, which can be either a macOS or iOS device
(connected via USB), and the target process(es). After
data is collected, users can filter by specific system calls
or libraries. Because this tool is developed by Apple,
the iOS device does not need to be jailbroken. This
is an important advantage because, as we mentioned
before, other system call hooking techniques do require a
jailbroken iOS device.

Disadvantages: There are two main disadvantages of
using the System Calls Instrument. First, as noted by
Tan et al [45], this tool can only display the address
of string arguments. The actual string argument is not
shown. Second, because this tool relies on a USB con-
nection with the iOS device, there are performance issues
when instrumenting heavily used system calls.

Ptrace—Linux, macOS, Android, and iOS

Overview: Ptrace [16] is a system call that can be used
to both monitor and/or change other system calls . It is
available on several Unix-like and Unix-based operat-
ing systems including Linux, macOS, Android, and iOS.
This system call allows for a parent process to observe
and/or modify the execution of a child process known
as the tracee. The ptrace user has complete flexibility to
examine or modify the tracee’s memory and registers.

Usage: To use ptrace, the user can create a parent pro-
cess, which will hook another process. In this case,
the parent process will call fork(), which creates a
child process. This child process executes the command
PTRACE TRACEME command, which allows the parent
to hook it. Immediately after, the child executes execve(),
where one of the arguments is the target process. The user
can also use the command PTRACE ATTACH to hook an
already running process. Once the hooking parent-child
process is done, the user can take advantage of a variety
of commands including the following:

– PTRACE PEEKUSER: allows the parent process to
examine the arguments from system calls executed
in the child process.

– PTRACE POKEUSER: notifies the parent when a
system call is being executed, and it allows the parent
to change system call arguments.

– PTRACE DETACH: stops the parent process from
hooking the tracee.

– PTRACE KILL: kills the tracee.
– PTRACE SINGLESTEP: stops tracee after every

instruction.

Disadvantages: The ptrace system call has significant
performance overhead performance [41]. Furthermore, if
the user is simply interested in monitoring system calls,
the existing command-line utility strace may be more
suitable.

Strace—Linux and Android

Overview: Strace [20] is Linux utility derived from the
system call ptrace that monitors all system calls and sig-
nals for a particular process. Because Android is based
on the Linux kernel, it also possible to use strace on
Android. With strace, users can choose to monitor a new
process or trace an already running process. Strace will
return system call names, arguments, and return values.
Additionally, there are several options available to cus-
tomize strace such as sending trace output to a file and
monitoring fork processes. On Linux, strace is already
installed and can be executed from the terminal. There
are several versions of strace available for Android. In
this work, we tested a ported version of the Linux utility,
developed by Alireza Frozandeh Nezhad [18].

Usage: To install strace on Android, the user must down-
load the binary file and copy it to /system/bin. Installation
will require a rooted device. Once installed, the user can
use a terminal emulator directly on the device to execute
the strace utility. Alternatively, the user can use ADB to
access the ADB shell, giving the user a similar environ-
ment to the Linux shell. The user will need to use the su
command to obtain root privilege in the shell.

The following commands apply to strace on both
Linux and Android [20]. Users can use the follow-
ing basic command to print all system call names and
arguments for a particular process:

$ s t r a c e [o p t i o n s] [program e x e c u t a b l e]

Some the most useful options include the following:

– e: trace specific system call(s)
– o: save the trace to a file
– p: monitor a process that is already running using

process id
– c: count system calls and display summary

Disadvantages: Because strace uses ptrace, one of
its main disadvantages is its performance overhead.
Depending on the hooked process, the performance
degradation can be significant, something that is partic-
ularly concerning on resource-limited Android devices.

126 J Hardw Syst Secur (2017) 1:114–136

Furthermore, strace cannot trace multiple processes at
once. In addition, a rooted Android device is needed to
use the ported version of strace.

6.2 Static System Call Hooking Techniques

6.2.1 Operating System Kernel Modification

An alternative technique for system call hooking is the
modification of certain structures in an operating system’s
kernel. Similar to function hooking, the general strategy is
to intercept system calls, redirecting them to detour system
calls, which contain passive and/or active instrumentation
code. The most common kernel modification hooking tech-
nique is to make changes related to the system call table.
Wampler [63] identifies three mechanisms by which kernel-
level rootkits modify system call execution. While these
approaches are discussed only in the context of malicious
usage by malware, we can also use these techniques in
legitimate ways by hooking system calls. First, addresses
in the system call table can be replaced with the addresses
of detour system calls. This is known as system call table
modification. The second strategy is system call target mod-
ification, where the target system calls are overwritten with
a jump instruction to a detour system call. This technique
is very similar to inline hooking (discussed in Section 5),
but in this particular case, the system call modifications are
done on the disk, instead of in memory. Lastly, we can use
system call table redirection, where we modify the kernel
to use a detour system call table instead of the original one.
This user-defined table includes entries for target system
calls that point to detour system calls.

In general, one can modify the kernel directly by mod-
ifying operating system files. This approach is not ideal,
however, because changes are permanent and require kernel
recompilation to take effect. In addition, most operating sys-
tems including Windows, macOS, iOS, and Android restrict
users from making any direct modification to the kernel.
In contrast, most x86-64 operating systems including Win-
dows, macOS, and Linux support loadable kernel modules
(LKMs), which allow users to modify kernel operations.
Crucially, LKMs can be used to implement kernel-space
hooking. For instance, Edger et al. [33] installed an LKM
on an Android device to hook system calls. In addition,
unlike direct kernel modifications, LKMs can be imple-
mented without kernel recompilation and can be easily
loaded or unloaded. In macOS and Windows, a LKM is
referred as a kernel extension (kext) and kernel-mode driver,
respectively.

Operating systems place different restriction for LKM
privileges which influences the kind of kernel-mode hook-
ing techniques that are available on each operating system.

Even with LKMs, changes to critical structures such as the
system call table are not possible on most operating systems.
For instance, on all 64-bit versions of Windows, Microsoft
has implemented Kernel Patching Protection (KPP), also
known as PatchGuard, which guarantees the integrity of
critical operating system structures such as the System Ser-
vice Descriptor Table (SSDT) and the Interrupt Descriptor
Table (IDT) by preventing modification to these structures
[62]. Even Linux, whose open-source nature has tradition-
ally given users the greatest flexibility to modify the kernel,
restricts changes to the system call table on its latest ver-
sions. In the following subsection, we look at hooking
techniques on earlier versions of the Linux kernel, which
allowed modifications to kernel structures.

6.2.2 Specific Techniques and Tools for Implementing
Hooks in the Kernel

In this subsection, we discuss how to manually modify the
Linux kernel to implement system call hooking and exam-
ine Strace for NT, a static system call hooking tool for
Windows.

Linux System Call Modification

Overview: One system call hooking technique on Linux
is the modification of the system call table by adding
one or more detour system calls to the table. Then, one
can swap system calls numbers between the target and
detour system calls so that when the target system call
is called, execution will be redirected to the detour func-
tion. The user must implement passive and/or active
instrumentation in the new system call.

Usage: The system call table can be modified directly or
with an LKM. Here, we focus on the former approach. To
implement the new system call, the user must first cre-
ate a new C source file that will define a system call with
the same prototype as the target system call. This detour
system call must include the instrumentation code. Next,
the new system call must be added to several kernel files
including syscall table.32.s, unistd 32.h, syscalls.h, and
the kernel Makefile. Users will need root privileges to
modify these files. Crucially, users need to add the new
system call to the file syscall table.32.s and switch the
position of the target system call with the detour sys-
tem to ensure redirection. Finally, the kernel needs to be
recompiled so that the changes can take effect. Note that
these instructions were successfully used on Linux kernel
version 2.6.36. For newer versions of the Linux kernel,
the procedure may differ.

Disadvantages: The primary disadvantage, as mentioned
before, is the fact that the system call table modification

J Hardw Syst Secur (2017) 1:114–136 127

is restricted on most operating systems. Even with the
operating system support, there are still a variety of pit-
falls with the use of this technique. First, the user can
only hook one system call with each detour system call.
Each system call that is hooked must have a detour
system call. Therefore, this technique is not very practi-
cal if the user needs to instrument several system calls.
Another issue is that kernel modifications are perma-
nent and affect all processes. Depending on the user’s
needs, this may be an advantage or disadvantage. Fur-
thermore, making modifications to the kernel is delicate,
and certain changes can make the system unstable or even
unusable.

Strace for NT

Overview: Strace for NT (v0.3) [19] is system call hook-
ing tool for the Windows NT4, 2000, and XP operating
systems. This tool offers similar functionality to the
Linux strace, allowing users to trace system calls. It uses
a kernel driver to modify function pointers in the system
call table, redirecting execution to a detour system call
[28].

Usage: This tool can be executed from the command-line
on compatible operating systems. Similar to strace for
Linux and Android, the following options are available:

– -o: To output the trace to a file.
– -e: To trace specific system calls.
– -p: To monitor the specified process id.

Disadvantages: Because this tool requires kernel modi-
fication, it is not compatible with current versions of
Windows. As of this writing, this program has not been
updated recently and only older versions of Windows
(NT4, 2000, and XP) are supported.

Finally, Table 1 summarizes and compares all the
system and function call hooking tools and techniques
(19 in total) based on the different categories defined
in Section 4 and also, based on the details about each
different tool or technique provided in this section and
in Section 5. Again, the selection of the right tool or
technique will greatly depend on the user’s specific appli-
cation and the environment characteristics on which the
hooking/instrumentation will take place.

7 Hooking Performance

In this section, we analyze the performance of different
hooking tools and techniques across all major operating
systems.

7.1 Methodology

For our performance test, we created a similar test program
for each operating system that performed the following
operations:

– Creates 10,000 text files.
– Opens each file, writes the message ”Hooking Testing,”

and closes the file.
– Opens each file, reads the contents into a buffer, and

closes the file.
– Deletes all 10,000 files.

Each operation was performed inside a loop, for a total
of four loops, each of which iterated 10,000 times. After
the test program finished executing all the operations, it
reported the following statistics:

– Physical memory size: memory usage in the actual
hardware (RAM).

– Virtual memory size: memory allocation in a virtual
address space.

– CPU user time: time spent executing in user-space.
– CPU system time (kernel time): time spent in the kernel,

servicing system calls.
– Wall-clock time: real time measured from the moment

the process begins execution until all file operations are
completed.

The test program was first executed without any instru-
mentation. Then, we used different hooking tools and tech-
niques to hook the test program and quantified the overhead
by measuring the difference in performance between the
cases where the hooking tools were utilized and the cases
were no instrumentation was performed. The test program
was launched by the hooking tool, so that it could be instru-
mented from the start of its execution. In the subsequent
subsections, we explain the methodology followed for each
operating system.

7.1.1 Windows

To measure memory utilization in Windows, we used
GetProcessMemoryInfo() in the Process Status API (PS-
API) to obtain the peak working set and peak page file
usage (commit charge). For CPU utilization, we used
GetProcessTimes() to obtain kernel and user CPU time.
Finally, to measure wall-clock time, we used Query-
PerformanceCounter() to obtain a start and end time.

Using three differenthooking tools,we instrumented the follo-
wing Windows API functions: CreateFile, WriteFile, Read-
FileEx, andDeleteFile. The tools were configured as follows:
– Rohitab API Monitor (v2 Alpha-r13): We first selected

the four APIs from the API filter, and with option to

128 J Hardw Syst Secur (2017) 1:114–136

Table 1 Summary of system and function call hooking tools and techniques based on the proposed classification features

M
ic

ro
so

ft
D

et
ou

rs

E
as

yH
oo

k

N
ek

tr
a

Sp
yS

tu
di

o

W
in

A
PI

O
ve

rr
id

e3
2

R
oh

ita
b

A
PI

M
on

ito
r

Fr
id

a

Sy
si

nt
er

na
ls

Pr
oc

es
s

M
on

ito
r

L
D

PR
E

L
O

A
D

D
Y

L
D

IN
SE

RT
L

IB
R

A
R

IE
S

C
yd

ia
-S

ub
st

ra
te

In
tr

os
py

X
po

se
d

Fr
am

ew
or

k

D
tr

ac
e

dt
ru

ss

A
pp

le
Sy

st
em

C
al

ls
In

st
ru

m
en

t

pt
ra

ce

st
ra

ce

L
in

ux
Sy

st
em

C
al

l
Ta

bl
e

M
od

ifi
ca

tio
n

St
ra

ce
fo

r
N

T

Subroutine Type / Hooking Scope
Inner Functions

Exported Functions

System Calls

Hook Insertion
Dynamic

Static

Instrumentation Type
Passive

Active

Hooking Location
On-device

Off-device

User Interface
GUI

Command Line Interface

Hooking Library

OS
Requires OS Modification

Windows

Linux

macOS

iOS

Android

Source-Code
Closed-Source

Open-Source

License
ASL

GNU GPL

MIT

Proprietary

Part of OS

Pricing Model
Free

Paid

monitor a new process (Ctrl + M), we selected our
test program executable. We attached to the executable
using the context switch option.

– WinAPIOverride64 (v6.5.2): We selected the option
Attach at application startup and added our executable
to the application path. Once our program was in a
paused state, we loaded our API monitoring configura-
tion, which included the four Windows APIs. Then, we
allowed our executable to continue execution.

– Frida (v8.1.10): We created a Python file that first
launched our executable using frida.spawn() and before
our executable continued execution, we loaded a
Javascript script that was used to hook the four

Windows APIs. This script used Module.findExport-
ByName() to obtain the address of each API. This
address is used by Interceptor.attach() to intercept each
API whenever it is called. Inside Interceptor.attach(),
we defined onEnter and Onleave, to record API argu-
ments and return value, respectively. After the script
was loaded, the function frida.resume() allowed our
executable to resume execution. This Python file was
executed from the Windows Command Prompt.

These experiments were conducted on a Windows 10
machine with Intel Core i5-4590 3.30-GHz CPU and 16 GB
of RAM.

J Hardw Syst Secur (2017) 1:114–136 129

7.1.2 Linux

To examine memory usage on Linux, we accessed the file
proc/[pid]/status in the proc file system. In this file, we read
the value of VmPeak and VmHWM for the virtual and phys-
ical memory usage, respectively. For CPU time, we used the
function times() defined in sys/times.h, which returns a tms
structure with CPU utilization and system time. Finally, to
measure wall-clock time, we used clock() defined in time.h
to obtain a start time (before file operations) and end time
(after file operations).

In the case of Linux, we analyzed the performance of
two function hooking techniques, the environment vari-
able LD PRELOAD and Frida. Our evaluation is the result
of instrumenting the following functions defined in libc:
fopen(), fprintf(), fscanf(), fclose(), and remove(). In addi-
tion, we tested the system call hooking utility strace
by examining the following system calls: open(), write(),
read(), close(), and unlink(). The tools were configured as
follows:

– Environment Variable LD PRELOAD: We created a
proxy library that included definitions for five different
detour functions for each target function. Each detour
function printed the function arguments, calling the
target function with its corresponding arguments and
printing the return value of the target function. The
library file was a C file that was compiled with gcc as
a shared library. By using LD PRELOAD, we guaran-
teed that this shared library would be loaded at run-time
every time we executed our test program.

– Frida (v8.1.10): Similar to our Windows test, we exe-
cuted a Python file from the Linux terminal. This
file launched our executable using frida.spawn(), and
loaded a script, which instrumented all five libc func-
tions, printed function arguments, and return values
to the console. The script also used Module.find-
ExportByName() to obtain the address of each target
function and Interceptor.attach() to hook each function.
After the script was loaded, frida.resume() allowed our
test program to continue its execution.

– strace: We used strace with the command:

s t r a c e e t r a c e =open , w r i t e , read ,
c l o s e , u n l i n k [e x e c u t a b l e]

With this command, strace utility instrumented the
five specified system calls, displaying input parameters
and return value for each system call.

Linux’s experiments were conducted on an Ubuntu Linux
14.04 system with two processor cores Intel i5-5257U 2.7
GHz CPU and 1 GB of RAM.

7.1.3 macOS

For macOS, we followed a similar approach to Linux. How-
ever, because macOS lacks the proc file system, we had
to obtain our measurements differently. We used the func-
tion getrusage(), which fills a structure containing the CPU
time and task info(), which returns the resident and vir-
tual memory size. Like Linux, wall-clock time is measured
using clock(). We tested function hooking performance
using Frida and with a shared library using the environment
variable DYLD INSERT LIBRARIES, which is similar to
Linux LD PRELOAD. We instrumented the following func-
tions: fopen(), fprintf(), fscanf(), fclose(), and remove().
Furthermore, we evaluated system call hooking perfor-
mance with the utility Dtrace, tracing the following system
calls: open nocancel(), write nocancel(), read nocancel(),
close nocancel(), and unlink(). The tools were configured
as follows:

– Frida (v8.1.10): Because of Frida’s cross-platform com-
patibility, we reused the same Python file used in
the Linux testing. However, to locate the five tar-
get functions, we had to modify Module.findExport
ByName() so that Frida searches for the address of the
target functions in the library libc++.1.dylib. Similar
to the Linux version, the Python file spawned the test
program in a suspended state, loaded the instrumenta-
tion script, and resumed the program.

– Environment Variable DYLD INSERT LIBRARIES: We
used the same library file from the Linux version for
tracing the five functions described above. Each func-
tion’s arguments and return values were printed to the
console. We compiled this library as a macOS dynamic
library (.dylib).

– Dtrace: We created a Dtrace script using the D pro-
gramming language, which instruments the five tar-
get system calls on entry and exit, logging function
arguments and the return value. As opposed to using
DYLD INSERT LIBRARIES, executing dtrace scripts
requires higher administrative privileges. This script
was executed from the terminal.

The experiments were conducted a macOS Sierra (Ver-
sion 10.12.1) system with an Intel Core i5-5257U 2.7-GHz
CPU and 8 GB of RAM.

7.1.4 iOS

Our iOS test program used the function task info() to obtain
physical memory and virtual memory size. Furthermore, we
utilized getrusage() to measure CPU user time. In this case,
we tested the function hooking tool Frida, instrumenting

130 J Hardw Syst Secur (2017) 1:114–136

Fig. 4 Performance overhead
for different hooking tools and
techniques on Windows

PHYSICAL

MEMORY

SIZE

VIRTUAL

MEMORY

SIZE

CPU

SYSTEM

TIME

CPU USER

TIME

WALL

TIME

No Hook 1 1 1 1 1

Rohitab 1.818 x 1.082 x 1.012 x 2.278 x 1.309 x

WinAPIOverride 1.087 x 2.326 x 1.187 x 2.779 x 1.973 x

Frida 3.926 x 8.829 x 1.660 x 2.833 x 2.800 x

0 x

2 x

4 x

6 x

8 x

10 x

12 x

14 x

n
o

n re
v

o es
aerc

n I
-

de

k
o

o
h

p
ro

g
ra

m

Windows Hooking Performance

the following functions: read(), close(), write(), open(), and
removefile(). The tool was configured as follows:

– Frida (v8.1.10): Similar to the previous OSes, we
created a Python that instrumented the five target
functions. These functions were located in libsys-
tem kernel.dylib, and it was necessary to specify this
library in Module.findExportBy- Name() to locate the
target functions.

These experiments were conducted on a jailbroken
iPhone 6S Plus with 1.85-GHz A9 CPU with 2 GB of RAM,
running iOS version 9.3.3.

7.2 Android

Like Linux, Android allowed us to use the proc file sys-
tem to examine performance metrics. In proc/[pid]/- status,
we read the values of VmPeak and VmHWM to obtain

the virtual and physical memory usage, respectively. We
obtained CPU time by examining the 14th and 15th values
in proc/[pid]/status, which gave us user and system time,
respectively. Lastly, we measured wall-clock time using
System.currentTimeMillis().

We tested function hooking using Frida, instrument-
ing the following libc functions: fopen(), fclose(), read(),
write(), and remove(). In addition, we traced the following
system calls using the utility strace: openat(), unlinkat(),
close(), write(), and read(). The tools were configured as
follows:

– Frida (v8.1.10): We created a Python script that located
and intercepted the target functions in the libc library,
printing the function arguments and return values.

– Ported strace: We monitored the five target system
calls using a ported version of strace. We launched and
traced our test program from the command-line with

Fig. 5 Performance overhead
for different hooking tools and
techniques on Linux

PHYSICAL

MEMORY

SIZE

VIRTUAL

MEMORY

SIZE

CPU

SYSTEM

TIME

CPU USER

TIME

WALL

TIME

No Hook 1 1 1 1 1

LD_PRELOAD 1.541 x 2.011 x 1.932 x 2.231 x 1.832 x

strace 1.006 x 1.000 x 9.250 x 4.308 x 8.009 x

Frida

0 x
2 x
4 x
6 x
8 x

10 x
12 x
14 x
16 x
18 x
20 x
22 x
24 x
26 x
28 x
30 x
32 x

n
o

n re
v

o es
aer c

nI
-

de

k
o

o
h

p
ro

g
ra

m

234.690 x 25.961 x

x10

Linux Hooking Performance

297.960 x 5.801 x 88.462 x

x10

x10

J Hardw Syst Secur (2017) 1:114–136 131

Fig. 6 Performance overhead
for different hooking tools and
techniques on macOS

PHYSICAL

MEMORY

SIZE

VIRTUAL

MEMORY

SIZE

CPU

SYSTEM

TIME

CPU USER

TIME

WALL

TIME

No Hook 1 1 1 1 1

DYLD 4.630 x 1.003 x 1.257 x 7.357 x 1.463 x

Dtrace 1.069 x 1.000 x 1.097 x 1.000 x 1.098 x

Frida 12.832 x 1.268 x 4.472 x 12.939 x 21.782 x

0 x
2 x
4 x
6 x
8 x

10 x
12 x
14 x
16 x
18 x
20 x
22 x
24 x
26 x

n
o

n
re

v
o

es
aerc

nI
-

de
k

o
o

h

m
ar

g
or

p

1.271 x 4.471 x 129.392 x 21.781 x

x10

macOS Hooking Performance

x10

128.320 x

ADB, using the am start command to execute the main
activity class of our test program.

These experiments were conducted on rooted Android
phone with a Mediatek 6580 Quad Core 1.3-GHz CPU and
768 MB of RAM with Android version 5.1.

7.3 Performance Overhead by Operating System

We analyzed the performance of the selected hooking tools
and techniques on each operating system by comparing their
experimental results to a non-instrumented execution of our
test program.

– Windows: For Windows, we examined the performance
of three function hooking techniques. Figure 4 shows
the results of our experiments. Of the three dynamic
instrumentation tools, Rohitab was the most efficient
tool in terms of CPU usage, with a overhead increase of
1.01x and 2.28x for the CPU system time and user time,

respectively. WinAPIOverride consumed the least phys-
ical memory, but had a larger virtual memory size than
Rohitab. Frida consumed the most memory of all the
tools included and increased wall-time by 2.8x, a sig-
nificant performance impact. In general, because these
programs are function hooking tools, they had larger
impact on CPU user time than CPU system time.

– Linux: As Fig. 5 indicates, using the environment vari-
able LD PRELOAD had much better performance than
Frida in terms of both memory and CPU utilization.
Because Frida is a dynamic instrumentation tool, it
requires more resources than LD PRELOAD, which
constitutes a static hooking technique. Furthermore, the
strace utility had a negligible effect on memory usage,
but significantly increased CPU and wall-time. Because
strace intercepts system calls, it had a larger effect on
CPU system time than user time.

– macOS: The results for macOS are displayed in Fig. 6.
Similar to Linux, we compared two function hooking

PHYSICAL

MEMORY

SIZE

VIRTUAL

MEMORY

SIZE

CPU SYSTEM

TIME

CPU USER

TIME

No Hook 1 1 1 1

Frida 1.518 x 1.079 x 12.968 x 2.115 x

0 x

2 x

4 x

6 x

8 x

10 x

12 x

14 x

n
o

n re
v

o es
aerc

nI
-

de

k
o

o
h

m
ar

g
or

p

iOS Hooking Performance

PHYSICAL

MEMORY

SIZE

VIRTUAL

MEMORY

SIZE

CPU

SYSTEM

TIME

CPU USER

TIME

WALL

TIME

No Hook 1 1 1 1 1

Frida 4.413 x 1.223 x 3.255 x 9.014 x 4.031 x

strace 1.001 x 1.006 x 3.298 x 1.419 x 4.100 x

0 x

2 x

4 x

6 x

8 x

10 x

12 x

14 x

n
o

n re
v

o es
aerc

n I
-

de

k
o

o
h

m
a r

g
or

p

Android Hooking Performance

Fig. 7 Performance overhead for different hooking tools and techniques on iOS (a) and Android (b)

132 J Hardw Syst Secur (2017) 1:114–136

Fig. 8 Cross-platform
performance experimental
results for Frida (all the
platforms)

PHYSICAL

MEMORY

SIZE

VIRTUAL

MEMORY

SIZE

CPU

SYSTEM

TIME

CPU USER

TIME

WALL

TIME

Windows 3.93 x 8.83 x 1.66 x 2.83 x 2.80 x

Linux 234.69 x 297.961 x 5.80 x 88.46 x 25.96 x

macOS 128.32 x 1.268 x 4.47 x 129.39 x 21.78 x

iOS 1.52 x 1.079 x 0 12.97 x 2.11 x

Android 1.92 x 1.223 x 1.61 x 1.84 x 1.50 x

1 x
2 x
4 x
8 x

16 x
32 x
64 x

128 x
256 x
512 x

n
o

n re
v

o es
a erc

nI
-

de

k
o

o
h

m
ar

g
or

p

Frida Cross-platform Performance

tools and one system call utility. Using the directive
DYLD INSERT LIBRARIES proved to be much more
efficient in all metrics than Frida. Interestingly, the
dtrace utility incurred less overhead than modifying
the run-time environment even though dtrace hooks
systems calls rather than functions.

– iOS: On iOS, we focused exclusively on the dynamic
hooking tool, Frida. The results are shown in Fig. 7a.
Compared to other opearting systems, Frida performed
better with a 1.52x and 1.08x increase in physical and
virtual memory respectively. However, there was a con-
cerning CPU user time increase of 12.97x and a 2.11x
rise in wall-time.

– Android: On Android, we tested function hooking tool
Frida and strace for system call hooking. As Fig. 7b
shows, Frida presented a substantial memory, CPU
time, and wall-time increase, especially in physical
memory size. While strace’s memory usage was negli-
gible, it significantly affected the CPU system time and
wall-time.

PHYSICAL

MEMORY

SIZE

VIRTUAL

MEMORY

SIZE

CPU

SYSTEM

TIME

CPU USER

TIME

WALL

TIME

Linux 1.01 x 1.00 x 9.25 x 4.31 x 8.01 x

Android 1.00 x 1.006 x 3.30 x 1.42 x 4.10 x

0 x

2 x

4 x

6 x

8 x

10 x

non
revo

esaercn I
-

dekooh
margorp

Strace Performance: Linux vs Android

Fig. 9 Cross-platform performance experimental results for strace
(Linux and Android)

7.4 Cross-platform Performance Overhead Comparison

We examined the performance of the following cross-
platform tools: Frida, strace, and the dynamic linker envi-
ronment variables on macOS and Linux.

– Frida: Frida constitutes a true cross-platform hooking
tool. Figure 8 shows the results of comparing Frida
performance between different platforms. In terms of
desktop operating systems, Frida for Windows demon-
strated the best performance. Linux and macOS were
the worst-performing operating systems with signifi-
cant increases across all metrics, especially memory
utilization and CPU user time. Android was the best
performing platform in terms of CPU system time, CPU
user time, and wall-time. iOS, however, consumed less
memory. Overall, Frida performed better on mobile
devices than on desktop operating systems.

– strace: The strace utility is available on Linux and
Android. Figure 9 shows the results after comparing the
performance of strace on both platforms. Memory uti-
lization was nearly the same on both, but there was a
major discrepancy in other metrics, with Android show-
ing much better performance. Compared to Android,
strace on Linux required nearly triple the CPU system
time and more than double the CPU user time, resulting
in almost double the wall-time.

– Environment Variables: We can hook functions by
modifying the run-time environment variables on
both Linux and macOS, using LD PRELOAD and
DYLD INSERT LIBRARIES, respectively. As Fig. 10
indicates, both implementations perform better on cer-
tain metrics. On Linux, there was less physical memory
usage and CPU user time overhead. On the other hand,
macOS had better results in terms of virtual mem-
ory utilization, CPU system time, and wall-time. We

J Hardw Syst Secur (2017) 1:114–136 133

Fig. 10 Cross-platform
performance experimental
results for run-time environment
hooking (Linux and macOS)

PHYSICAL

MEMORY

SIZE

VIRTUAL

MEMORY

SIZE

CPU

SYSTEM

TIME

CPU USER

TIME

WALL

TIME

LD_PRELOAD - Linux 1.54 x 2.01 x 1.93 x 2.23 x 1.83 x

DYLD - macOS 4.63 x 1.003 x 1.26 x 7.36 x 1.46 x

0 x

2 x

4 x

6 x

8 x

n
o

n re
v

o es
aerc

nI
-

de

k
o

o
h

m
ar

g
or

p

Run-time Environment Hooking: Linux vs macOS

attribute the variance in performance to differences in
how each operating system handles shared libraries at
load-time.

8 Conclusions and Future Work

Hooking tools and techniques constitute a key element in
several security applications like malware detection and
compromised software behavior analysis. In this paper, we
presented several criteria for the classification and selection
of hooking tools and techniques as well as an examination of
the most popular hooking approaches available for the major
operating systems. Furthermore, we measured the overhead
introduced by some of the most popular hooking techniques,
by comparing memory utilization, CPU utilization, and pro-
cess wall-clock time in all major operating systems. The
results revealed that Frida was, by far, the most resource-
consuming function hooking tool across all the platforms.
Interestingly, Frida performed better in the case of Win-
dows than all other desktop (Linux and macOS) and mobile
(Android and iOS) operating systems. Finally, system
call hooking proved to be more resource-consuming than
function call hooking. To the best of our knowledge, this
is the first extensive work that examines subroutine hook-
ing tools and techniques in both user-space and kernel-space
across the five most popular operating systems: Windows,
Linux, macOS, iOS, and Android.

Acknowledgments This work was partly supported by the US
NSF-CAREER-CNS-1453647, US DOE DE-OE0000779, and US
NSF-REU-CNS-1461119. Any opinions, findings, and conclusions or
recommendations expressed in this work are those of the authors and
do not necessarily reflect the views of the funding agencies.

References

1. API monitor. http://www.rohitab.com/apimonitor. [Online; accessed
22-December-2016]

2. AppInit DLLs and secure boot. https://msdn.microsoft.com/en-us/
library/windows/desktop/dn280412(v=vs.85).aspx. [Online; acces-
sed 20-December-2016]

3. BitBlaze: binary analysis for computer security. http://bitblaze.cs.
berkeley.edu/. [Online; accessed 25-June-2017]

4. Cydia substrate. http://www.cydiasubstrate.com. [Online; accessed
20-December-2016]

5. dlsym(3)—linux man page. http://man7.org/linux/man-pages/
man3/dlsym.3.html. [Online; accessed 16-December-2016]

6. dtruss(1m)—Mac OS X man pages. https://developer.apple.
com/legacy/library/documentation/Darwin/Reference/ManPages/
man1/dtruss.1m.html. [Online; accessed 16-December-2016]

7. DYLD(1)—Mac OS X man pages. https://developer.apple.com/
legacy/library/documentation/Darwin/Reference/ManPages/
man1/dyld.1.html. [Online; accessed 16-December-2016]

8. EasyHook. https://easyhook.github.io. [Online; accessed 22-
December-2016]

9. Frida. https://www.frida.re. [Online; accessed 19-December-2016]
10. Instruments user guide. https://developer.apple.com/library/content/

documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/.
[Online; accessed 20-December-2016]

11. Introspy-Android. http://isecpartners.github.io/Introspy-Android/.
[Online; accessed 19-December-2016]

12. ld.so(8)—linux man page. http://man7.org/linux/man-pages/
man8/ld.so.8.html. [Online; accessed 22-December-2016]

13. Microsoft detours. https://www.microsoft.com/en-us/research/
project/detours/. [Online; accessed 02-July-2017]

14. Nektra: advanced computing. http://www.nektra.com/products/
spystudio-api-monitor/. [Online; accessed 02-July-2017]

15. POSIX.1-2008 The pen Group Base Specifications Issue 7. http://
pubs.opengroup.org/onlinepubs/9699919799/. [Online; accessed
20-January-2017]

16. ptrace—linux manual page. http://man7.org/linux/man-pages/
man2/ptrace.2.html. [Online; accessed 14-December-2016]

17. SpyStudio Overview. http://www.nektra.com/products/spystudio-
api-monitor/. [Online; accessed 18-December-2016]

18. strace for android. https://github.com/alireza7991?tab=repositories.
[Online; accessed 20-December-2016]

19. Strace for NT. http://seriss.com/people/erco/ftp/winnt/strace/.
[Online; accessed 10-January-2017]

20. strace(1)—linux man page. https://linux.die.net/man/1/strace.
[Online; accessed 14-December-2016]

21. Theos/setup. http://iphonedevwiki.net/index.php/Theos/Setup.
[Online; accessed 20-December-2016]

22. WinAPIOverride. http://jacquelin.potier.free.fr/winapioverride32/.
[Online; accessed 18-December-2016]

134 J Hardw Syst Secur (2017) 1:114–136

http://www.rohitab.com/apimonitor
https://msdn.microsoft.com/en-us/library/windows/desktop/dn280412(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn280412(v=vs.85).aspx
http://bitblaze.cs.berkeley.edu/
http://bitblaze.cs.berkeley.edu/
http://www.cydiasubstrate.com
http://man7.org/linux/man-pages/man3/dlsym.3.html
http://man7.org/linux/man-pages/man3/dlsym.3.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/dtruss.1m.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/dtruss.1m.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/dtruss.1m.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/dyld.1.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/dyld.1.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/dyld.1.html
https://easyhook.github.io
https://www.frida.re
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/
http://isecpartners.github.io/Introspy-Android/
http://man7.org/linux/man-pages/man8/ld.so.8.html
http://man7.org/linux/man-pages/man8/ld.so.8.html
https://www.microsoft.com/en-us/research/project/detours/
https://www.microsoft.com/en-us/research/project/detours/
http://www.nektra.com/products/spystudio-api-monitor/
http://www.nektra.com/products/spystudio-api-monitor/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://man7.org/linux/man-pages/man2/ptrace.2.html
http://man7.org/linux/man-pages/man2/ptrace.2.html
http://www.nektra.com/products/spystudio-api-monitor/
http://www.nektra.com/products/spystudio-api-monitor/
https://github.com/alireza7991?tab=repositories
http://seriss.com/people/erco/ftp/winnt/strace/
https://linux.die.net/man/1/strace
http://iphonedevwiki.net/index.php/Theos/Setup
http://jacquelin.potier.free.fr/winapioverride32/

23. Windows API index. https://msdn.microsoft.com/en-us/library/
windows/desktop/ff818516(v=vs.85).aspx. [Online; accessed 20-
January-2017]

24. Windows API index. https://msdn.microsoft.com/en-us/library/
windows/desktop/ff818516(v=vs.85).aspx. [Online; accessed 02-
July-2017]

25. Xcode 8. https://developer.apple.com/xcode/. [Online; accessed
20-December-2016]

26. Xposed module repository. http://repo.xposed.info. [Online;
accessed 19-December-2016]

27. Abimbola AA, Munoz JM, Buchanan WJ (2006) Nethost-sensor:
monitoring a target host’s application via system calls. Inf Secur
Tech Rep 11(4):166–175

28. Andersson S, Clark A, Mohay G, Schatz B, Zimmermann J (2005)
A framework for detecting network-based code injection attacks
targeting Windows and UNIX. In: Proceedings of the 21st annual
computer security applications conference, ACSAC ’05. IEEE
Computer Society, Washington, DC, USA, pp 49–58

29. Babun L, Aksu H, Uluagac AS (2017) Identifying counterfeit
smart grid devices: a lightweight system level framework. In: 2017
international conference on communications (ICC)

30. Backes M, Gerling S, Hammer C, Maffei M, von Styp-Rekowsky
P (2013) Appguard: enforcing user requirements on Android
apps. In: Proceedings of the 19th international conference on
tools and algorithms for the construction and analysis of systems,
TACAS’13. Springer, Berlin, pp 543–548

31. Bovet D, Cesati M (2005) Understanding the Linux kernel Oreilly
& Associates Inc

32. Davis B, Chen H (2013) Retroskeleton: retrofitting Android apps.
In: Proceeding of the 11th annual international conference on
mobile systems, applications, and services, MobiSys ’13. ACM,
New York, pp 181–192

33. Eder T, Rodler M, Vymazal D, Zeilinger M (2013) ANANAS -
A framework for analyzing android applications. In: 2013 eighth
international conference on availability, reliability and security
(ARES), pp 711–719

34. Enck W, Octeau D, McDaniel P, Chaudhuri S (2011) A study of
android application security. In: Proceedings of the 20th USENIX
conference on security, SEC’11. USENIX Association, Berkeley,
pp 21–21

35. Holy Father (2004) Hooking Windows API-Technics of hooking
API functions on Windows. CodeBreakers-Journal, 1(2)

36. Garfinkel T (2003) Traps and pitfalls practical problems in system
call interposition based security tools. In: Proceedings of network
and distributed systems security symposium, pp 163–176

37. Gregg B, Mauro J (2011) DTrace: dynamic tracing in oracle
Solaris, Mac OS X and freeBSD, 1st edn. Prentice Hall Press,
Upper Saddle River

38. Guo PJ, Engler D (2011) Using system call interposition to
automatically create portable software packages. In: Proceedings
of the 2011 USENIX conference on USENIX annual technical
conference, USENIXATC’11. USENIX Association, Berkeley,
pp 21–21

39. Hunt G, Brubacher D (1999) Detours: binary interception of
Win32 functions. In: Proceedings of the 3rd conference on
USENIX windows NT symposium - Volume 3, WINSYM’99.
USENIX Association, Berkeley, pp 14–14

40. Jeong Y, Lee H, Cho S, Han S, Park M (2014) A kernel-
based monitoring approach for analyzing malicious behavior on
Android. In: Proceedings of the 29th annual ACM symposium on
applied computing, SAC ’14. ACM, New York, pp 1737–1738

41. Keniston J, Mavinakayanahalli A, Panchamukhi P, Prasad V
(2007) Ptrace, utrace, uprobes lightweight, dynamic tracing of
user apps. In: Proceedings of the 2007 Linux symposium, pp 215–
224

42. Kim S-W (2012) Intercepting system API calls. https://software.
intel.com/en-us/articles/intercepting-system-api-calls. [Online;
accessed 18-December-2016]

43. Kim T, Zeldovich N (2013) Practical and effective sandboxing
for non-root users. In: Presented as part of the 2013 USENIX
annual technical conference (USENIX ATC 13). USENIX, San
Jose, pp 139–144

44. Liu ST, Huang Hc, Chen YM (2011) A system call analysis
method with mapreduce for malware detection. In: 2011 IEEE
17th international conference on parallel and distributed systems,
pp 631–637

45. Zhao F, Tan L, Zhang X (2012) Advanced operating and dis-
tributed system android and iOS platform study final report

46. Ligh MH, Adair S, Hartstein B, Richards M (2011) Malware
analyst’s codebook and DVD: tools and techniques for fighting
malicious code. Wiley, New York

47. Madani P, Vlajic N (2016) Towards sequencing malicious system
calls. In: 2016 IEEE conference on communications and network
security (CNS), pp 376–377

48. Marhusin MF, Larkin H, Lokan C, Cornforth D (2008) An eval-
uation of API calls hooking performance. In: Proceedings of
the 2008 international conference on computational intelligence
and security - volume 01, CIS ’08. IEEE Computer Society,
Washington, pp 315–319

49. Mehdi B, Ahmed F, Khayyam SA, Farooq M (2010) Towards a
theory of generalizing system call representation for in-execution
malware detection. In: 2010 IEEE international conference on
communications, pp 1–5

50. (2015). Microsoft. Visual studio, Microsoft portable executable
and common object file format specification. Technical report,
Microsoft

51. Myers DS, Bazinet AL (2004) Intercepting arbitrary functions
on Windows, UNIX, and Macintosh OS X platforms. Techni-
cal report, Center for Bioinformatics and Computational Biology,
Institute for Advanced Computer Studies University of Maryland

52. Qin F, Wang C, Li Z, Kim Hs, Zhou Y, Wu Y (2006) Lift:
a low-overhead practical information flow tracking system for
detecting security attacks. In: 2006 39th annual IEEE/ACM inter-
national symposium on microarchitecture (MICRO’06), pp 135–
148

53. Richter JM, Nasarre C (2007) Windows via C/C++, 5th edn.
Microsoft Press, USA

54. Rubanov VV, Shatokhin EA (2011) Runtime verification of linux
kernel modules based on call interception. In: 2011 fourth IEEE
international conference on software testing, verification and vali-
dation, pp 180–189

55. Russello G, Jimenez AB, Naderi H, van der Mark W (2013) Fire-
Droid: hardening security in almost-stock android. In: Proceed-
ings of the 29th annual computer security applications conference,
ACSAC ’13. ACM, New York, pp 319–328

56. Russinovich ME, Solomon DA, Ionescu A (2012) Windows inter-
nals, Part 1: covering windows server 2008 R2 and Windows 7,
6th edition. Microsoft Press, USA

57. Mohd Shaid SZ, Maarof MA (2015) In memory detection of
Windows API call hooking technique. In: 2015 international con-
ference on computer, communications, and control technology
(i4CT), pp 294–298

58. Silberschatz A, Galvin PB, Gagne G (2008) Operating system
concepts, 8th edn. Wiley Publishing, New York

59. Song D, Brumley D, Yin H, Caballero J, Jager I, Kang MG, Liang
Z, Newsome J, Poosankam P, Saxena P (2008) BitBlaze: a new
approach to computer security via binary analysis. In: Proceed-
ings of the 4th international conference on information systems
security. Keynote Invited paper., Hyderabad, India

J Hardw Syst Secur (2017) 1:114–136 135

https://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx
https://developer.apple.com/xcode/
http://repo.xposed.info
https://software.intel.com/en-us/articles/intercepting-system-api-calls
https://software.intel.com/en-us/articles/intercepting-system-api-calls

60. Sun M, Zheng M, Lui JCS, Jiang X (2014) Design and imple-
mentation of an android host-based intrusion prevention system.
In: Proceedings of the 30th annual computer security applications
conference, ACSAC ’14. ACM, New York, pp 226–235

61. Sze WK, Sekar R (2015) Provenance-based integrity protection
for windows. In: Proceedings of the 31st annual computer security
applications conference, ACSAC 2015. ACM, New York, pp 211–
220

62. Vogl S, Pfoh J, Kittel T, Eckert C (2014) Persistent data-only
malware: function hooks without code. In: NDSS

63. Wampler DR (2007) Methods for detecting Kernel Rootkits. PhD
thesis, Louisville, KY, USA. AAI3293571

64. Willems C, Holz T, Freiling F (2007) Toward automated dynamic
malware analysis using CWSandbox. IEEE Secur Priv 5(2):32–
39

65. Wißfeld M, von Styp-Rekowsky P, Backes M Callee-side method
hook injection on the new Android runtime ART

66. Xu K, Li Y, Deng RH (2016) Iccdetector: Icc-based malware
detection on android. IEEE Trans Inf Forensics Secur 11(6):1252–
1264

67. Xu R, Saı̈di H, Anderson R (2012) Aurasium: practical pol-
icy enforcement for android applications. In: Proceedings of the
21st USENIX conference on security symposium, Security’12.
USENIX Association, Berkeley, pp 27–27

68. Ye Y, Wang D, Li T, Dongyi Y (2007) IMDS intelligent mal-
ware detection system. In: Proceedings of the 13th ACM SIGKDD
international conference on knowledge discovery and data mining,
KDD ’07. ACM, New York, pp 1043–1047

69. Yin H, Liang Z, Song D (2008) HookFinder: identifying and
understanding malware hooking behaviors. In: Proceedings of the
15th annual network and distributed system security symposium
(NDSS’08)

70. Yucheng G, Peng W, Juwei L, Qingping G (2011) A way to
detect computer trojan based on DLL preemptive injection. In:
2011 tenth international symposium on distributed computing
and applications to business, engineering and science (DCABES),
pp 255–258

71. Zdziarski J (2012) Hacking and securing iOS applications: steal-
ing data, hijacking software, and how to prevent it. O’Reilly
Media, Inc., Sebastopol

13 J Hardw Syst Secur (2017) 1:114–1366

	A Survey on Function and System Call Hooking Approaches
	Abstract
	Introduction
	Organization

	Background
	Operating System Concepts Relevant to Hooking
	User-Space vs. Kernel-Space
	Shared Libraries

	An Overview of Subroutine Hooking

	Related Work
	Differences from the Existing Works

	The Classification and Selection of Hooking Approaches
	Subroutine Type
	Hook Insertion
	Instrumentation Type
	Hooking Location
	Hooking Scope
	Operating System Modification Requirement
	Availability of Source Code
	Pricing Model

	Function Call Hooking Tools and Techniques
	Dynamic Function Hooking Approaches
	Inline Hooking
	Import Address Table Modification
	Sample Tools for Dynamic Function Hooking
	Microsoft Detours—Windows
	EasyHook—Windows
	Nekra SpyStudio API Monitor—Windows
	WinAPIOverride—Windows
	Rohitab API Monitor—Windows
	Frida—Windows, macOS, Linux, iOS, Android

	Static Function Hooking Approaches
	Injecting Proxy Libraries
	Modifying the Operating System
	Sample Tools for Static Function Hooking
	Sysinternals Process Monitor—Windows
	LD_PRELOAD—Linux
	 DYLD_INSERT_LIBRARIES—macOS and iOS
	Cydia Substrate—iOS and Android
	Introspy—Android
	Xposed Framework—Android

	System Call Hooking Tools and Techniques
	Dynamic System Call Hooking Techniques
	Operating System Utilities and System Calls
	Dynamic System Call Hooking Tools
	Dtrace—macOS and iOS Simulator
	dtruss—macOS
	Apple System Calls Instrument—macOS and iOS
	Ptrace—Linux, macOS, Android, and iOS
	Strace—Linux and Android

	Static System Call Hooking Techniques
	Operating System Kernel Modification
	Specific Techniques and Tools for Implementing Hooks in the Kernel
	Linux System Call Modification
	Strace for NT

	Hooking Performance
	Methodology
	Windows
	Linux
	macOS
	iOS

	Android
	Performance Overhead by Operating System
	Cross-platform Performance Overhead Comparison

	Conclusions and Future Work
	Acknowledgments
	References

