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Abstract—With wearable devices such as smartwatches on the rise in the consumer electronics market, securing these wearables

is vital. However, the current security mechanisms only focus on validating the user not the device itself. Indeed, wearables can be
(1) unauthorized wearable devices with correct credentials accessing valuable systems and networks, (2) passive insiders or outsider
wearable devices, or (3) information-leaking wearables devices. Fingerprinting via machine learning can provide necessary cyber
threat intelligence to address all these cyber attacks. In this work, we introduce a wearable fingerprinting technique focusing on
Bluetooth classic protocol, which is a common protocol used by the wearables and other IoT devices. Specifically, we propose a
non-intrusive wearable device identification framework which utilizes 20 different Machine Learning (ML) algorithms in the training
phase of the classification process and selects the best performing algorithm for the testing phase. Furthermore, we evaluate the
performance of proposed wearable fingerprinting technique on real wearable devices, including various off-the-shelf smartwatches.
Our evaluation demonstrates the feasibility of the proposed technique to provide reliable cyber threat intelligence. Specifically, our
detailed accuracy results show on average 98.5 percent, 98.3 percent precision and recall for identifying wearables using the Bluetooth

classic protocol.

Index Terms—Cyber threat intelligence, wearable device fingerprinting, authentication, network-level bluetooth fingerprinting, cyber security

INTRODUCTION

1
CYBERSPACE is expanding rapidly with the introduction
of new Internet of Things (IoT) devices. Today, it is
extremely challenging to find a device without any Internet
connection capability. Wearables, smart watches, glasses,
fitness trackers, medical devices, and Internet-connected
house appliances have grown exponentially in a short
period of time. It is estimated that on average, one device is
assumed to be connected to Internet today every eighty
seconds and our everyday lives will be dominated by bil-
lions of smart connected devices by the end of this
decade [1]. Indeed, it is predicted that by 2,020, there will be
50 to 100 billion devices connected to the Internet [2], [3],
forming a massive IoT. This emerging IoT technology will
drastically change our daily lives and enable smarter cities,
health, transportation, and energy [3]. Among these devices,
a considerable number of them will be the wearable devices
that can be carried by individuals such as watches, fitness
bands, sensors (e.g., heart-rate, stride), etc. By 2019, it is esti-
mated that one in four smartphone owners will also be
using a wearable device [4].

On the other hand, one of the relatively overlooked prob-
lems in the industry or in any networking environment
today is that although wearable device vendors follow the
general guidelines while implementing a specific software,
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hardware, or firmware to be compatible with the industry
standards and other technologies, they, unfortunately, do
not fully comply with the specifics of the standards [5], [6].
Different implementations of the same functionality can be
observed with different vendors due to differences in inter-
pretations and lenient parts of the standards. Similarly, it is
possible that counterfeit wearable devices or devices with
corrupted hardware or software components may exist in a
networked environment without the knowledge of the net-
work administrator [7], [8]. These wearable devices may
participate in the regular data collection transactions, glean
important information from unwary benign devices nearby,
and leak such information to adversaries [7], [8]. Moreover, a
network can dynamically grow and shrink in size with new
wearable devices and equipment depending on the needs.
For instance, employees can bring their own wearables (aka
BYOD) to their networks. New wearable devices can join
and leave an authorization realm and device configurations
can change dynamically, or even more frequently than other
traditional networking settings. Similarly, a wearable device
can be compromised or can be made ineffective by adversar-
ies or, simply, a small wearable device can be dropped or
lost in a networking environment. In such a case, a wearable
device could still be part of an authentication realm acting
as an insider threat to the other legitimate operational net-
worked resources. More specifically, new devices can be
(1) unauthorized wearable devices with correct network cre-
dentials, (2) passive insiders or outsider wearable devices, or
(3) information-leaking wearable devices.

Furthermore, most of the wearables are resource-limited
and have limited processing capabilities. This poses chal-
lenges to the most state-of-the-art security solutions. For
instance, an insider attack could be avoided with a multi-
factor authentication mechanism. However, achieving a
multi-factor authentication [9] on a wearable device with
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limited resources may be challenging, if not impossible. To
alleviate these concerns, in this work, we introduce machine learn-
ing based wearable fingerprinting tool as a non-intrusive
complementary security mechanism for wearables. Such a finger-
printing mechanism does not solely depend on current
security solutions to verify whether the device whose secu-
rity is questioned is actually the device it claims to be
but incorporates obtained cyber threat intelligence. With
fingerprinting, unauthorized wearable devices via their
reproducible fingerprints, possibly inserted by authorized
individuals (aka insiders) can be detected. Furthermore, a
wearable fingerprinting mechanism can also be utilized to
identify unmanageable wearables without any sophisti-
cated software architecture on them. Hence, a wearable fin-
gerprinting mechanism can supplement current security
solutions (e.g., access control and authentication) to gain
more information and confidence in critical decisions when
classical security solutions cannot be efficiently operated in
a wearable realm. For instance, a Bluetooth speaker may be
needed in a conference room. Although this speaker will be
connected to the network, traditional credential or NAC-
based solutions are not applicable as the speaker does not
support such services. However, network admins may
want to make sure any rogue device with Bluetooth support
cannot access the network. Network access is granted to a
device only after it is identified as an expected device.

In this work, we propose to utilize the timing information
of Bluetooth classic protocol. This protocol is predominately
used by the wearable devices in the market today. Our
framework utilize a comprehensive set of Machine Learning
(ML) algorithms (20 different ML algorithms) in training
phase of the classification process to pick the best perform-
ing algorithm. To the best of our knowledge, the proposed finger-
printing technique, as well as the intelligent utilization of 20
different ML algorithms, is the first in the wearables realm. More-
over, we apply our wearable fingerprinting technique on
different wearables, i.e., various smart watches. Our detailed
evaluation demonstrates the functionality and feasibility of the
proposed technique with 98.5, 98.3 percent precision and recall for
wearables using Bluetooth classic protocol.

The remainder of this manuscript is organized as fol-
lows. We review the related work in Section 2. Background
on wearables is presented in Section 3. We also explain
different fingerprinting techniques in the same section. In
Section 4, we introduce the components of our wearable fin-
gerprinting framework. In Section 5, we discuss test setup
and provide the empirical analysis of wearables using Blue-
tooth classic protocol. Then in Section 6, we discuss how fin-
gerprinting can be used to complement security and how a
real operational wearable networking environment could
benefit from fingerprinting. Finally, we conclude this paper
in Section 7.

2 RELATED WORK

There is currently no work that fingerprints wearable devi-
ces. However, fingerprinting has been applied by some
many earlier studies. A seminal work in this area was intro-
duced by Kohno et al. in [10]. In [10], a method for remotely
fingerprinting a physical device by exploiting the imple-
mentation of the TCP protocol stack was proposed. The

authors use the TCP timestamp option of outgoing TCP
packets to reveal information about the sender’s internal
clock. The authors’” technique exploits microscopic devia-
tions in the clock skews to derive a clock cycle pattern as the
identity for a device. The authors of [11] take a similar
approach to that of [10] (i.e., using clock skews to uniquely
identify nodes), however, the goal of [11] is to uniquely fin-
gerprint access points (APs), obtaining the timestamp from
802.11 beacon frames. Similarly, the authors in [12] use tim-
ing information between commands and responses on the
Universal Serial Bus (USB) to distinguish between varia-
tions in model identifiers, OSs (and sometimes OS version
number), and whether a machine is answering from a real
or virtual environment. There have also been other physical
layer approaches to fingerprint wireless devices. A good
survey on the physical-layer identification of wireless devi-
ces can be found in [13]. Radio frequency (RF) emitter
fingerprinting uses the distinct electromagnetic (EM) char-
acteristics that arise from differences in circuit topology and
manufacturing tolerances. This approach has a history of
use in cellular systems and has more recently been applied
to Bluetooth [14] and Wi-Fi [15] emitters. The EM properties
fingerprint the unique transmitter of a signal and differ
from emitter to emitter. This technique requires expensive
signal analyzer hardware to be within RF range of the tar-
get. In a more recent work [16], [17], the authors developed
a passive wired-side technique to fingerprint types of devi-
ces connected to a Wireless Local Area Network (IEEE
802.11 g/n). Different from this WLAN fingerprinting
work, our identification focuses on the characteristics of
Bluetooth classic protocol, which is mostly used by the
resource-limited wearables. Also, their work considers one
type of classification mechanism (i.e., artificial neural net-
works) whereas our fingerprinting framework is able to uti-
lize 20 different Machine Learning algorithms to determine
the best performing one for fingerprinting problem. Finally,
a recent useful survey of fingerprinting mechanisms can be
found in [18].

3 BACKGROUND

3.1 Wearables

It is possible to see the early examples of wearables mostly
in the smart watch realm. For smart watches, there are four
major smart watch operation system vendors: Android-
based, I0S-based, Samsung-based with Tizen O/S [19], and
Pebble-based with Pebble O/S [20]. The Pebble O/S is based
on an open source Real Time Operating System (FreeRTOS)
for embedded devices while the Tizen is another open-
source Linux-derivative operating system. In this paper, we
only focus on Android-based ones given their popularity
with their open-source nature.

A wearable device (e.g., smart watch, fitness band) usu-
ally needs to work and synchronize with another more
resourceful Android device such as a tablet or smartphone
to be fully functional (Fig. 1). The Android Wear app is the
primary conduit for communication between an Android
Wear device and a smartphone/tablet. Without the applica-
tion installed and running on the Android handheld device,
the Android Wear and the handheld are unable to pair, lim-
iting the serviceability of the Android Wear technology.
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Android Phone

Applications send notifications
via BLUETOOTH connection

SYSTEM LOG
SMS notification

EMAIL notification
NEWS notification
CHAT notification

Fig. 1. Overall sync architecture between the phone and wearable.

Moreover, the operating system of the Android handheld
must be running on Android 4.3 Jelly Bean or higher.

For most of the wearable devices, the communication
occurs via Bluetooth protocols. An example communication
between an Android wear smart watch and a smartphone is
illustrated in Fig. 1. In this example, the smartwatch and the
smartphone use the notifications over Bluetooth. With notifi-
cations, the wear devices and applications share information
among themselves. The sending application for the notifica-
tions can be on one device and the receiving application on
another. When a notification is created on a smartphone, it is
sent to the Android Wear application, which then sends the
notification to the synced wearable. The overall architecture
is shown in Fig. 1. Notifications from all applications on the
smart device are sent to the wearable via the Android Wear
application using a Bluetooth connection. These notifications
are immediately displayed on the wearable’s screen.

3.2 Wearables with Bluetooth Classic

Bluetooth classic is the legacy version of Bluetooth, which is
first created in 1994 [21] while the Bluetooth Special Interest
Group (SIG) is formed in 1998 [22]. It is widely used in the
market today and it is also known as Bluetooth BR/EDR
(basic rate/enhanced data rate). The current version is Blue-
tooth v4.2, which was released in December 2014. Fig. 2 dis-
plays Bluetooth classic protocol stack.

Meanwhile, Bluetooth security depends on pairing pro-
cess and use of authentication and encryption. All security
features depend on device name, address, i.e., BDADDR,
and encryption keys. Device name and address can be
spoofed while encryption keys can be copied to other devi-
ces. Thus, enabling device fingerprinting, which depends
on device hardware, can increase the overall security level
of Bluetooth speaking wearables.

3.3 Fingerprinting Wearables

Wearable fingerprinting can generally be achieved in at
least two different ways. The first depends on the goal of
fingerprinting and there can be two types of fingerprinting
under this: Device or device type fingerprinting. With the device
fingerprinting, individual devices are fingerprinted. The
main goal is to distinguish an individual device from
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Fig. 2. Bluetooth classic protocol stack.

another one of its kind. For instance, assume there are two
smart watches from the same vendor, Sony Smart watch 1
and Sony Smart watch 2, the goal is to distinguish one from
the other. With the device type fingerprinting, devices from
different vendors are identified. The identification is based
on the vendor diversification rather than the individual
devices by the same vendors.

The Second type of fingerprinting depends on the
method of fingerprinting. In this category, there can be two
generic ways: active and passive fingerprinting [23].

Under the active fingerprinting technique, the wearable
devices are fingerprinted with an external stimulus (e.g., a
specific packet) and the results returned from the device
are fingerprinted and analyzed for signature generation
and identification, respectively. Specifically, the active
fingerprinting technique involves two complementary
approaches. In the first one, regular packets are sent to the
wearable devices whereas, in the second one, malformed
packets (i.e., abnormal, unexpected) are sent to the wear-
ables. Regular packets sent to the devices conform to the
general rules of the standards and protocols. Responses
coming from the wearable devices, the difference in content,
length, orders of packets, packet arrival, inter-arrival time
can all be observed and analyzed in the fingerprinting pro-
cess and be part of the signature generation process.

In the passive fingerprinting technique, the wearable devi-
ces are monitored for the information they carry (e.g., proto-
col packet fields) or generate (e.g., timing analysis between
packets) and this observed information is the basis for the
signature generation and the identification afterward. The
passive fingerprinting can be accomplished via two differ-
ent approaches. In the first one, behavior analysis, the proto-
cols, the applications, the protocol headers, protocol fields
that are sent in the clear are all observed for how they
behave and how differences in implementations of proto-
cols and applications vary across devices. It is widely
known that each vendor implements enhanced versions of
certain functions although they conform to the industry
standards. So, diversity in protocol functionalities can be
observed. For instance, Bluetooth stack may have been

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 15:56:35 UTC from IEEE Xplore. Restrictions apply.



224 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2021

| Techniques for Fingerprinting Wearables |

I I 1
|Device Type | |Device ID | |Passive |
[
Timing
Analysis

,_Ll ,=_|
Inter-packet | | Clock || Protocols | | Applications |
Timing Skews
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implemented using different versions of the Bluetooth pro-
tocol. With this type of fingerprinting, it is possible to catch
device types easier than individual devices within a specific
device class.

The second passive fingerprinting approach involves
observing the timing patterns (e.g., interpacket-arrival times
(IAT)) between the communicating end-points (e.g., wear-
able-to-wearable or wearable-to-other smart equipment
communication) [16], [17]. The third one involves the obser-
vation of the clock skews [10]. Estimated clock skews from
the fingerprinter’s point of view can provide a good oppor-
tunity for generating unique device signature as each wear-
able device vendor may have differing internal clocks. It is
important to note that the last two approaches are non-
intrusive, does not require deep-packet inspection, and can
be applied to any type of traffic whether the traffic is
encrypted or not.

In both active and passive methods, versatile open source
tools such as Python’s Scapy [24] can be utilized for generat-
ing the regular or abnormal packets and open source
software-based (e.g., Tcpdump [25], Wireshark [26]) or hard-
ware-based (e.g., Ubertooth [27]) packet sniffers can all be
used for monitoring and capturing the wearable traffic. The
captured results are analyzed after the process or in-realtime.

Moreover, the aforementioned active and the passive
wearable fingerprinting techniques can be applied to two dif-
ferent components of the wearable device: Applications and
protocols. These important components interact with the out-
side world and provide an excellent opportunity for finger-
printing. For instance, requesting a special information (e.g.,
nonexistent) from a wearable device via the active fingerprint-
ing method and observing its response may provide different
results depending on the application type on the wearable
device. Further, a certain application (e.g., a notification mech-
anism) or a protocol over different-but-seemingly similar
wearable devices (e.g., Sony Smart watch versus LG Smart
watch) may generate different observable signatures. The dif-
ferent fingerprinting methodologies that can be utilized in a
wearable fingerprinting framework are summarized in Fig. 3.
Note that in this work, we utilize an inter-packet timing-based tim-
ing analysis method on Bluetooth classic protocol packets from wear-
able devices, effectively combining two different techniques of passive
fingerprinting, timing and behaviour analysis to determine the
device type. The details of our fingerprinting framework are
given in the following section.

4 WEARABLE FINGERPRINTING FRAMEWORK

Our wearable fingerprinting framework consists of four
main components as shown in Fig. 4. (1) Packet capture; (2)
Feature extractor; (3) Signature generator; and (4) Compari-
son. In this section, we articulate these briefly.

| Packet 1 | | Packet_n |

J L

| Feature Extractor |

!

| Signature Generator

Wearable
Identified

Wearable
NOT Identified

Signature D/B
Fig. 4. Wearable fingerprinting framework.

e  Packet capture: The first step in our wearable finger-
printing framework involves capturing Bluetooth
classic packets from a wearable device. Note that
Bluetooth classic is predominantly used in the wear-
ables domain.

e  Feature extractor: As the packets are collected from
the wearable devices, this component is responsible
for extracting the features from the packets. In our
framework, distinguishing information is inter-
arrival-times between Bluetooth packets.

e  Signature generator: The next component in the fin-
gerprinting is to generate the signatures using the
features as the basis to reveal patterns in the data. In
our work, the signatures are probability distribu-
tions. Once the signatures are generated, they are
also stored in a database so that they can be used to
compare with new signatures when identifying
unknown wearables. In other words, signatures are
used to train the prediction models for various ML
algorithms.

o  Comparison/Prediction: The final step in the wearable
fingerprinting process involves comparing a stored
signature with the wearable that needs to be identi-
fied. If a match with a known signature is found for
the unknown wearable, the unknown wearable is
deemed identified, otherwise unidentified. It should
be noted that from a security stand, both results are
valuable. Here trained machine learning models are
used to make predictions.

Our wearable fingerprinting framework makes use of
classifiers from Weka [28] project and also an external
neural network implementation [29]. The ML algorithms
we used are listed in Table 1. Further, this table includes
the type of the algorithms. As different ML algorithms
can model different patterns in data, we know that the
best performing algorithm will depend on the pattern

TABLE 1

ML Classifiers Used by Our Wearable Identification Framework

Type Name

Functions LibSVM, MultilayerPerceptron, NeuralNetwork,
SMO, SimpleLogistic

Bayes BayesNet, NaiveBayes, NaiveBayesMultinomial
Updateable, NaiveBayesUpdateable

Rules DecisionTable, JRip, OneR, PART

Trees DecisionStump, HoeffdingTree, J48, LMT,

REPTree, RandomForest, RandomTree
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TABLE 2
Paired Smartphone and Wearable Devices in Our Tests Using
Bluetooth BR/EDR Protocol

Device Type Make Marketing Name (O]

Smartwatch Sony Sony smart watch Android
Smartphone Samsung Galaxy S5 Android
Smartwatch Motorola Moto 360 Android
Smartwatch Asus ZenWatch Android
Smartwatch LG G Watch R Android
Smartwatch LG LG Urbane Android
Smartwatch Samsung Gear Live Android

inside Bluetooth traffic captures and extracted features.
However, there is no prior knowledge about the true
nature of the pattern in this data. So, we selected well-
known algorithms designed to model various patterns.
For instance, LibSVM and SimpleLogistic like algorithms
capture functional patterns while BayesNet and Naive-
Bayes like algorithms capture stochastic patterns. Thus,
we incorporated algorithms from all major pattern types
as listed in the Table 1 and exhaustively used them. Our
framework is able to pick the best performing ML algo-
rithm among all the supported ones in the training phase
using the Algorithm 1. Specifically, the algorithm Pick
Best ML Algorithm uses the training dataset ds, list of sup-
ported ML algorithms algs, and the list of filters filters.
It computes accuracy for each ML algorithm alg and each
filtering on training data and keeps a vector of
<alg, accuracy> pairs. Then, it selects top 15 percent of
best performing algorithms and compute the frequency of
each algorithm in this top list. The most frequent algo-
rithm is picked as the best algorithm. Hereafter, this algo-
rithm is used in the testing phase.

Algorithm 1. Pick Best ML Algorithm-Training Phase

Input: ds: learning dataset,
algs: list of supported ML algorithms,
filters: list of filters

Output: returns best performing algorithm

1: v « empty vector

2: for each algorithm alg in algs list do

3:  foreach filter f in filters list do

4: dsy «— apply filter(ds, f)

5: feature_set < generate signature(dsy)

6: modelyy — build model( feature_set, alg)

7 accuracyyqg < test model(modelyy, dsy)

8: add pair <alg, accuracyyq,> to vector v
9: end for

10: end for

11: vygp15 < filter top 15 percent by accuracy(v)

12: alg-_freq «— compute frequency per algorithm(vips)

13: alg < most frequent algorithm(alg-freq)

14: return alg

Then, dataset to signature generation is shown in
Algorithm 2. In order to generate the signature, first, inter
arrival time vector ¢at is computed from the input
dataset. Then, the density distribution of iat vector is
generated. Finally, this distribution is converted into a
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Fig. 5. Bluetooth classic testbed with wearables.

histogram and each bin height in the histogram becomes a
feature in the signature.

Algorithm 2. Generate Signature-All Phases

Input: ds: dataset

Output: returns ds signature

1: iat «— extract inter arrival time(ds)

2: dd « generate density distribution(iat)
3: features < converts to features(dd)

4: return features

5 PERFORMANCE EVALUATION

In order to evaluate the feasibility and efficacy of the pro-
posed wearable fingerprinting framework, we setup a
testbed with a set of representative wearable devices and
studied different test scenarios empirically.

5.1 Testbed and Experiment Methodology
We setup a testbed of six smart watches and a master smart-
phone. Table 2 provides the list of Bluetooth classic wear-
able devices we used in our tests. All watches were paired
with the master smartphone via the Android Wear app as
illustrated in Fig. 5. Note that the smart watches need this
Android Wear App running on the paired smartphone. In
this way, a communication between the smartphone and
smart watch is established as explained in Section 3.
Android Wear App pushes some limitations on Bluetooth
connectivity such as only smartphone-to-smart watch com-
munication is supported. Although a smartphone can be
paired with many smart watches, a smart watch can be
paired with only one smartphone at a time. Since we want
to profile usual Bluetooth traffic on Wearables, we followed
the limitations associated Android Wear. All Bluetooth
communication was captured at the smartphone.

Smart watches receive all notifications from the paired
smartphone. Also, any app in the smartphone communicates
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Fig. 6. Inter-Arrival-Time density distributions of wearables when no
packet filtering applied (i.e., no length or protocol type considered).

with its wearable extension over the Bluetooth channel. This
communication is managed by Android APIs. To facilitate
this, we developed a test Android app with its wearable
extension. This test app generated the Bluetooth traffic
between the smartphone and smart watch. The generated
traffic contained random-sized notifications from the smart
watch to the smartphone and from phone to watch. Each
experiment included about 300 exchanged messages. For
each smart watch, we repeated the experiment 40 times.
The total amount of captured Bluetooth traffic was about
1.08 GBytes.

5.2 Experiments and Results

As articulated earlier, our evaluation focused on the packet
inter-arrival-time distributions as the fundamental wearable
fingerprinting feature. In order to determine the best filter-
ing cases for IATs, we analyzed the packet captures with
packet length and Bluetooth protocol breakdowns.

Fig. 6 displays IAT density distribution for six smart-
watches and one smartphone. Although the smartphone is
not a wearable device, we included here to see the impact of
device diversity. In the figure, the X-axis represents packet
inter-arrival-time in seconds while the Y-axis refers to den-
sity for a given IAT value. The trend of Y-value is more
important then its value. Since it is a density plot, the total
area under each curve is equal to one. As seen in the figure,

for each tested wearable, there are distinct IAT distribu-
tions. To further understand the degree of diversity, we
looked at the hardware specs for each tested wearable
device and tabulated them in Table 3. As the table suggests,
in spite of different appearances and vendors, devices have
small variations in their architectural details. In fact, the
hardware specs correlate with density trends we observed
in our tests. For instance, identical specs of ZenWatch-G,
Watch R, and Sony smart watch resulted in close density
plots while distinct specs of Moto 360 E9A4 and LG Urbane
CFAOQ resulted in further separated plots from each other.

We then analyzed the effect of packet length in our wear-
able fingerprinting framework. Packet length means the
size of evaluated packets and length > k states only packets
larger than k bytes were considered. Fig. 7 shows the den-
sity distributions when different packet sizes were utilized.
As seen in the figures, the size of the packet allows different
densities for each tested wearable device.

Next, we focused on the type of the underlying protocol
utilized by the wearable device in their Bluetooth classic
stack. As presented in Fig. 8, RFCOMM provides more dis-
tinctive curves than SDP and L2CAP protocols. Similar to
results observed with the packet length analysis, the wear-
able devices have varying IAT densities for each tested
device. Finally, we considered both the packet length and
protocol type together. The results for this combined test
case are given in Fig. 9. As seen in the figures, a combined
case also yields distinguishable density plots.

The density distribution curves inspired us to further
analyze the feasibility of IAT feature with packet type and
length in our wearable device identification framework. For
this, we incorporated different machine learning algorithms
into our wearable fingerprinting framework on top of the
IAT feature. We divided probability density curves into 300
bins and convert the area inside each bin into a feature as
described in Algorithm 2. Thus, each session in captures
was enrolled as a signature in the database. Further, as
described earlier, we used the Weka [28] software. In addi-
tion to the ML algorithms provided in Weka, we also
included an external neural network implementation with a
plugin for Weka [29]. We followed Weka conventions and
used 66 percent of captured sessions for learning and used
the remaining for the testing phase. Note that our frame-
work is able to choose the best ML algorithm from the train-
ing data as explained in Section 4 and Algorithm 1. The
framework picked Random Forest algorithm as the best ML
algorithm in the experiment. Table 4 lists top-10 classifica-
tion results with different filters from fingerprinting of
wearables. all — all case, in which all protocols and all

TABLE 3
Hardware Specs of Tested Wearables and a Smartphone with Bluetooth Classic
Device Chipset CPU RAM Bluetooth
Sony smartwatch Qualcomm Snapdragon 400 APQ8026 ARM Cortex-A7,1200 MHz, 4 Core 512 MB 4.0

Galaxy S5 Qualcomm Snapdragon 801 MSM8974AC  Krait 400, 2.5 GHz, 4 Core 2 GB LPDDR3 4.0
Moto 360 E9A4 Texas Instruments OMAP 3 3630 ARM Cortex-A8, 1.2 GHz, 1 Core 512 MBLPDDR 4.0
ZenWatch 1726 Qualcomm Snapdragon 400 APQ8026 ARM Cortex-A7,1.2 GHz, 4 Core 512 MB 4.0
G WatchR4050  Qualcomm Snapdragon 400 APQ8026 ARM Cortex-A7,1.2 GHz, 4 Core ~ 512 MB 4.0
LG Urbane CFA0 Qualcomm Snapdragon 400 APQ8026 ARM Cortex-A7,1.2 GHz, 4 Core 512 MB 4.1
Gear Live 3103 Qualcomm Snapdragon 400 APQ8026 ARM Cortex-A7, 1.2 GHz, 4 Core 512 MB LPDDR2 4.0
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Fig. 7. IAT density distributions of wearables with different packet lengths.

Density

ASUS ZenWatch
G Watch R
Galaxy S5

Gear Live

LG Urbane

Moto 360
SmartWatch 3

ooE0OmEm

T T
0.00 0.10

Time (seconds)

(a) protocol == L2C AP

Density

ASUS ZenWatch
G Watch R
Galaxy S5

Gear Live

LG Urbane
Moto 360
SmartWatch 3

oOE0OmEm

Time (seconds)

(b) protocol == RFCOM M

Density

Density

100

227

ASUS ZenWatch
G Watch R
Galaxy S5

Gear Live

LG Urbane
Moto 360
SmartWatch 3

ooE0OmEm

T
0.05
Time (seconds)

(c) pkt length > 1000 bytes

ASUS ZenWatch
G Watch R
Galaxy S5

Gear Live

LG Urbane
Moto 360
SmartWatch 3

oOE0OmEnm

Time (seconds)

(c) protocol == SDP

Fig. 8. IAT density distributions of wearables with different underlying protocol types. Density is measured in 1/seconds. Due to space limitations
L2CAP, RFCOMM, and SDP are presented.
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Fig. 9. IAT density distributions when both packet length and underlying Bluetooth protocol type considered. Due to space limitations HCI_ACL,

L2CAP, and RFCOMM are presented.

packet sizes are covered (i.e., no packet length and protocol
type filter is applied), provides 97 percent accuracy. How-
ever, the highest accuracy, 98 percent, is obtained for
RFCOMM — 10 case, where protocol == RFCOMM and
pktlength > 10 filters were applied. As seen in the table, our
framework yields accuracy performance from 94 to 98 per-
cent for different studied filterings and the picked ML algo-
rithm. Thus, experiment results support that the approach to
pick the most accurate ML algorithm at the training phase
provides highly accurate results in the testing phase also.

Table 5 displays the accuracy details for RFCOMM — 10
case. Average false positive (FP) rate is lower then 1 percent
and both Precision and Recall are as high as 98 percent.
The proposed framework is a complementary security mech-
anism that is non-intrusive. In other words, it does not
require running anything at the wearable device. Bluetooth
traffic can be captured by the connected network device or
by a third device. Traffic capturing is a passive task that does
not introduce any delay and usability of wearables is
not affected by the proposed framework. In summary, our
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TABLE 4
Top-10 Classification Results with Different
Filters from Fingerprinting of Wearables
with Bluetooth Classic

Filtering Case Accuracy (percent)
RFCOMM - 10 98.3193
all-all 97.479
RFCOMM-all 97.479
all-600 96.6387
all-200 95.7983
RFCOMM-200 95.7983
all-400 94.958
all-800 94.1176
RFCOMM-600 94.1176
RFCOMM-400 94.1176

detailed analysis and results with high accuracy and recall
rates demonstrate the efficacy of our proposed wearable
device identification framework.

6 SECURITY IMPACT: THREATS & USE CASES

6.1 Threats

In a wearable networking environment, the network can
dynamically grow and shrink in size with new wearable
devices and equipment depending on the usage. New wear-
ables can join and leave the network and device configura-
tions can change dynamically more frequently than usual
networks. This situation, unfortunately, poses challenges to
the security posture of a network. Specifically, adversaries
may target the functions of the wearable devices or a net-
work with wearables as follows:

e (1) Unauthorized wearables with correct credentials: A
network with wearables may include unauthorized
devices with legitimate credentials. For instance,
wearable devices could be authenticated to the net-
work via an authorized user of the authentication
realm for a specific purpose but could still be part of
the network even beyond their intended duration.

e (2) Wearable devices with counterfeit components: In a
network with wearables, there may be legitimate
wearables devices with counterfeit architectural
(internal) components (e.g., memory, chip) [7], [8].

e (3) Outsider wearable devices (brute-force attackers): A
network with wearables may include an outsider,
whose primary focus is to attempt to participate in
the wearables network by exhaustively searching for
the correct credentials.

(2) Capture BL Features

3) Credentials
Features

(4) Identify Device
+ Authenticate Device
+ Authenticate Credentials

(1) Credentials

BL Speaking
Device

Authentication
Server

Fig. 10. A possible scenario where the proposed framework is utilized by
an authentication server to check device identity in addition to user
credentials.

e (4) Information-leaking wearables: A network with
wearables may include an active outsider or compro-
mised insider device that tries to leak important
information about the network.

6.2 Use Cases for Security

Current security models were mostly built to verify the user,
not the device itself. However, a non-intrusive wearable fin-
gerprinting mechanism such as the one proposed in this
paper can complement existing security mechanisms against
these threats. Fig. 10 illustrates a sample use of the proposed
fingerprinting technique with a traditional authentication
system. When a connection request from a BL speaking
device with (1) credentials is received by intermediate device
(e.g., smart phone, laptop), this intermediate device will (2)
capture BL features and then (3) forward it with credentials
to the authentication server. In addition to traditional cre-
dential controls, (4) authentication server will use finger-
printing techniques to identify the device and control
whether this device should be allowed to connect the net-
work with given credentials. Enabling such additional con-
trols would enhance the authentication server’s ability to
address the aforementioned threats in the following ways:

e (1) The wearable fingerprinting technique can detect
unauthorized wearables with correct credentials as
authentication server would control whether the
device is authorized to access the network in addition
to credentials control. Furthermore, the fingerprint-
ing technique can detect unmanageable wearables
with mechanisms along with traditional access

TABLE 5

Detailed Accuracy Results of the Wearable Fingerprinting Framework for the Identification of the Wearables
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
1.000 0.020 0.913 1.000 0.955 0.946 1.000 1.000 ASUS ZenWatch
1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 G Watch R
1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Galaxy S5
0.947 0.000 1.000 0.947 0.973 0.968 1.000 1.000 Gear Live
0.941 0.000 1.000 0.941 0.970 0.965 0.999 0.991 LG Urbane
1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Moto 360
1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 SmartWatch 3
0.983 0.004 0.985 0.983 0.983 0.980 1.000 0.999 Weighted Avg.
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control mechanisms (e.g., Network Access Control
(NAQ)), improving the efficacy of such products.

e (2) It can be used to help detect wearable devices
with counterfeit or corrupt components as finger-
prints depend on both software and hardware com-
ponents of devices. As a device with counterfeit or
corrupt components will display different perfor-
mance metrics (e.g., packet production rate) when
compared with genuine one, proposed fingerprint-
ing technique would not identify such devices as
authentic ones.

e (3) It can be helpful in determining outsider wear-
able devices that use high resources to perform
brute-force attacks. As wearable devices are typically
resource-limited, outsiders can use rogue wearables
to perform attacks inside the network. Such rogue
wearables will have different performance metrics
which can be detected by the proposed fingerprint-
ing technique.

e (4) It can be used to identify resource-limited wear-
able devices accessing the network and further
enforce access control targeted for such devices. A
smartwatch like wearable device can be used to leak
information from a network where mobility of physi-
cal devices like laptops, usb devices are restricted.
An insider may attempt to use a wearable device like
a smartwatch (some of which looks identical to regu-
lar watches) to access a restricted network and leak
information to outside. In addition to credentials
control, detection of accesses from such wearable
devices helps to address such threats.

Thus, the machine learning based fingerprinting frame-
work proposed in this work infers the device type infor-
mation as a cyber intelligence. This intelligence can be
utilized by any authentication or authorization function
in the network where both the claimed identity of a
device and any attempted action can be further checked
with the actual device type to determine whether this is a
suspicious activity, i.e., a cyber threat. Obviously, such
cyber threat intelligence would increase the overall secu-
rity posture of the network.

7 CONCLUSION

Cyberspace is expanding quickly with the introduction of
new wearable devices (e.g., smart watches). Given the
increasingly critical nature of the cyberspace of these wear-
able devices, it is imperative that they are secured. An
adversary only needs one entry point to infiltrate networks.
Nonetheless, the current security mechanisms are focused
on validating the user, not the device itself. An unautho-
rized wearable device even with an authorized user can per-
petrate malicious activities. Hence, in this work, we
considered wearable fingerprinting as a non-intrusive com-
plementary security mechanism for wearables. Specifically,
we introduced a wearable fingerprinting framework focus-
ing on the characteristics of Bluetooth classic protocol,
which is a common protocol used in the wearables realm.
Our framework also included a comprehensive set of
Machine Learning algorithms (20 different ML algorithm)
in the classification process to pick the best performing
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algorithm. Furthermore, we evaluated the performance of
our wearable fingerprinting technique on real wearable
devices. Our evaluation demonstrated the functionality and
feasibility of the proposed technique. Specifically, our
detailed accuracy results show on average 98.5, 98.3 percent
precision and recall for wearables using the Bluetooth clas-
sic protocol. In essence, the proposed machine learning
based fingerprinting framework provides reliable device
type information to any authentication or authorization
point in the network where the claimed identity or
attempted action can be further checked to determine
whether this is a suspicious activity, i.e., a cyber threat. Cer-
tainly, such cyber threat intelligence would improve the
overall security posture of emerging IoT networks with
multiple wearable devices.
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