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Abstract—Some of the world’s most well-known IT companies
are in fact advertising companies deriving their primary revenues
through digital advertising. For this reason, these IT giants are
able to continually drive the evolutions of information technology
in ways that serve to enhance our everyday lives. The benefits of
this relationship include free web browsers with powerful search
engines and mobile applications. Still, it turns out that “free”
comes at a cost that is paid through our interactions within a dig-
ital advertising ecosystem. Digital advertising is not without its
challenges. Issues originate from the complex platforms utilized
to support advertising over web and mobile application inter-
faces. This is especially true for advertising links. Additionally, as
new methods for advertising develop so too does the potential for
impacting its underlying ecosystem for good or ill. Accordingly,
researchers are interested in understanding this ecosystem, the
factors that impact it, and the strategies for improving it. The
major contribution of this survey is that it is the first review
of the digital advertising ecosystem as it applies to online web-
sites and mobile applications. In doing so, we explain the digital
advertising relationships within this ecosystem along with their
technical, social, political, and physical implications. Furthermore,
advertising principles along with a variation of other advertising
approaches, both legitimate and malicious, are explored in order
to compare and contrast competing digital advertising methods.

Index Terms—Digital advertising, mobile advertising, online
advertising, monetization, networking, privacy, security, advertis-
ing networks, advertising policy.

I. INTRODUCTION

D IGITAL advertising (a.k.a., Internet Advertising), includ-
ing online advertising and mobile advertising, is a driving

force for monetization throughout the Internet. While online
advertising has continued to change the rules within the indus-
try since the 1980’s, a relative new comer, in-app mobile adver-
tising, has taken hold in the cell phone market. Together, these
platforms have driven advertising revenues to all-time highs.
According to the Interactive Advertising Bureau’s (IAB) 2014
first and third quarter reports, Internet advertising achieved
year-over-year revenue increases of 17% [1], [2]. These reports
also specify quarterly earnings of $11.6B and $12.4B, respec-
tively. While growth in Internet advertising is impressive,
global mobile advertising revenue achieved a tremendous 92%
growth from 2012 ($10B) to 2013 ($19.3B) . Gartner further
predicts an additional increase of 100% to occur between 2013
and 2016. This high potential for generating revenue makes
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digital advertising a major driving factor for web and mobile
technology.

For instance, consumers are now exposed to HTML5 rich
media advertisements (“ads” for brevity) that are displayed
directly to their devices. Keeping pace with this technology,
cellular networks continue to upgrade their infrastructure to
support the extra overhead. This, of course, ultimately improves
the customer experience while browsing websites or using
mobile applications (“apps” for brevity). Additionally, adver-
tising technology is driving political legislation that is designed
to protect user privacy. For example, a 2013 report [3] pre-
sented by both the Federal Trade Commission (FTC) and
the California’s Attorney General calls for limiting the cross-
application tracking of users by constraining the use of data
collection and storage by app developers. The same report
also recommends eliminating access to global device identi-
fiers (i.e., the identification number for a mobile device) by
app developers. Likewise, developers are called to encrypt data,
limit access to user information, and use special notices to call
the user’s attention to the app’s privacy settings. Other privacy
practices, such as explaining how a user’s personally identifi-
able information (PII) is collected and used, have already been
mandated in some US states and Europe [3].

From a high-level perspective, advertising brokers essen-
tially work with advertisers to place their ads on websites
and mobile apps that are willing to host them. The forms
of mobile ads may include mobile video and TV, text and
multimedia messaging, mobile web, and numerous applica-
tions. Our list is more exclusive. Given the rising importance
of mobile ads, in this survey, we primarily focus on online
ads and in-app ads displayed on mobile devices. Additionally,
in order to provide a survey that is both timely and rel-
evant to the state of mobile advertising, we constrain the
scope of this survey to technical papers published from
2007 through 2016 and recent articles from related websites.
Moreover, we compare and contrast in-app mobile ads with
web-based ads to reveal the underlying statistics that may be
of interest to mobile advertising researchers, professionals, and
tech-savvy hobbyists. Numerous terms are also introduced in
this survey, and they are listed in Table I for the reader’s
benefit.

This survey makes the following contributions:
• This is the first technical survey paper relating to both

online and mobile advertising.
• It explores algorithms relevant to digital advertising.
• It contrasts online and mobile advertising roles.
• It compares objectives of advertising research and devel-

opment in academia and industry.
The rest of this survey, as depicted in Figure 1, is struc-

tured as follows. Section II provides the background for
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TABLE I
NOMENCLATURE IN DIGITAL ADVERTISING

digital advertising and includes basic concepts and underlying
statistics. In Section III, we identify the primary monetiza-
tion methods utilized in digital advertising. Section IV covers
the networking schemes inherent in advertising ecosystems.
Section V addresses the privacy concerns of users and the
goals of advertisers. Section VI analyzes the various malware
and countermeasures impacting digital advertising today. The
human factors that steer advertising research are then covered
in section VII. Section VIII highlights the energy and data con-
straints of mobile devices and their relevance to online and
mobile advertising. Finally, in section IX, we discuss addi-
tional points of interest from the survey and then conclude in
section X.

II. BACKGROUND

Digital advertising is a relatively new form of marketing
that is quickly proliferating throughout the Internet. As online

Fig. 1. Paper Structure.

TABLE II
TIMELINE OF ONLINE ADVERTISING

and mobile platforms offer marketers more venues to gain
customers, these platforms have also experienced numerous
evolutions in technology, policy, and security. For histori-
cal context, Table II and Table III offer timelines depicting
notable milestones in online advertising and mobile advertising
respectively.

Digital advertising consists of an infrastructure that allows
users, publishers1 and advertisers to interact in an advertising
ecosystem with brokers. While publishers provide ad spaces
on their websites, advertisers spend money to have their ads
placed on those sites. Thus, collaboration between publishers

1While the term publisher is used in online advertising, the term developer
is used in mobile advertising
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TABLE III
TIMELINE OF MOBILE ADVERTISING

and advertisers is required. While it is possible for a few large
advertisers to directly negotiate with a few large publishers as
has been done with traditional billboards and paper media, this
direct collaboration is not suitable for the vast number of pub-
lishers and advertisers on the Internet today. Brokers, including
advertising networks (“ad networks” for brevity) and advertis-
ing exchanges (“ad exchanges” for brevity), represent multiple
agents. While ad networks basically intermediate between pub-
lishers and advertisers, ad exchanges provide auctions for ad
spaces among various entities, which include ad networks,
supply-side platforms, and demand-side platforms. Therefore,
when a user views multiple ads on a web page, these ad
impressions may originate from multiple sources, as depicted
in Figure 2.

A. Ecosystem for Online Advertising

The red highlighted path in Figure 2 represents a simple
model widely used in academia. In this figure, the advertiser
represents the money source, while the user serves as the initia-
tor of actions. However, the user must initiate all actions with
the publisher (or application provided by the app developer).
The ad network is the entity that links all together. Likewise, the
red lines represent the simplest path with fewest hops between
the advertiser and the user. However, the advertising ecosys-
tem is not that simple. Other entities also exist within this
model as indicated in the multiple other arrows showing various
interactions. For instance, the DSP serves to aggregate mul-
tiple advertisers, and the SSP aggregates multiple publishers.
Additionally, the ad exchange is similar to the NYSE in that
it gathers all buyers and sellers together. These entities further
breakdown into buyers and sellers. Buyers include publish-
ers, SSPs, and ad networks, while sellers include advertisers,
DSPs, and other ad networks. Note that ad networks and ad
exchanges assume both roles. Also, within this hybrid ecosys-
tem, all paths from the advertiser to users are possible. Money
flows are shown with single arrows while information flow is
depicted with double arrows.

Admittedly, an ad network usually manages publishers and
advertisers separately with different servers (i.e., publisher ad
server and advertiser ad server); however, these servers are
considered as one for the purpose of this survey. There are

also two types of publishers, which include 1) the publishers
owned and operated by the ad networks (e.g., Google Search or
Facebook) and 2) the syndicated publishers not managed by the
ad networks (e.g., reddit or TechCrunch) [4]. These syndicated
publishers are either premium publishers, bound by their ser-
vice level agreement (SLA), or self-serve publishers, allowed
to sign up with ad networks at any time. We focus on the
more prevalent case, which includes self-serve publishers. With
these publishers, an advertising ID and appropriate source code
must be obtained from an ad network and placed in the pub-
lisher’s source code in order to display the ad impressions on
the publisher’s website.

Having explained how ad impressions are incorporated with
a self-serve publisher’s website, we now explore the process
that occurs whenever a potential customer clicks on an ad
impression. In Figure 3, the steps of this process are depicted.
When a user starts loading a web page (steps 1 and 2), ad
impressions are requested by algorithms existing in the web
page’s source code from the ad network’s server (step 3). After
identifying the publisher’s advertising ID, which is assigned by
the ad network, the ad network’s server logs the request (step 4),
applies the rules previously established with its advertisers, and
returns an ad that includes a unique identifier for click track-
ing (step 5). Once a user clicks on the ad (step 6), an HTTP
GET request is sent to the ad network (step 7). This is consid-
ered a click-through event by the ad network, and it is logged
for billing purposes (step 8). The ad network then redirects the
browser to the advertiser’s landing page through the client via
HTTP 302 status code (step 9). The landing page is hosted on
either the advertiser’s ad server directly or on a content deliv-
ery network (CDN)2. Having reached this point, the user is now
able to browse items on the landing page (steps 10 and 11).
According to Wang et al. [5], the content delivery for online
advertising may take about 100 ms for distributed network
architecture (e.g., AOL/Akamai: 87 ms and Google: 122 ms) or
around 200 ms for a standalone server (e.g., Adblade: 207 ms).

Usually, when an ad network first encounters a user, it sends
a cookie to the user or uses other indirect methods (e.g., an IP
address and HTTP user agent combination). The ad network
is then later able to complete either an API call or an HTTP
response with the user. Resultantly, ad networks are able to
label web users, determine their browsing patterns, and measure
the effectiveness of specific ad campaigns.

Any empty ad space must be sold to an advertiser within
a limited amount of time (e.g., 100 ms for DoubleClick Ad
Exchange); otherwise, a blank space is left on the web page
and a loss of revenue occurs. In order to maximize potential
revenue for the whole ecosystem, multiple ad networks for-
malized partnerships that included predefined revenue share.
Whenever needed, an ad network will demand a filling from
each of the partners. This method, however, is still highly inef-
ficient. Thus, the ad exchange (e.g., Google’s DoubleClick
and Yahoo!’s RightMedia) emerged to solve this problem by
loosely aggregating all platforms together. Based on Real-Time
Bidding (RTB), the ad exchange is able to perform massive

2CDNs (e.g., Akamai) provide web content via their servers around the world
in order to decrease latency.
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Fig. 2. Digital Advertising Ecosystem.

Fig. 3. Ad flow.

aggregation and enable single ad space bidding, which results in
higher revenues for publishers and ad networks, while includ-
ing fine-grained ad targeting for advertisers. In order to fulfill an
ad request, users must initiate at least four sequential requests
as shown in Figure 3: first to the publisher’s ad server, second
to the ad exchange, third to the winning advertiser’s ad server,
and finally to the CDN.

Along with the development of ad exchanges, new prob-
lems ranging from auction to optimization have been raised
[6]. Problems, include fixed-percentage sharing schemes and
fierce competition from comparable market places [7]. Yet, in

practice, the concerns of an ad exchange are still quite simi-
lar to those found in ad networks. It may be that these problems
have yet to be fully identified since there are still few large-scale
datasets for ad exchanges. For example, by using the ad logs of
an ad network in RightMedia, Stone-Gross et al. [8] are able to
locate suspicious publishers, mainly by using local traffic and
individual detection features. Still, they are unable to detect the
overall fraudulent activities across the platform.

On a larger scale, RTB is based on the second price auc-
tion model. As a result, the publisher receives compensation
equivalent to the second-highest bid to be paid by the win-
ning advertiser. To support this phase and verify the integrity
of auctions, VEX [9] requires that each of the bidding advertis-
ers initiate a three-way communication, within the ad exchange.
While doing so, VEX is still able to achieve reasonable latency
and processing costs.

B. Ecosystem for Mobile Advertising

According to [10], in contrast to online advertising where ad
networks employ client redirection, server redirection is used
in mobile ecosystems to accommodate the slower connectivity
and limited data usage. Also, unlike online advertising, mobile
ads meld with applications on mobile devices. As a result, this
form of advertising can offer advertisers unique ways to inter-
act with users and their personal information. We now discuss
the platforms and libraries available to mobile app designers
seeking to monetize their apps through in-app ads.

1) Mobile Platforms: According to Gartner [11], Android
and iOS are the two most prevalent smartphone platforms
in the world. While both Android and iOS platforms attract
third-party developers to create mobile apps, all of these apps
must run as a non-privileged user in a sandboxed app exe-
cution environment. Also, developers may encounter limited
memory for their apps across all mobile platforms. For exam-
ple, in a Windows Phone, apps are allowed to consume no
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more than 90MB of RAM at runtime [12]. Furthermore, smart-
phones contain sensors (e.g., GPS, accelerometer, gyroscope,
magnetometer, luxmeter, microphone, camera, and speaker).
Therefore, permission systems are employed to control access
to system resources via application programming interface
(API) calls.

Permissions for apps can be granted in one of two ways:
1) Time-of-Use and 2) Install-Time. The former, used in iOS
and also in web browsers, asks users to approve or deny per-
missions for resources (e.g., location) whenever the app triggers
a privileged API call. The latter, used in Android, prompts
users to approve dangerous permissions listed in a manifest
file before installing the app. These dangerous permissions
(e.g., RECORD_AUDIO) can either access private user data or
exercise control over the device. Regrettably, permission autho-
rization during installation is all or nothing. This means that
a user must either grant access for the requested user-owned
resources during installation or terminate the install.

Android apps lack a single entry point, like main(), and
consist of one or more app components (i.e., activity, service,
content provider, and broadcast receiver) through which they
interact with the system [13]. Permission re-delegation can also
happen with components running transparently in the back-
ground when a privileged app makes an API call [14]. For
each app, a unique Android UID is associated with its per-
missions list (specified in the app’s AndroidManifest.xml file).
These system permissions can be categorized into 4 protection
levels (i.e., normal, dangerous, signature, signatureOrSystem)
[15]. Usually, app developers are required to obey the principle
of least privilege during app development. However, Stowaway
[16] still identifies the overprivilege issues (i.e., demand unnec-
essary permissions) in Android apps. As a counter, PScout [17]
uses static analysis to reveal the unnecessary use of non-system
permissions for a few cases, and Quire [18] allows an app to
adjust its privilege by tracking inter-process communication
(IPC) call chains.

As for iOS, third-party apps are only allowed to use the pub-
lic frameworks. Any use of a private API results in a direct
rejection during Apple’s vetting process, which mandates that
all executable code be signed with an Apple-issued certificate.
The vetting process is alleged to be stringently safe, although
attackers can still realize malicious activities by constructing
new execution paths after the app review process [19] or inject
malware via a malicious charger [20].

2) Advertising Libraries: Pioneering discussions for
mobile advertising in Android and iOS may be attributed to
TaintDroid [21] and PiOS [22], respectively. TaintDroid finds
that half of its studied apps share location information with
third-party ad servers in plaintext or in binary format without
user consent. Likewise, from a study of 1.1K top-selling free
Android apps, Enck et al. [23] confirm that advertising &
analytics (“A&A” for brevity) services are willing to probe
permissions and acquire other critical information such as the
International Mobile Station Equipment Identity (IMEI) of
a user’s mobile phone. As for iOS, PiOS points out that
more than half of the studied apps result in leaking unique
device identifiers (UDID) because of its embedded A&A
libraries. Although Egele et al. [22] only predict that the

TABLE IV
MOST POPULAR AD STYLES IN MOBILE APPS

40-byte identifiers collected by AdMob are linked with Google
accounts, Smith [24] confirms that a number of apps are
collecting UDID and login information for Amazon, Facebook
and/or Twitter, and they are able to track the users in real time,
revealing their usage patterns. When combined with long-lived
tracking cookies or time-stamped IP addresses, users’ location
information and other private data are surrendered and regis-
tered. In a follow-up study, Smith [25] also claims that millions
of UDIDs are leaked to app developers and even hackers.
Likewise, Smith [25] states that iAd banners also collect and
transfer UDIDs to Apple.

In order to get continuous revenue from apps, many mobile
app developers consider mobile ads. For example, Flurry works
independently from Angry Birds to collect and upload statistics
to a remote server in order to download and render ads during
gameplay [26]. The developer registers their financial informa-
tion [27] and their app’s metadata, which includes app name,
category, requested permissions, app store link, average rating,
and number of downloads [12]. In turn, the developer receives
an identifier and a Software Development Kit (SDK). The SDK
provides the developer with the necessary instructions for using
its advertising library (“ad library” for brevity), and it provides
abstraction for the complex fetching and reporting protocols
required by ad networks. Accordingly, the libraries may use
WebView to facilitate ad loading; however, the use of JavaScript
interfaces in WebView may lead to attacks from malicious web
pages or other apps [28].

There are many other vulnerabilities to user privacy as well
[29]. Among the papers we surveyed, the number of ad libraries
implanted in each app are reported with divergent results from
one researcher to the next. While most apps bundle more than
one ad library [23], [30], researchers [31] claim that over 75%
of 32K apps bundle only one ad library with approximately
1% bundling more than five ad libraries. Using ad libraries, ad
servers are able to track click events via a unique click URL
associated with each ad impression to appropriately distribute
ad revenues [32]. In Android, developers are asked to include
the permissions required by the ad library within the Android
Package Kit (APK). Since all permissions used by an app are
stored in the AndroidManifest.xml file, an ad network is able to
access the same services as the host app. Each ad library may
require different permissions, but the INTERNET permission is
always required [33].

Mobile ads are used to advertise not only external brands,
but also apps in the marketplace [34], and they are com-
monly implanted into banners and interstitials [35] as listed in
Table IV. Static ads may be at most 15KB in size; however,
the average size of these ads falls between 1.5KB and 5KB for
uploading and downloading, respectively [12]. Besides banners
and interstitials, there are also notification ads (e.g., AirPush,
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MobPartner, and SendDroid) and icon ads (e.g., EverBadge and
AirPush) in Android. As the names imply, one is displayed in
the notification area of an app while the other is placed as a
shortcut on the app’s home screen. Of course, both of these ad
methods are unpopular for understandable reasons. Primarily,
they violate Google’s Developer Content Policy. Secondly, they
negatively impact user satisfaction. As for ad libraries, they
can be classified into three groups [27]: 1) mobile web library,
2) rich media3 library, and 3) ad mediator4. While the latter
group uses traditional web technologies to request, deliver, and
display banner and interstitial ads, the previous two groups
employ HTML5 to create video ads. Since mobile app devel-
opers may bundle more than one ad library, ad mediators (e.g.,
AdWhirl, MobClix, and Burstly [35]) have emerged to coordi-
nate various ad libraries in an app. Furthermore, they query for
ads from the subscribed ad networks based on factors such as
developer’s ad percentage distribution. Nowadays, most ad net-
works provide mediation options. For example, AdMob allows
mediation with 16 other ad networks (e.g., Adfonic, Flurry,
InMobi, iAd, Jumptap, Millennial Media, etc.). The introduc-
tion of these mediation services potentially increase developer’s
income and in cases where one ad network fails to render an ad,
another is able to fill the space.

The popularity of ad libraries can be calculated by either the
number of apps using the library or the number of app installa-
tions including the library [33]. While the top 10, top 25, and
top 33 ad libraries respectively represent 71%, 90%, and 95% of
market share based on app installations [33], AdMob, like other
Google Ads & Analytics services, owns a dominant position in
Android. In 2010, AdMob served ads for more than 15K mobile
websites and applications around the world [37]. After studying
55K free apps from Google Play, Tongaonkar et al. [38] reveal
that nearly 12K apps bundle the most popular ad library (i.e.,
Google Ads). Similarly, Grace et al. [27] reveal that, in Android
apps, Google’s AdMob, AdSense, and Analytics networks are
listed in the top five of 100 comparable libraries. Flurry and
Millennial Media are the other two libraries making the top five
list.

In [35], during a one-day network traffic trace of a major
European mobile carrier, approximately 4.5% of Android and
iOS users were discovered to click on an AdMob ad at least
once. Presumably, over two-thirds of ad traffic from Android
and iOS corresponds to AdMob. Even more prevalent is AdMob
on iPad devices. On these devices, AdMob surpasses the Apple-
owned ad library (i.e., iAd) with over 90% of market share [35].
Because of its prevalence, AdMob is frequently used for case
study examples by researchers. After importing AdMob, the
developer deals with the layout by either declaring an AdView
in the XML layout or inserting an AdView instance directly into
the view hierarchy [39]. In order to request ad content, the ad
library triggers an AdRequest and loads the ad in the AdView
[40]. Like other ad libraries (e.g., AirPush), AdMob obfuscates
the API calls to protect the intellectual property [27], [40]. Yet,
it also requests that separate and explicit GPS coordinates be

3These include a broad range of interactive and engaging ad formats,
including expandable banners and embedded audio/video ads.

4Platform which allows developers to strategically sell remnant and unsold
inventory by using multiple ad networks.

TABLE V
RELATION BETWEEN AD TYPES & PRICING MODELS

provided [29]. These mobile advertising interactions are mostly
accomplished through HTTP GET requests in plaintext using
REST APIs [35]. Upon receiving the request, AdMob medi-
ates internally all Google ad services (e.g., DoubleClick and
AdSense). Of course, other ad networks may utilize different
protocols. For example, InMobi sends a single HTTP POST
request per ad, and Millennial Media establishes two HTTP
connections in order to get the ad and associated static content
from different servers [35].

III. MONETIZATION

Generally, there are two ad types (i.e., display advertising and
search advertising) and four pricing models (i.e., CPM, CPC,
CPA, and CPL) in digital advertising. The relation between
ad types and pricing models is depicted in Table V. Note that
the unaligned row is intended to show that display advertising
also includes CPC/CPA/CPL. Display advertising also includes
contextual advertising and behavioral advertising. Additionally,
of these models depicted, CPM and CPC are the two most
common.

For budgeting purposes, many advertisers allocate a bud-
get for their ad (or ads) to span a specified time period.
For example, category-based ads (e.g., contextual display
ads) are renewed on a monthly basis (e.g., 5K clicks/month
on Revisitors.com costs $28.95), whereas keyword-based ads
(e.g., search ads) are paid daily (e.g., Google: $4.5/click &
Yahoo!: $3.0/click) [41]. Publishers likewise seek profits and
receive up to 70% of what is paid by the ads’ advertisers. Lastly,
ad networks receive the remaining share of an advertiser’s
payment. For example, ad networks keep around 30% of the
advertiser’s payment (e.g., 32% for Google AdSense) and dis-
tributes the remaining portion to its publishers. In other cases,
publishers must provide a set number of conversions in order to
collect from ad networks or advertisers (e.g., smart pricing). Ad
networks, however, may use the ad syndication business model
to play arbitrage (i.e., buy cheap ad spaces and resell them at a
higher cost) [8]. For example, Criteo mediates between publish-
ers and advertisers by paying CPM from publishers and selling
CPC/CPA to advertisers [42]. Finally, eCPM metrics are used
to evaluate conversion rates and overall success.

A. Pricing Mechanisms for Online Ads

1) CPM Revenue Model: CPM is a relative easy pric-
ing model. In CPM, the cost of impressions (C P M(u, p, a))

depends on the product of three variables [43], run of net-
work (RO Na), traffic quality multiplier (T QMp), and user
intent (Ia(u)): (C P M(u, p, a) = RO Na × T QMp × Ia(u).
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TABLE VI
FEATURED AUCTION-RELATED ISSUES IN DIGITAL ADVERTISING

The normal RON campaign in ad network a values the base
price ( $1.98 on average) for advertisers because it is not specif-
ically targeted to users [44]. TQM is determined by the potential
value of an ad space for publisher p. For example, the ad spaces
of a popular publisher may warrant a higher rate (2 for popular
publishers, 0.1 for disreputable sites, and 1 for the remaining
publishers). Also, the location of an ad space matters if it is
to fall within a typical user’s web page viewing habits [45].
Additionally, user intent is inferred through web tracking of
user u (ranges from 2 to 10, but with an average of 3.3 [46]).
Similarly, a study of the CPM model and HTTP datasets reveals
that the intent for 50% of users can be accurately estimated [43].

2) Auctions: The majority of ad spaces for search ads and
behavioral display ads are sold via RTB. However, multiple
methods exist for RTB. Some of which are listed in Table VI
along with their descriptions. Other auction features include
CPA, learning algorithms, and budget optimization.

Various auction mechanisms also exist for single ad or mul-
tiple ad bidding. Three different auction types are discussed by
Stavrogiannis et al. [52] and include first price sealed bid auc-
tion and pre and post award Vickrey auctions. They find that the
pre-award Vickrey auction is the least efficient of these models.
They also find, in cases of simultaneous, multiple item bid-
ding, that the majority of evaluated companies preferred either
generalized second price (GSP) model or the Vickrey-Clarke-
Groves (VCG) model [53]. For instance, Google, Bing, and
Yahoo! use GSP while Facebook uses VCG [48]. The perfor-
mance of these models is further evaluated in work by Edelman
et al. [54]. They find that both of these models calculate the
advertiser’s CPC according to the mathematical product of their
bid and quality score. When a user queries the Google search
engine, the search engine results page (SERP) renders both rele-
vant query results (i.e., those closely matching the user’s search
query) and sponsored results (i.e., search ads) [54]. These ads
are then assigned based on an auction among all advertisers
who bid for the ad impressions. To participate in the auction,
the advertisers submit their ad tags, which are the bids linked
to each ad, and their targeting information, consisting of a key-
word and location. Since a search engine may contain millions
of bidding keywords [12], some researchers [55] have inves-
tigated how better ad indexing can yield faster ad retrieval.
Consequently, when the ad network receives an ad request, an

TABLE VII
HOW TO DETERMINE THE GSP PAYMENT?

auction is performed among the ads matching the user’s search
criteria and the appropriate ads are displayed. As a result, the
first few ads appear in Google’s search results in accordance
with their ranking as determined by their highest expected rev-
enue or ranking score (i.e., bid * quality score). But, the cost for
a clicked search ad is then calculated based on the next lower
ranked ad, as demonstrated in Table VII. Optimizing GSP is
further discussed in [56]–[58]. However, the VCG auction sys-
tem charges the winning bidder of an item the potential loss of
all other bidders caused by the winner [59],

Given the bid value, some ad networks are able to gener-
ate a rough approximation for the number of potential viewers
of an ad impression. For example, Facebook allows advertisers
to create fine-grained targeted ads and provides an immedi-
ate estimation of people who meet the criteria via a real-time
“Estimated Reach” box that also includes a detailed report for
the ad’s future performance [60], [61]. As for quality score, it
is predicted using factors such as CTR, ad relevance, landing
page quality, load time, and user influence. According to an eye
tracking study [45], users commit twice as much visual atten-
tion to ads of good quality than to those of poorer quality. For
CTRs, good quality ads are estimated to be close to 13% while
bad quality ads receive less than 1%. Furthermore, bad quality
ads frustrate host publishers [62]. Other factors affecting CTR
include influential users. For instance, influential users can per-
suade other users to contribute to higher CTRs according to
AdHeat [63]. And, once clicked, the landing page can then be
used to accurately select search ads [64] or automatically rec-
ommend bidding keywords [65]. Lastly, most advertisers now
use bidding agents during an auction [66], which speeds up the
cycle of offline optimization and effectively detects errors in the
online bidding phase.

3) Conversion Tracking: Many techniques exist for track-
ing click-through events that hopefully lead to conversions. For
example, in order to track potential conversions such as online
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purchases and sign-ups, advertisers can elect to embed analytic
code which is provided by an ad network. They may also choose
to produce their own code to track click through rates from
their landing pages. However, advertisers are more concerned
with conversions, which may take place hours or days after the
click; yet, research indicates that most conversions occur dur-
ing the first few hours of a click-through and then quickly drops
off afterwards [67]. In cases where advertisers use an ad net-
work’s conversion tracking algorithm, the ad network may also
utilize a smart pricing algorithm to penalize publishers whose
traffic fails to generate conversions [4]. It may even provide dis-
counts to effected advertisers based on a calculated conversion
rate, which represents the ratio between impressions achieving
conversions and the total number of impressions created.

Other methods use online behavioral advertising (OBA) to
track conversions. As its name suggests, OBA is widely used
for behavioral targeting, which requires publishers to embed
either a tracking pixel or JavaScript code containing the link
of a particular ad network. This option enables web track-
ing by including PII and web content via HTTP across all
websites and strengthens collaboration within the ad network.
By analyzing historically converted ad campaigns and cor-
responding metadata, like landing pages, and combining it
with user information, Agarwal et al. [68] demonstrate how
to automatically and effectively serve targeted users with new
or existing ad campaigns to achieve greater conversions. In a
comparable work completed by Archak et al. [69], a frame-
work is used to mine the users’ long-term behavioral pat-
terns from ads. However, estimates of online advertising are
sometimes inaccurate. For instance, some experiments indicate
that the importance of observational data is usually overesti-
mated [70]. Similarly, Farahat and Bailey [71] argue that brand
interest is the only definitive factor for determining targeted
CTRs.

As a result of these capabilities, ad networks are able to
individually tailor ads served to users. Indeed, such targeted
ads can improve conversion potential for advertisers and poten-
tially increase revenue for the whole ecosystem. For instance,
[43] shows that an ad network’s revenue may drop by 35-60%
when serving unrelated ads to the top 5% of revenue generat-
ing users. However, narrowly targeted ads can raise CTRs as
much as 670% [60]. According to logs obtained from Bing’s
search engine [67], advertisers often prefer to correlate bids
with a user’s prior activity. For instance, they may wish to deter-
mine which ad keywords lead to the greatest conversion rates.
Thus, when targeting, advertisers consider three factors. With
regard to decision making, ad networks either use all or some
of these factors. For example, AdMotional [72] integrates all
three targeting criteria to personalize their ads while observing
and optimizing their rules at varying intervals.

These three factors are:
• advertiser’s bid and budget;
• publisher’s web content, including contextual informa-

tion (e.g., web page taxonomies and search queries)
and situational information (e.g., user-related spatial and
temporal data);

• user’s interest and behavioral information (e.g., identity
and demographics).

B. Ad Cost & Revenue in Mobile Apps

As of this publication, 73% of apps on the Android mar-
ketplace are free [73]. So, why are there so many more free,
ad-supported apps, than there are paid, ad-free apps? This ques-
tion is easily answered if we observe three points. First, the
marketplace takes a commission of about 20-30% of the app’s
price. Second, according to Gartner, users are predicted to
increase their downloads of free apps from 90% in 2013 to 93%
by 2016 [11]. Likewise, 20% of the free apps receive over 10K
downloads, which is in stark contrast to the mere 0.2% of paid
apps [73]. Third, from the developer’s perspective, app develop-
ers may receive continuous income from traditional publishers
(with online advertising models) for developing ad-supported
apps. Accordingly, the “Legends of Descent” game develop-
ers [74] divulge that an ad-supported free app will receive
roughly 50 times more downloads and generate roughly 10
times the revenue than its paid, ad-free counterpart. For these
reasons, app developers gain higher returns for following free,
ad-supported, pricing strategies. Further support for choosing
free, ad-supported, apps over paid apps can be found in break-
even analysis conducted by another study [75]. They find that
the break-even ad income for a free app is around $0.21 per
download while a paid, top-selling app is closer to $0.033 per
download.

Yet, the story may be even more complex than one might
expect. Wei et al. [76] predict that free apps may cost more
than their paid counterparts due to their notably higher A&A
traffic. Accordingly, Khan et al. [30] evaluates the true cost of
a free, ad-supported apps. Considering that the average ad traf-
fic rate in Fruit Ninja is 5.61 Kbps, a Verizon 2GB/ $30 plan
subscriber will incur a cost of 40MBs of data or 56 cents per
month, assuming the game is played every day for 30 min-
utes. Similarly, Zhang et al. [77] deduce from both free and
paid versions of several popular apps in Android and iPhone
that more A&A traffic is generated by free apps. Consequently,
an AT&T 300MB/$20 plan subscriber using popular free apps
(e.g., Dictionary in iPhone or Angry Birds Rio in Android) will
spend 48% to 1299% more money than if using a purchased,
equivalent app.

Since the top-selling free apps bring even more revenue to
their developers with mobile ads, plagiarists repackage these
apps and piggyback their own advertising client IDs to steal
ad revenue and sometimes implant suspicious payloads [78],
[79]. Therefore, AdRob [32] investigates the consequences of
such phenomenon with 265K Android apps crawled from 17
app markets along with a 12-day HTTP mobile ad traffic trace
from a tier-1, U.S., cellular carrier. After clustering the original
apps and their corresponding pirate versions, they show that the
original app developers lost an average of 14% in ad revenue
and 10% in user population. Of all the apps, Game-related apps
suffered the highest percentage of cloning.

Naturally, popular apps and websites affect the whole ecosys-
tem. After monitoring and analyzing four popular third-party
Android app marketplaces (i.e., SlideMe, 1Mobile, AppChina,
and Anzhi) for over seven months, Petsas et al. [75] find that
app downloads perfectly follow the Pareto principle (i.e., the
top 10% of apps account for 70% to 90% of total downloads
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TABLE VIII
FEATURED NETWORKING-RELATED RESEARCH TOPICS IN DIGITAL ADVERTISING

from these four marketplaces). In some cases, the top 1% of
apps comprise more than 70% of downloads, which is the
case in the Anzhi marketplace. Similar comparisons are found
among publishers as well. For instance, among aggregators, the
top 5% account for 90% of total revenues [43]. Consequently,
a country-level dataset of a cellular network in the above study
shows that Facebook receives over 9% of total ad generated rev-
enues. In contrast, Google serves the most users–that being over
18% of total users.

IV. NETWORKING

Within digital advertising, much attention has been given to
networking, both for online adverting and mobile advertising.
In fact, networking plays an important role in various track-
ing, measuring, and profiling efforts. Table VIII summarizes the
main techniques used for network-related research projects in
digital advertising.

A. Tracking & Measuring in Online Advertising

As long as the Internet continues to grow as a popular, com-
plex, and regulated advertising ecosystem, it poses significant
challenges for its members. One such challenge for ad networks
includes tracking users without violating online privacy poli-
cies. In contrast, researchers are challenged to accurately mea-
sure how an ad network tracks users since third-party tracking
techniques are not publicized by industry. Likewise, security
professionals struggle to identify abnormal activities [80].

1) Tracking: Currently, tracking users through a massive
population is not technically difficult; however, not everyone is
comfortable with being tracked. According to one survey [60],
two-thirds of Americans dislike ads that are tailored to their
interests, and over 50% prefer to turn off behavioral targeting.
In contrast, [81] evaluates the web traffic from 187 countries

TABLE IX
BROWSER-BASED OPT-OUT SOLUTIONS & DRAWBACKS

and shows a growing use of Ajax and JavaScript in an increas-
ing number of objects, which also provide web tracking, within
web pages. For example, the use of Google Analytics rose from
less than 5% in 2006 to nearly 40% by 2010 with 65% of that
dataset’s population being tracked. Today, a great number of
websites bundle multiple trackers. In response, one group of
researchers developed the TrackingTracker add-on [80], which
identified over 500 trackers on the Alexa top 500 websites. In
one extreme case, over seven trackers were found on a website
[80]. Among these trackers are Google Analytics, which tracks
within sites, and both DoubleClick and Facebook, which track
across sites (i.e., users are tracked when moving from one web-
site to the next). Additionally, a study of 2006 AOL search logs
[80] reveals that some trackers can capture over 20% of a user’s
browsing behavior.

In order to opt out of web tracking, regulatory organizations
(e.g., FTC) have proposed several browser-based solutions such
as permanent opt-out cookie, cookie blocking, domain block-
ing, Do Not Track (DNT) HTTP header, and Do Not Track
DOM property [86], [87]. However, each option has its own
drawbacks as seen in Table IX. As a matter of fact, even if these
solutions are able to prevent third-party tracking, it is still possi-
ble to obtain user profiles from publishers [88]. Yet, third-party
tracking without user permission remains an ethical challenge,
and recent research indicates that there are many instances
where ads are not dependent on user profiles [89]. Thus, the
researchers continue to seek balance with tracking technologies
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used in web pages, including third-party web services such as
ads, analytics, and social plug-ins, with user privacy.

In another survey concerning third-party web tracking [88],
non-HTTP cookie implementations are classified as stateful
(i.e., supercookie) and stateless (i.e., fingerprinting) tracking
technologies. The supercookie (e.g., local shared object and
HTML5 local storage) serves as a persistent alternative to the
HTTP cookie. Yet, fingerprinting, a stateless tracking mech-
anism, can be either active (e.g., social plug-in) or passive
(e.g., common identifier). For instance, social plug-ins, such
as Facebook’s “Like” and Google’s “+1”, are provided as part
of social networking services (SNS) and offered to websites.
Often, these services are presented in the form of widgets that
can be embedded in a website using an iframe element and
maintained in the form of an HTTP cookie. Accordingly, web-
sites can use gathered information to link real identities with
social plug-ins.

Likewise, common identifiers such as HTTP referer, con-
tent type, and user agent are usually used for grouping HTTP
requests [69], [81]. Also, a fingerprint of basic characteristics,
such as user agent and time zone, can uniquely identify utilized
browsers [90]. Additionally, if a simple combination of meta-
data (such as gender, birthday, and zip code) are obtained, then
studies demonstrate that advertisers can uniquely identify over
60% of the US population [60]. Given 33-bit entropy, this same
procedure can uniquely identify a single individual from the
world population [60]. Similarly, datasets from Hotmail, Bing,
and Windows Update containing cookies and IP addresses are
used to determine a host’s identity with a precision of 62% if
only cookies are used and up to 80% if both are used [91].

2) Measuring: Of those who evaluate online advertising,
each does so with a different end state in mind. Advertisers
may wish to justify their advertising expenditures in order to
validate their costs. For example, a study of a landing page
reveals that, regardless of CPC or CPM, the quality of ad traffic
is strongly correlated to the price paid by the advertiser [41].
In contrast, Ad networks may want to better understand the
ecosystem to enhance business opportunities. For example, the
shortest delay for delivering ads occurs when using CDN, and
the longest delay occurs when using a standalone ad server
[5]. Ad networks may also seek a better approach to extract-
ing advertising keywords from web pages for the purpose
of rendering contextual and paid search ads (e.g. URL-based
keywords) [92].

Various methodologies exist for measuring online adver-
tising within the research community. In [84], a proposed
noise-resistant methodology [83] is used to collect over 80% of
Google text ads by reloading a test page seven times, collecting
data, and evaluating it with privacy-enhancing tools (like DNT
headers and opt-out web pages) across five websites in order
to measure their privacy effectiveness. For quality, Zhang et al.
[41] utilize seven metrics (i.e., traffic volume, mouse activity,
link accesses, user-agent, HTTP referers, timing metrics, and
blacklists) to evaluate click traffic. And, while the FourthParty
add-on [88] measures dynamic web content, PlanetLab servers
are deployed worldwide in order to either measure web traf-
fic [81] and network delay or fetch ad contents [5]. Moreover,
Krishnan et al. [82] use large sets of global video delivery

data (including 362M videos and 257M ad impressions) from
Akamai to measure the effectiveness of completion rates and
abandonment rates of video ads. Furthermore, Iam and Pai [81]
observe that up to 12% of all requests (sampled from the top
50 sites for video and advertising) consist of ad related traffic.
These percentages tend to increase with market growth.

From one study of three primary ad networks that include
Google’s large-scale distributed data center network, AOL’s
CDN-based network, and Adblade’s single-server network,
researchers found that the lowest global similarity and the
highest relevance to location for user browsing patterns occur
with ads provided by Google’s data centers [5]. Interestingly,
[83] finds that keywords from searches still dominate ad deliv-
ery, with 73% of ads containing entire search queries and
93% containing at least one word. Likewise, Chen et al. [93]
find that revenue increases with behavioral targeting only if
the number of comparable advertisers is high enough to cre-
ate sufficient competition. As for video ads, their completion
rates are effected by multiple factors, such as ad position, ad
length, video length, and video content [82]. Additionally, their
abandonment rates are affected by such factors as the time of
viewing and the proportion of the ad watched.

B. Profiling & Tracking in Mobile Advertising

Because of the diversity of user behavior with smartphones
[94], almost every service provider tends to collect critical
information from handheld devices. Google [76] and Microsoft
[12] certainly do so. After collecting and analyzing the net-
work traffic of an Android device using tcpdump, Wei et al. [76]
reveal that more than 80% of the network traffic for several apps
(including Tiny Flashlight, Gasbuddy and Instant Heart Rate)
goes to one of the Google services (e.g., maps, ads, analytics,
and Google App Engine). Likewise, Vallina-Rodriguez et al.
[35] show that Google services in Android account for 73%
of ad flow and 80% of total bytes transmitted. Additionally,
developers, Obermiller and Bayless [74], suggest collecting as
much analytical user information as app developers can in order
to improve user retention and increase game revenues. Thus,
developers use either their own tracking code or outsource the
work to analytics libraries. Gathered statistical data (e.g., user
demographics) can also be sent to ad providers upon request in
order to conduct mobile user profiling across applications. Ad
providers may even use parasitic ad libraries to track users and
obtain personal details via Android API calls [27], [29], [33],
or their own API calls [40]. In contrast to ad libraries that only
help app developers deliver ads, analytics services (e.g., Google
Analytics and Flurry [35]) deal with both first and third parties
to gather various information from users to improve user expe-
rience. The two services, known as A&A services, usually work
together to retrieve information that includes the users’ location
data or app names [95] from mobile traffic.

Mobile tracking uses additional vectors (e.g., cookie, system
ID, device ID, SIM card ID, and MAC address) found in A&A
traffic [96]. Since many of these are considered to be persis-
tent IDs [29], [85], mobile tracking may also help to discover
mobile app usage patterns. For instance, Xu et al. [97] investi-
gate tier-2 cellular network trace and find that weather and news
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apps peak in the morning while sports apps peak in the early
evening. They also observe that app usage is lowest at noon. As
ad traffic is mostly HTTP, unique identifiers assigned by differ-
ent ad networks can be used not only to identify users, but also
to fingerprint apps [38]. For example, Jumptap and Mobclix
send Android IDs in clear text so that trackers can easily cor-
relate requests from specific users [29]. Also, NetworkProfiler
[31] extracts network fingerprints from Android apps using
DroidDriver and Fingerprint Extractor. DroidDriver is able to
emulate Android apps and collect their network traces. In
cases where there are first-party and third-party traffic, finger-
prints can be generated from the hostnames and ad identifiers.
Otherwise, DroidDriver can use UI fuzzing to generate events
that explore all execution paths. Fingerprint Extractor parses
HTTP flows and compares them with the unique and persistent
identifiers extracted from other apps. By using NetworkProfiler,
researchers successfully identified 306 apps from a dataset
obtained over a two-hour block from a cellular network [31].

Unlike online tracking studies, the research community has
only just raised concerns about mobile tracking. Grace et al.
[27] consider A&A libraries as a whole, but other studies are
more specific to analytics. For instance, Applog [85] was imple-
mented from a TaintDroid-like system runtime and an Android
app tracking system for sending analytic information to servers.
Consequently, it employs 20 participants to obtain tracking
statistics. From the statistics, it shows that web cookie, Android
ID, and IMEI are the most used in the dataset. While analyz-
ing A&A statistics, the authors also discovered that identifiers
are usually sent as plaintext. Beyond mobile app tracking, other
studies include mobile web tracking. One example includes the
use of a FourthParty-based mobile web privacy measurement
tool by Eubank et al [98] to measure dynamic web content
against the Alexa top 500 websites on five different mobile
devices. These devices are both real and emulated, and include
a PC controller. Their experiments show that there are fewer
cookies and/or JavaScript calls on mobile devices than on desk-
top, and only a few mobile specific third-party tracking domains
are found. Specifically, the authors discover a growing cookie,
which is a third-party cookie that progressively grows in size
with repeated encounters while browsing websites, on some
mobile devices. Beyond mobile app tracking, location-based
services (LBS), such as location sharing, are also found in apps
like Foursquare and used to announce a user’s location to oth-
ers. As a result, such services may indirectly advertise for local
businesses [99]. This is especially so if users often share the
names and locations of restaurants and other establishments
they frequent [100].

V. PRIVACY

In digital advertising, user privacy space is steadily infringed
upon. In many cases, users are uncertain as to exactly what pri-
vacy they surrender while visiting web pages or using mobile
apps. Some companies even specialize in trafficking personal
information gleamed from users. This information may be
used for marketing or research, but it can also be potentially
used for other nefarious purposes. The latter reason has driven
researchers to explore new ways to protect user privacy in both

TABLE X
PRIVACY PROTECTION IN ONLINE ADVERTISING

TABLE XI
PRIVACY PROTECTION IN MOBILE ADVERTISING

online and mobile environments. Table X and Table XI provide
an overview of features associated with some current products
for online and mobile advertising privacy protection.

A. Online Environment

For individuals with privacy concerns, the Internet is a highly
challenging environment. Take for example the cookie churn
phenomenon where users receive a cookie, but block it during
subsequent visits. Yen et al. [91] reveal that 88% of these cook-
ies are still capable of being tracked. As a result of privacy
concerns from various sectors and threats against user pri-
vacy, industry continues to advance privacy and security efforts.
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According to one study on Google text ads [84], the add-ons
(i.e., Ghostery and TACO) and the opt-out tools (i.e., NAI and
DAA) are useful for removing or reducing OBA. Additionally,
a user can also access and modify their ad preferences through
Google Ads Settings. However, these efforts are still insuffi-
cient (e.g., Google does not serve ads with HTTPS), and the
restrictions are easily bypassed.

Tighter privacy protection is needed for many IT companies
as well. This is especially so for well-known IT companies
[110], like Google and Facebook. Both perform the dual role
of ad network and publisher in order to best monetize their
advertising efforts [43], and thus, possess the greatest potential
to affect the entire ecosystem. For example, Google sponsored
ads are displayed on 80% of all publishers while Facebook’s
ads are shown on 23% of all publishers (or 85% of the top 10%
of publishers) [43]. Their methods for employing ads also vary.
For instance, Google AdSense employs MediaBot to crawl web
pages for keywords and use them to serve contextually rele-
vant ads [12]. In contrast, Facebook allows advertisers to create
fine-grained, targeted ads based on various factors released
by users (e.g., age, gender, location, sexual preferences, user
demographics and interests), where age and gender are the most
important [60], [83]. However, both of these advertising sys-
tems may be defective. Castelluccia et al. [111] observe that
with the Google Display Network any adversary can infer a
Google user’s interest categories with just a small number of
targeted ads. Their results show that 79% of the inferred cat-
egories are correctly reconstructed, and 58% of the original
categories are successfully retrieved. Similarly, Korolova [60]
explains that with Facebook, any advertiser can infer a user’s
posted private information with CPM ads or even unposted
private information with CPC ads. Although Facebook made
efforts with a minimum campaign reach strategy, imposing a
minimum target threshold of 20 people, to prevent an attacker
from targeting a specific individual, the researcher points out
that these efforts are circumvented if an attacker creates 20
Facebook accounts with similar target attributes.

Beyond the above mentioned efforts, the research community
has also developed several solutions for user privacy protec-
tion. Among these solutions, ObliviAd [101] is a hardware
implementation that stores sensitive data on the ad network
side, use a secure coprocessor to conduct all ad selections with
the oblivious RAM (ORAM) protocol through an encrypted
connection and bill advertisers with accumulated tokens. In
contrast, Bilenko and Richardson [67] choose an implemen-
tation for rendering personalized search ads while retaining a
user’s behavioral history on the client-side. With this system,
newly rendered search ads are matched to recently used key-
words in the client-side profile, client-only profile is updated
on the server-side with L-BFGS logistic regression, and the
probabilities for showing and clicking matched ads become
predictable. Also in the non-tracking advertising systems, it
becomes harder to isolate the most important factors con-
tributing to CTR. Consequently, expected revenue within the
OBA model is often imprecise. For this reason, Reznichenko
et al. [102] seek to balance user privacy, when it is applied
to an ad ranking, within ad auctions requiring user profiles.
Their designs include Rank-at-Client (RaC) and Rank-at-3rd-
Party (Ra3), which offer simpler and more efficient methods to

counter hard-to-detect cheating by ad brokers. Various add-ons
are also being introduced by researchers seeking to combine
privacy protection with online advertising. For example, both
Privad [103]–[105], and Adnostic [106] choose to profile users
locally. With Privad, a dealer is introduced to an ad network
and multiple anonymous users and further masks the ad serv-
ing and accounting via an encrypted channel so as to protect
the anonymity of the users. With Adnostic, the most suitable
ad is obtained from a small set of appropriate ads downloaded
from the ad network. An impression counter is then used in
the CPM model to compute and encrypt statistics in order to
prevent the ad network from learning about the user. Another
solution, RePRIV [107], permits publishers to mine user inter-
ests and behaviors, but stores the private information in an
encrypted common repository. This data can then be released
to ad networks in a way that aligns with user preferences.
Social add-ons or plugins, such as ShareMeNot [80], Priv3
[108], and SafeButton [109], are also being implemented. Both
ShareMeNot and Priv3 conditionally remove third-party cook-
ies while loading buttons and allowing selected elements that
match the user’s intent. As for SafeButton, the social plug-in
agent not only maintains its private data locally, which is no
more than 150MB for a maximum number of 5K Facebook
friends, it also caches publicly accessible data (e.g., the page’s
total number of “Like” selections). Surprisingly, the render time
for presenting combined content with SafeButton is even faster
than that of the original Facebook version [109].

B. Mobile Environment

In order to serve more targeted ads and further maximize ad
revenue, several parties, including app developers and ad net-
works, greedily collect user privacy via tracking. For example,
the People Hub, a unique feature of Windows Phone that inte-
grates several social networking features, may directly expose
user information [117]. Moreover, when ad libraries are bun-
dled within an app and act jointly with a unique and persistent
identifier, user privacy is easily leaked and uploaded to remote
servers. Furthermore, user privacy is easily compromised due
to the lack of secure protocols, like HTTPS, being deployed for
fear of the additional overhead created by encryption [29]. Even
well-known apps like Facebook for Android permit 22% of its
traffic to go unencrypted [76].

Another dataset [96], consisting of over 107K packets of
nearly 1.2K apps, uses hierarchical clustering, based on the
HTTP packet or destination distances between two packets, to
form a dendrogram. Destination distances are calculated using
destination IP addresses, port numbers, and host domains along
with content distances calculated from the request-line, cookie,
and message-body fields of HTTP headers. Using this informa-
tion, a set of conjunction signatures is generated by clustering
the results so as to detect 94% of data leakage while limiting
false positives to less than 3%.

Since mobile devices are frequently in a user’s possession for
calling, messaging, browsing, and other daily activities, main-
taining privacy is very important to both users and researchers.
The first attempts at revealing the dangers to privacy in mobile
advertising originate from a large-scale research investigation
of third-party apps. We briefly note a few such studies. By
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TABLE XII
COMMON PERMISSIONS

using 100K Android apps, Grace et al. [27] isolate 100 ad
libraries, which cover 52.1% of the entire app set. In another
study, Stevens et al. [29] finds 13 popular ad libraries within
the top 500 Android apps. Additionally, Book et al. [33] inves-
tigate 66 ad library names and versions from 114K free apps
in Google Play, and later investigates the top 20 of 103 ad
libraries [40]. Findings also indicate that the principle of least
privilege is not always followed, since some host apps request
additional permissions solely used by ad libraries [119]. In
addition, these researchers uncover the behaviors of different ad
libraries through various methodologies. For instance, AdRisk
[27] statically analyzes the APIs associated with 76 different
permissions and refines 14 dangerous APIs used by ad libraries
in order to determine the path from an entry point of a dan-
gerous API call to an external sink. In a similar effort [29],
Stowaway [16] is used to classify permissions into one of three
categories: 1) required, 2) optional and 3) undocumented. Book
et al. [33] also contribute to this research using PScout [17]
to construct a temporal map depicting changes to permissions
used by various ad libraries. Beyond the dangerous API calls in
Android and their permissions, Book and Wallach [40] identify
11 ad libraries which use privacy leaking APIs that allow host
apps to transmit demographics.

The findings in mobile advertising are more or less related
to permissions requested by host apps. Leontiadis et al. [73]
highlight a couple of differences between free and paid apps
in Android. Case in point, 10% of the free and 40% of the
paid apps run without permissions; however, 7% of the free
and 1.8% of the paid apps demand more than 10 permissions.
Moreover, 73% of the free and 41% of the paid apps request
at least one dangerous permission. The free apps dominate in
most categories except two (i.e., “Personalization” and “Books
& References”). Also, on average, the free apps request 2-3
more permissions than the paid ones in the same category. A
study of over 1.8K apps from the SlideMe app store reveals that
73% of the apps have permissions used exclusively by the ad
libraries [117]. Moreover, Khan et al. [95] shows that the most
used apps (i.e., SNS and IM apps), on which the users spend

more than 60% of their time, have no ads. On the other hand,
permissions are requested for ad libraries, and the average num-
ber of permissions required by an ad network is 3.3 on average
[33]. Several research works [29], [33], [39], [73], [117] pro-
vide a list of 3-10 core permissions used in ad libraries. These
permissions are displayed in Table XII. This list indicates that
INTERNET is not the only a mandatory permission and that
ACCESS_NETWORK_STATE and READ_PHONE_STATE
permissions are widely used in over 70% of ad libraries. The use
of these permissions also show a steady increase. Furthermore,
other studies [29], [33], [73], [114] identify a few danger-
ous permissions causing pop-up warnings during installation as
shown in Table XII. Coincidentally, most of these dangerous
permissions are overlapped with the 12 most abused permis-
sions [120], as shown in Table XIII. In general, these apps
follow a bimodal distribution, where both the most and the
least popular apps surrender user privacy to ad libraries [40].
As for ad libraries, each app usually embeds more than one
ad network–the average being 6.97 ad networks per app [34].
AdMob, a dominant mobile ad library, went as far as to ask
developers to explicitly include a user’s GPS coordinates [29].
MobClix was another popular ad exchange network that is fre-
quently discussed in research due to its greedy demand for 15
permissions that include the user’s contact list, media library,
calendar, camera, email, GPS, and SMS [33]. It also requires
IMEI and location information [114] and it allows for its adver-
tisers to access other features [27] that include a JavaScript
interface to a WebView object that exposes additional vulnera-
bilities [29]. AdMob and MobClix are just two main examples.
Other advertising services can be found in similar discussions
as well.

Given that both the host app and its ad libraries share the
same view with the same permissions, researchers are also
exploring countermeasures involving privilege separation in
order to internally restrict ad libraries. One proposal is to
replace the INTERNET permission with a more fine-grained
permission of INTERNET.ADVERTISING (*.admob.com) in
order to obtain ads from the AdMob domain [121]. Another
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TABLE XIII
12 MOST ABUSED ANDROID APP PERMISSIONS

work proposes a privacy control loop to harmonize interests
between users and developers by using user-defined permis-
sions in ACCESS_ADVERTISEMENT_SERVICE to separate
the host app and ad libraries [73]. Process and/or privilege
separation are implemented in three different ways. First,
we consider how AdDroid [112] integrates advertising ser-
vices into the Android system. AdDroid provides a public
library API and two corresponding advertising permissions
(i.e., ADVERTISING and LOCATION_ADVERTISING) for
app developers and uses IPC calls for ad requests. When
the system service receives a fetchAd IPC call made by the
AdDroid API, it establishes a connection with the proper ad net-
work to get the data, and waits for a follow-up IPC call in order
to retrieve the ad. Next we note that AdSplit [39] separates the
host app and its ad into two overlapped activities, which allows
users to see the ad through a transparent area within the app
activity. AdSplit also leverages QUIRE’s cryptographic mech-
anism [18] to detect click fraud. For both apps, a stub library is
required to communicate with the ad activity through a standard
Android IPC call. Finally, AFrame [113] is an isolated ad dis-
playing activity sharing the same screen with the main activity
so that existing ad libraries are still usable without any modifi-
cation. In addition, AFrame uses an independent graphic buffer
to enforce display isolation, and modifies the InputManager to
realize the input isolation.

Beyond efforts inside of apps, other solutions attempt to
wall off private data from being sent to remote servers. After
recognizing that 110 popular and free Android apps were send-
ing location and IMEI to A&A servers, Hornyack et al. [114]
implement AppFence, which consists of two primary features
for privacy control–those being data shadowing and exfiltration

blocking. While the former covertly substitutes sensitive infor-
mation by sending manipulated data or an empty dataset, the
latter, relying on TaintDroid [21], prevents private data from
being sent off device by covertly dropping buffered data or
overtly simulating an airplane mode state. However, as mobile
app users may only pay attention to the ad being rendered when
a page is loaded [12], personalized ads are of greater concern to
users. This is especially so for impatient users who only spend a
few seconds on each app. Therefore, ad targeting is also impor-
tant alongside privacy preservation and other factors such as
overhead.

In fact, contextual advertising in mobile apps is feasible, yet
challenging. After characterizing the contents of the top 1200
Windows Phone apps with a UI automation tool, Nath et al. [12]
reveal that pages yield more keywords than the metadata (name,
category, and description) in over 85% of the mobile apps. Of
which, over half the apps dynamically display different con-
tents each time. Thus, in order to enable contextual advertising,
it is necessary to extract keywords at runtime. In addition to a
framework consisting of a client library and a server, SmartAds
[12] improves efficiency and privacy by using a compact bloom
filter along with a hash function. The bloom filter stores on the
client side about 1MB of the most used keywords and covers
90% of the ads. Additionally, this coverage remains at over 85%
after three months. By only sending the hash values of all key-
words, the client ensures that the ad server can only learn the
keywords fed by the client. Finally, an investigation of 5K ad
impressions shows that SmartAds doubles contextually relevant
results.

The most used targeting strategy is closely related to user
privacy, not app content. However, this strategy does not nec-
essarily sacrifice privacy to improve ad personalization [118].
Inheriting from the heuristics used in online advertising, the
solutions for issue trade off can be classified into two cate-
gories: with [37], [115], [116] an intermediary or without [73],
[117], [118] an intermediary. MobiAd [37] proposes an archi-
tecture that serves local ads by using the mobile agent to profile
and maintain personal data locally, caching the relevant ads, and
preserving privacy with a delay-tolerant networking protocol
along multiple hops of the path. Other solutions [115] involve
each agent carrying an ad with a match estimator. The match
estimator then makes a decision to render an ad by using its
access to a locally stored user profile. MASTAds [116] uses an
ad management server to group devices with contact graphs into
different communities and prefetches sets of relevant ads based
on the interests of each community. Another proposal includes
market-aware privacy control models allowing users to send
private information separately to developers and ad networks in
order to balance the flows of private information sent to ad net-
works for revenue [73]. Furthermore, MoRePriv [117] employs
personal preference miners to parse and classify different sig-
nals (e.g., Facebook, Twitter, SMS, email, and HTTP traffic)
into multiple personas. It then replaces the private informa-
tion with a coarse-grained profile within apps, using the feature
for server-based personalization. Finally, Hardt and Nath [118]
develop a framework allowing for mobile devices to select the
most relevant ad from a set of ads sent from a server. This selec-
tion is based on the estimated CTRs of a large user population.
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VI. SECURITY

A. Malvertising in Online Advertising

In 2009, New York Times was attacked by malicious ad-
related activity known as malvertising [122]. These activities
may be triggered by any party within the ecosystem (i.e., pub-
lisher, advertiser, ad network, and even user). This is especially
so if ad syndication is used. Ad syndication links partners
in the ecosystem by reselling ad impressions from one part-
ner to another in order to eventually form a multi-hop, ad
delivery path, which can perpetuate the malvertising prob-
lem. Unfortunately, multi-level ad syndication is used by over
75% of malware hosted landing pages [123]. Furthermore, the
business model for ad syndication makes malvertising a less-
detected occurrence since syndicated ads bypass inspections
performed by large and reputable ad networks. After study-
ing the redirection chains of display ads within the Alexa top
90K websites, Li et al. [124] identify the clustering nature of
these malicious nodes. As a result of their findings, they imple-
ment MadTracer, a topology-based detection system, to detect
malvertising activities using existing and newly learned rules.
MadTracer’s detection rate of real-world malvertising activi-
ties proved 15 times more accurate than that of Google Safe
Browsing and Microsoft Forefront combined. In addition, they
found that over 1% of the sites had already been exploited to
provide malicious content [124]. Mavrommatis et al. [123] also
state that near 1% of Google’s search results are malicious.

Malvertising consists of three types:
• Scams use fake anti-virus or lottery phishing to lure peo-

ple to disclose sensitive information (e.g., usernames,
passwords, and bank account numbers).

• Drive-by Downloads exploit the vulnerabilities of
JavaScript or Flash dynamic contents in browsers or
plug-ins.

• Click Frauds occur when a script, program, or person
masquerades as a legitimate user clicking ads.

A malicious ad network may practice one or more malicious
activities; however, both scams and drive-by downloads tend to
occur closer to the server by malicious advertisers while click
frauds occur closer to the client-side, producing illegitimate
clicks and generating revenue for publishers.

Drive-by downloads are the most common malvertising type
[125], [126]. From a repository of 66B URLs, Mavrommatis
et al. [123] construct a malware distribution infrastructure with
over 180K landing pages and 9K related malware distribution
sites. They further discovered that third-party ads are a main
cause of drive-by downloads. When a user clicks on an seem-
ingly innocuous ad, the clicked window may claim that the user
consented to the unintended download and automatic installa-
tion. However, since malicious content is commonly hosted on
a domain other than the original, protection from such attacks
can be accomplished by enforcing a same-origin policy (SOP).
The SOP requires web browsers to only load scripts and data
from the same origin, which is defined through a combination
of protocol type, host name, and port number. Otherwise, access
is denied. Also, comparable to drive-by downloads are decep-
tive downloads. In these attacks, attackers attempts to trick the
user into voluntarily downloading unintended software [126].

HTML5/CSS3/JavaScript and Flash are some of the tool sets
commonly used in online advertising and drive-by download-
ing. While AdJail [127] and AdSentry [125] focus on blocking
malicious JavaScript ads, OdoSwiff [128] focuses on Flash
ads. AdJail forces the SOP to block mutual access between
web content and ads. It also relocates ad scripts into a hid-
den and isolated shadow page and tunnels the mirrored ad
content into a real web page in order to display and interact
with the ad. AdSentry sandboxes and executes the ad-related
JavaScript content within a virtual document object model
(DOM) [125]. As for OdoSwiff, static analysis is employed
to detect two specific techniques, which are 1) obfuscation
and 2) malformed Flash files, used for malicious Flash ads.
Additionally, OdoSwiff can employ dynamic analysis to iden-
tify anomalous behaviors via an execution trace (i.e., actions
and methods, network activity, referenced URLs, and access to
the environment) [128].

As for click fraud, it is found in CPC advertising models
where ad networks and publishers benefit from illegitimate
clicks. For each ad click, money flows from the advertiser
directly to the ad network, and ultimately, to the ad publisher.
As of 2012, about 10-25% of click frauds were still unde-
tectable [129]. Such operations can be extremely harmful to the
ecosystem. As an example, let us consider the FBI’s Operation
Ghost Click [130]. In spite of netting the largest cybercriminal
takedown at that point in history, cybercriminals still man-
aged to extract near to $14M over a four-year period. Still,
click fraud occurs in one of three ways: 1) using clickbots,
2) tricking users into clicking ads (e.g., parked domain mone-
tization), and 3) paying human clickers. All three ways share
one common characteristic: click fraudsters receive a higher
return on investment (ROI) than do the legitimate publishers.
See Table XIV.

There are a number of scientific papers further characteriz-
ing the nature of click fraud (e.g., malware [132], C&C [133],
DNS hijacking [130], typosquatting [134], Made for AdSense
[135], and profile polluter [136]). Usually, the act of click fraud
may leave a few clues (e.g., no mouse activities, no subpage vis-
its, no link accesses, and different browser distributions) [41].
However, with emerging botnets, such as TDL-4, Vacha et al.
[129] demonstrate how their techniques are able to avoid cur-
rent detection mechanisms, which include click once per IP
address per day, based on user actions, and requirements to
use real browsers. Nowadays, click fraud can be initiated by
other malware (e.g., Happili [132]). Such malware also includes
clickbots, and Miller et al. [133] study two such clickbots
(Fiesta and 7cy) in conjunction with a pre-recorded command
and control (C&C) dataset and a self-built C&C server that traps
outbound clickbot flows. In Fiesta, three CPC components (ad
server, search engine, and click server) interact with ad net-
works. But, 7cy mimics human browsing behaviors at various
locations and times. Other research reveals ad fraud activities
that change DNS resolution in order to hijack ad impressions
and clicks [130]. While ad injectors replace ads provided by
legitimate publishers with attacker owned ads in the CPM
model, search-hijacking (or link hijacking [126], [137]) tech-
niques are used in the CPC model. Fraud can be initiated by
other spoofing techniques as well. After crawling over 285,000
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TABLE XIV
COUNTERMEASURES FOR CLICK FRAUD IN ONLINE ADVERTISING

typosquatting domains, Moore and Edelman [134] discovered
that 80% of such sites are monetized with CPC ads, which cor-
rectly spell the domain names being imitated. According to a
study on Made for AdSense (MFA) [135], fraudsters also make
use of trending terms to build their MFA websites, so users
can be easily lured into their websites through high-ranking
search results. Finally, Meng et al. [136] introduce the con-
cept of a profile polluter as an additional fraud mechanism.
They demonstrate how publishers, exploiting short term brows-
ing history, can significantly affect re-marketing and behavioral
targeting mechanisms for advertising and change the type of ads
received by a user. In doing so, the polluter can bias as much as
74% of re-marketed ad impressions and 12% for behavioral ad
impressions while yielding up to a 33% increase in revenue for
fraudulent publishers.

To defend against the above techniques, several measurement
and detection mechanisms have been implemented to minimize
click fraud in the ecosystem. For advertisers, Dave et al. [129]
utilize a Bayesian framework to independently measure click
fraud rates. After conducting a large-scale measurement with
ten major ad networks and four types of ads, these researchers
discovered that click fraud rates resemble a Bayesian equation
based on predefined user actions. For ad networks, countermea-
sures can be either passive or active. For example, Bluff Ads
[131], which are either targeted ads with irrelevant display text
or the reverse, can be used to actively test the legitimacy of
individual ad clicks. In contrast, Stone-Gross et al. [8] construct
an anomaly detection model with features related to cookies
and IP addresses. Their model identifies fraudulent publish-
ers if the fraction between the number of suspicious and total
requests surpasses a threshold. Furthermore, Dave et al. utilize
graph clustering features in HTTP requests to detect “heavy-
hitting” clusters, and uncover seven click fraud attacks. Further
still, ViceROI [4] is implemented based on the fact that legit-
imate clicks follow an expected log-revenue range per user
while fraudulent ones fall into an anomalous region. Overall,
ViceROI, detected six different classes of click fraud.

B. Malfeasance in Mobile Advertising

The diversity of the mobile ecosystem makes it difficult
for users to protect themselves on handheld devices. In work
conducted by Vidas et al. [138], different attack vectors and
countermeasures in Android are surveyed. Similarly, Felt et al.
[139] use mobile malware samples to evaluate data detect-
ing techniques and analyze incentives. Moreover, free apps are
more intrusive, because 60% of the free apps in Android require

Internet connection compared to the 30% required for paid
apps [73]. The study of permissions is just one detection tech-
nique that we will emphasize below. Following that, we offer a
detailed discussion of two incentives: invasive advertising and
advertising click fraud.

Normally, original equipment manufacturers (OEMs) do
not grant root access rights to mobile users. Therefore, the
abilities of each app are constrained by its permissions. As
different apps have different functionalities, app developers
may request different permissions and mobile users may
treat them differently. After developing a knowledge base
of mappings between API calls and app behaviors, Rosen
et al. [140] used this data set in conjunction with AppProfiler
to statically profile apps from mobile users and identify
the behaviors of work-oriented apps (e.g., Dropbox and
Google Docs). This research determined that work-oriented
apps are less susceptible than ad-driven games and SNS
apps. In fact, their behaviors are highly correlated with
their corresponding permissions. Unfortunately, these per-
missions can be demanded either by benign or malicious
apps, or on behalf of bundled third-party libraries as shown
in Table XII. Subsequently, according to other researchers
[33], [141], [114], [142], [73], [117], several permissions,
such as INTERNET, ACCESS_NETWORK_STATE,
WAKE_LOCK, READ_PHONE_STATE, VIBRATE,
ACCESS_FINE_STATE, ACCESS_WIFI_STATE, are
commonly requested in most cases. Additionally, other per-
missions, such as GET_ACCOUNTS, RECORD_AUDIO,
CAMERA, CHANGE_WIFI_STATE, which are known
to leak sensitive information, are also used in ad libraries
[33], [114], [140], [73]. However, the behaviors of mali-
cious apps are slightly different from that of benign apps
with regard to bundled ad libraries [140]. For example,
malicious apps intensively use a few specific permissions
(e.g., READ_SMS, RECEIVE_BOOT_COMPLETED, and
CHANGE_WIFI_STATE) and greedily demand many more
permissions than benign apps, ranging between 4 and 11 [142].
While the strategy of ad libraries is to gather more information,
host apps may view them as malware. Therefore, invasive
advertising should be avoided. We include the security threats
related to in-app mobile ads from [142] in Table XV.

Unfortunately, other inappropriate behaviors of an ad library
may result in a supported app being flagged as malware. Here
malware is intended to mean a mobile threat with malicious
intent while other apps may merely be classified as greyware,
which is merely annoying to users. For example, the Apperhand
SDK, which collects a wide range of user information and
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TABLE XV
SECURITY THREATS FOR IN-APP MOBILE ADS [142]

delivers unwanted notification ads and browser bookmarks,
was identified as the “Android.Counterclank” Trojan horse.
Still, another ad library, Plankton, which uses DexClassLoader
to dynamically and remotely load untrusted Java binary at
runtime, is correctly identified as an invasive advertising mal-
ware [27], [36], [142], [144]. In order to avoid malware,
Android uses permission mechanisms to obtain access autho-
rization from the user. Also, there are a number of mobile
anti-virus apps available to users on app store. Meanwhile, the
research community continues to make progress towards col-
lecting and detecting malicious samples. For example, Zhou
et al. [142] identify approximately 50 malware families from
over 1200 malware samples, while DroidRanger [144] uses
different schemes to identify both known and unknown mal-
ware families. In other efforts, researchers conduct either static
(e.g., [141], [145]) or dynamic (e.g., [146], [147]) analysis,
or combined (e.g., [148]) analysis in order to study malware.
However, cases of malware infection are currently sparse. After
studying more than 204K Android apps from five different mar-
ketplaces, Zhou et al. [144], observe that infection rates in the
official and alternative stores are only 0.02% and below 0.5%,
respectively. Also, after analyzing three-months of DNS traf-
fic from a major US carrier, Lever et al. [149] only identify
3,492 infected devices out of over 380M, less than 0.0009% of
observed devices.

In malvertising, click fraud on mobile ads is as popular as it is
for web ads, depicted in Table XVI. Over 40% of mobile clicks
are either accidental (e.g., fat finger) or fraudulent. Thus, indus-
try predictively suffered a loss of nearly $1B (or 12% of the
mobile ad budget) from click fraud in 2013 [150]. In addition,
developers may manipulate the screen layout and place ads in
regions that cause unintended clicks by real users on embedded
ads. That practice, however, definitely violates known policies.
For example, in Microsoft Advertising, developers must not
“edit, resize, modify, filter, obscure, hide, make transparent,
or reorder any advertising”. Accordingly, DECAF [150] auto-
matically scans the visual elements of an app and efficiently
detects rule violations for Windows-based mobile platforms.
Other than placement fraud, developers may employ bots or
cheap labor to click on the ads as well. In many cases, mobile
applications running in the background are also able to render
ads and click on ads without user interaction. These observa-
tions led to Crussel et al. developing MAdFraud [151], a system
capable of emulating apps, to identify potential fraud. By inves-
tigating over 130K apps crawled from the Android market and
roughly 35K apps provided by a security company, they find
that 30% of these apps completed ad requests while running in
the background (possible fraud), 27 of which generated clicks

TABLE XVI
CLICK FRAUD IN MOBILE ADVERTISING

(likely fraud) [151]. As a result of these findings and the need to
protect the advertising ecosystem, user-generated click verifica-
tion is needed. Fortunately, work in this area has begun. Besides
separating the ad activity from the host app to safeguard against
a confused deputy attack, QUIRE [18] and AdSplit [39] use
an HMAC-based signature in RPC to verify the user-generated
click events. Meanwhile, other research provides display and
input integrity by implementing a secure user interface that
leverages all requests through the system [152], [153]. As a
result, implanted ads are protected from being displayed or
clicked across trust groups (e.g., the host app).

VII. PEOPLE

As smartphone use becomes a daily habit of people so must
advertising on mobile devices take human factors into greater
account. Meanwhile, digital ads are no longer limited to a sin-
gular person on the Internet. Instead, their influence expands to
others connected via social networks. We now discuss this new
and growing trend.

A. Human Factors

Since the ultimate goal of mobile ads is to entice cus-
tomers to click on a presented link, human factors can play an
important role. Studies have mostly been human-participation
surveys focusing on the effect and weight of various factors.
Sometimes, these results may subvert traditional perceptions.
There are several such discoveries. For instance, most ad net-
works do not consider maturity, so mobile ads may display
inappropriate content to children [34]. Likewise, clicks may
not exactly reflect user intent when users are minors [129].
Additionally, de Sa et al. [155] reveal that blinking anima-
tions in mobile ads lowers both user satisfaction and advertising
effectiveness. Their work also identifies an inherent relation
between user relevance and content relevance. On one hand,
content relevance stimulates ad recall, but does little for user
experience. On the other, user relevance improves user experi-
ence, but has little or no impact on ad recall.

Additional studies focus on user information sharing.
Egelman et al. [156] reveals that survey participants are will-
ing to preserve personal privacy by spending more on the
apps requiring less permissions, but they will still opt for free,
ad-supported apps, at least until required permissions exceed
their acceptance threshold. Unlike one traditional assumption
in scientific literature, location-related permissions are not con-
sidered highly negative [85], [157], [158]. In work completed
by Han et al. [85], survey participants indicated that they do
not mind being tracked, yet they expect to control the app’s
settings. Likewise, Kelley et al. [157] find that when allowing
access to their location, users believe that their current location
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and the quantity of ads are more important than the time of day
and advertiser brand. They also find that users are more likely to
share their locations on weekdays, while at work, and their sec-
ond and third most visited places. The first most visited place is
assumed to be their home. According to Felt et al. [158], users
equate the “sharing of information with advertisers” as a mid-
level risk. The high-ranked risks are associated with permanent
data or financial loss (e.g., permanently breaking your phone),
whereas the low-ranked risks pertain to reversible actions like
changing phone settings (e.g., vibrate your phone) or sending
data to servers.

B. Social Networks

Most network natives are already familiar with social net-
working and its prevalence in many aspects of their digital
lives. Nowadays, many websites that include videos, online pur-
chases, political commentary, and much more offer users the
opportunity to share their purchase, view, or support for polit-
ical or other causes directly to their social profiles. Findings
by Jung et al. also indicate this method of peer influence may
have the most significant impacts to attitude and likely behav-
ior across all types of social network advertising (SNA) [159].
Still, social networks are continually looking for new ways to
bring their advertisers closer to the right audience, and social
media is consistently rife with new changes!

For instance, Facebook’s acquisition of the Atlas Ad
Platform in 2014 enables cross-platform advertising whether
the user is signed into their network or not [160]. This means
that digital advertising has now bridged the gap to relevant
online impressions for users as they transition from one device
to another, be it a smartphone, smartwatch, or network device.
This new technology allows Facebook and its advertisers to
secure offline purchases as well.

Twitter, another popular SNS, likewise introduced new
changes for advertisers allowing them to create ad campaigns
with billing that is aligned with their objectives [161]. Last year
in 2014 also saw Instagram introduce digital advertising to their
platform [161]. As for what is occurring this year in 2015, the
following trends are observed [161]:

• Multi-product ads which offers advertisers more real
estate by depicting three products or three images of the
same product in one location.

• Video ads showed a 43% increase in 2014 with users
watching 38.2 billion videos over one quarter (60% of
those videos were watched on smartphones) [162].

• Local awareness ads and focus on Social Local Mobile
(SOLOMO) demonstrates new progress with advertiser
brokers seeking to develop groups of customers that meet
demographics more in-line with advertiser products.

• Diversification of social advertising will bring new play-
ers to the social advertising ecosystem, like Instagram,
Tumbir, and Pinterest. These new entries may even drive
down the overtly promotional posts typically seen on
social network sites in favor of more storytelling-type ads.

• Audience Network and Atlas allow Facebook to move
beyond their apps to third-party apps as well while still
maintaining targeting features inherent in their platforms.

Fig. 4. 3G RRC static machine.

With the addition of Atlas, Facebook is able to extend
targeted ads from these apps to websites. Thus, social
networking is moving from cookie-based advertising to
a cross-platform solution that is integrated with “real-
people” across multiple devices.

VIII. CONSUMPTION

Handheld devices can get data access from either of two
access methods: Cellular Network or Wi-Fi. Accordingly, there
are two charging models: by bandwidth and by time. In addi-
tion to access and fees, smartphones must also consider power
consumption. Khan et al. [95] observe that among 20 users that
the average data consumption per user per day is near 30MB,
both downloading and uploading. Of which, 44% transits the
cellular network. Similarly, Falaki et al. [163] suggest that both
cellular network and Wi-Fi should be considered in research to
account for both access methods. Therefore, before exploring
the consumption of battery energy and cellular data, we will
first consider different power modes of each access method.

In 3G cellular networks, radio access network (RAN) dynam-
ically allocates radio resources to the user equipment (UE) via
the radio resource control (RRC) protocol. These allocations
affect the bandwidth and energy consumption of smartphones.
Additionally, even in the same RAN type, different carriers may
set different tail times (i.e., delay or inactivity time between
two power states). As might be expected, different power states
consume power differently. An example of these power states
is provided in Figure 4 [35], [164]. Usually, 3G networks
defines three power modes: IDLE represents no connections,
CELL_DCH (dedicated channel) is in the highest power state
with high throughput and low latency, and CELL_FACH (for-
ward access channel) is a transition mode to reduce the mode
switching latency.

Whereas 4G LTE has two RRC states, RRC_CONNECTED
and RRC_IDLE, as shown in Figure 5. At RRC_CONNECTED
state, UE can be in one of the three modes: Continuous
Reception, Short Discontinuous Reception (DRX), and Long
DRX. While at RRC_IDLE state, UE is only in DRX mode
[165].

However, according to [164], Wi-Fi power is far less expen-
sive than cellular power due to its shorter round-trip time
(RTT), weaker radio power, and shorter tail time. The Wi-
Fi power model, described in [166], uses four states: Deep
Sleep (10mW), Light Sleep (120mW), Idle (400mW) and High
(600mW). Generally, the Wi-Fi interface regularly receives
beacons at intervals of 100ms with power spikes of 250mW
from an associated access point. In Deep Sleep, the interface
has no communication. But when a packet arrives, the radio
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Fig. 5. RRC state transitions in 4G LTE network [165].

immediately moves to the High state. Once the transfer is com-
pleted, the radio moves to Idle. The tail time from Idle to Light
Sleep is 1s, if no network activity occurs.

Mobile devices still require resource optimization. Unlike
traditional feature phones, the batteries on smartphones drain
very fast, and overhead traffic further compounds this issue.
That waste can be over 200 J/hr with ad traffic accounting for
over 87% of total overhead when applications are active and
analytics traffic dominating when apps become inactive [77].
According to Pathak et al. [26], only 25-35% of energy is con-
sumed by tested free apps (e.g., Angry Birds and Chess Free).
The remaining energy is spent on activities related to adver-
tising, such as ad downloading, user information tracking and
updating, and radio tail time. Similarly, research by Mohan
et al. [167] finds that mobile ads consume over 65% of com-
munication energy and 23% of total consumption (including
CPU, display, and communication). Comparably, Wei et al. [76]
observe that there are 50%-100% more system calls occurring
in free apps than their paid counterparts, which may result in
lower performance and higher battery consumption. For the
above reasons, Nicutar et al. [168] focus on optimization tech-
niques such as having nearby users share their links with each
other using wireless links (e.g., WiFI or Bluetooth), which have
a shorter range and require less power. Kibbutz [168] allows
users aggregate their traffic over a subset of links to achieve
lower energy consumption as well as shorter RTTs with fairness
guarantees for users.

Besides energy consumption, the periodic transfer behav-
ior of ad libraries aggregates data consumption. For example,
around 1% of subscribers in a European cellular network spent
at least 2 MB/day on ad traffic [35]. This behavior refreshes or
re-downloads images, text files and JavaScript code every few
seconds. Similarly, Qian et al. [164] find that A&A traffic uti-
lizes about 20% of total cellular data. Typically, the refresh rate
of AdMob is between 12 and 120 seconds with a default rate
of around 60 seconds [35], [164]. For InMobi, the minimum
refresh rate is 20 seconds [35], while both Millennial Media
[35] and MobClix [164] refresh every 15 seconds. Since the
default tail times of 3G cellular networks, like AT&T, can take
up to 17 seconds, these short intervals prevent the smartphone’s
radio from returning to IDLE [164]. Similarly in 4G LTE as
well as Wi-Fi network, the refresh rate makes the smartphone’s
radio hard to hibernate.

The above issues are further compounded by the following
three observations [95]. The first is that the same ads are repeat-
edly fetched, and the top 100 ads are rendered over 50% of the
time. An extremely popular ad might be downloaded up to 82
times on a single device. The second is that about 37% of cur-
rent ads continue to be served over a 24 hour period and then
drop to 14% over the following week. The third is that for a
median of 15KB per ad, only a portion (median of 5.8KB) con-
tains ad specific components like ad HTML and images. With
regard to the third observation, the remaining portion of the
ad consists of redundant JavaScript. Similar redundancy is also
found in the actual ad HTML code content. Another study [169]
finds that near 20% of the total HTTP traffic is redundant. As a
result, their research proposes a prefetching technique to reduce
energy and data consumption for mobile ads.

To halve power consumption, AdCache [35], uses prefetch-
ing and caching techniques and a 20-second refresh interval on
3G networks for mobile ads, like static banner, animated ban-
ner, and text ads. Similarly, CAMEO [30], [95] predictively
prefetches mobile ads in bulk while using cheap or free con-
nectivity to support different ad selection models. By observing
1.8M ads consisting of 17K unique ads sent from AdMob
across 10 countries, CAMEO shows that it can achieve an accu-
racy of 84%. Further, CAMEO is able to significantly reduce
both energy consumption by 25-37 times and bandwidth by up
to 4.8 times when displaying 100 ads.

Yet, due to the constraints of ad campaigns (e.g., budget
and duration), prefetching techniques must also ensure SLA
compliance and avoid revenue loss. Thus, after evaluating the
energy overhead of mobile ads for the top 15 ad-supported
Windows Phone apps, Mohan et al. [167] implement mech-
anisms for app usage prediction and overbooking to model
and optimize relationships between prefetching, energy con-
sumption, SLA violations, and revenue loss. After studying
users’ past behaviors, contained in two datasets, the researchers
observe two results. First, for mobile ads with a serving dead-
line expiring in exactly 30 minutes, the energy consumption
can be halved by using a statistical predictor (i.e., the 80th
percentile model) along with a prediction interval of 20 minutes
while lowering SLA violations to less than 3%. Second, when
the deadline is longer, a prediction interval of 15 minutes is
enough to satisfy SLAs. Additionally, the background traffic
allows for even less energy consumption within this interval.
Third, when the deadline is shorter, the overbooking model
used in the proxy decreases SLA violations, but increases
revenue loss.

IX. DISCUSSION

We now address a few similarities and differences between
web-based online advertising and in-app mobile advertising.
We also highlight some potential trends and directions for
academia and industry in digital advertising.

A. Online Advertising vs. Mobile Advertising

Web-based online ads and in-app mobile ads are two basic
forms of digital ads. Yet they possess many distinctions.
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According to MobiAd [37], the differences include smaller ads,
fewer storage accesses and less frequent downloads for hand-
held devices in order to compensate for smaller screen sizes,
lower processing power and less bandwidth. Indeed, factors
such as bandwidth and power usage are less important in online
advertising. Therefore, it receives little notice in online adver-
tising studies. But in mobile advertising, these factors are far
from negligible. In fact, the bandwidth is determined by the
connectivity. While online ads are usually rendered on a web
browser with a machine connected to Wi-Fi/Ethernet connec-
tion, the mobile ads we study are always displayed within an
app on a mobile device connected to Wi-Fi/Cellular connec-
tion. As a result, ad traffic flows differently. While ad networks
employ client redirection in online advertising, server redirec-
tion is used in mobile ecosystems to accommodate the slower
connectivity and limited data usage. For this reason, CDNs are
also highly relevant in mobile advertising [164]. Since these
devices are often in the daily possession of their owners, human
factors such as privacy concerns have greater import in mobile
environments. While permissions on mobile devices have been
studied extensively, little has addressed browser permissions.
For example, it might be possible that positioning technologies
will improve the effectiveness of online advertising. Whereas
in security, the cases of malvertising (e.g., drive-by download
and click fraud) frequently appear in online advertising, and
there are few cases of ad-related malware in mobile apps [149].
Another distinction is related to accessibility. On one hand,
since online ads must comply with the SOP, ad networks have
no access to the data on a website. Similarly, a web browser is
also completely isolated from other apps on the same machine.
And, while third-party web tracking may cover shortages in
information collection, it too raises privacy concerns. On the
other hand, mobile ads outside of WebView5 are currently not
subject to the privilege separation afforded by web browsers.
Since bundled ad libraries share the same set of permissions as
host apps, ad networks are able to share user information within
the app. Moreover, access to persistent user identifiers (e.g.,
IMEI, device identifiers, and location information) on mobile
devices allows for mobile tracking to extend beyond the bound-
ary of a single app [114], [145]. These approaches allow ad
networks to better target their customers; however, contextual
advertising, pioneered by Google AdSense, allows ad networks
to target customers based on content scraped from the web
pages they visit. While crawling web pages is relatively simple,
obtaining content at runtime for mobile advertising is still not
available. So, new methods are still being pursued. Meanwhile,
other technologies are destined to fade. Most smartphones do
not support Flash ad technology, so mobile ad developers must
continue to embrace new technologies, such as HTML5, if
they are to render media rich mobile ads [170]. Table XVII
summarizes the differences we witness.

B. Potential Directions for Industry

Industry is actively and comprehensively working to improve
the mobile user advertising experience. Since rich media ads

5The SOP is still applicable for mobile ads inside WebView [39].

TABLE XVII
DIFFERENCES BETWEEN ONLINE ADVERTISING AND MOBILE

ADVERTISING

vary in both size and implementation [116], IAB works with
the major ad networks to provide a Mobile Rich Media Ad
Interface Definition (MRAID) API, which serves to unify many
rich media ad formats. Meanwhile, companies like Apple and
Google are also working to regulate ad-supported apps inter-
nally. For example, the App Store no longer accepts new
apps or app updates that access UDIDs as of May 1st, 2013
[171]. In a similar move, Google removed more than 60K apps
from Google Play in February 2013 [33]. These low-quality
apps usually include ad libraries which demand a high num-
ber of permissions [33]. In a similar manner, ad networks
are also changing to obfuscate SDKs for intellectual prop-
erty protection [23]. For example, Android is removing the
ACCESS_FINE_LOCATION permission in conjunction with
its cancellation of the getLastKnownLocation API [33]. Since
users may become annoyed with digital ads, AdBlock Plus and
other alternatives are now being widely used. As a result, net-
work advertisers, like Google, have started paying fees to ad
blockers to allow their ads [172].

Since solutions such as Cameo [95] and MobiAd [37]
require carrier participation, mobile network operators will
likely become more heavily involved in the advertising ecosys-
tem in ways that exceed their advertising APIs. As for the
underlying operating systems, Android’s permissions system
still requires substantial changes. Google Play groups app per-
missions into groups of related permissions during installation
that may contain both safe and dangerous permissions [173].
Android’s auto-update feature could make the situation even
worse, as the existing apps can add new permissions without
notifying the user [173]. Such changes may give ad libraries
more flexibility and allow advertisers to better reach customers;
however, such permissions also come with controversy and
potential privacy violations. Finally, it is also possible that
Android will adopt the iOS-style permission system for new
apps [174]. If so, we envision a progressive update from ad
networks.

C. Potential Directions for Academia

We explored multiple points in digital advertising along with
many contributions, including the techniques and applications
of numerous researchers to enhance the advertising ecosystem.
We also note that online ad prefetching techniques are used to
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protect user privacy. For example, Privad may be required to
cache close to 20MB of ad-related data for daily use [30]. Also,
in mobile advertising, prefetching may also be used to opti-
mize energy consumption. Since AdMob gives a grace period
of up to 48 hours to obtain reports, greater flexibility is pro-
vided to prefetch ads. Another technique used to protect user
privacy is privilege separation. However, ad providers and app
developers are hesitant to apply it due to the risk of deflating
ad revenues. From the beginning of 2015, the research com-
munity started looking into ad targeting in mobile advertising
[175], [176].

Of equal interest are the new and diverse mobile advertising
contributions. For example, AdNext [177] serves highly rele-
vant, location-based ads to users by predicting their next visit
based on their behavioral history. Furthermore, AdTouch [178]
enables landing page redirection based on QR codes. Lastly,
by integrating in-app purchases, in-app mobile ads may benefit
users by requiring fewer system modifications.

However, user privacy still suffers from tracking without con-
sent and from unencrypted transmissions. In fact, users may
dislike ads due to their passive roles and subsequently push for
additional changes. Thus, if users are allowed to make in-app
purchases simply by clicking on targeted ads while proactively
surrendering private data, all parties (especially advertisers and
users) will benefit from such a design. In one case, advertisers
will satisfy user demand with sponsored ads; in the other, users
will receive financial incentives from viewing the ads. Lastly,
the use of a secure channels during in-app purchases will result
in protecting user privacy from eavesdropping.

Finally, as a forerunner of mobile advertising, research in
online advertising has been conducted for more than a decade.
Therefore, the research community has accumulated a sub-
stantial set of statistics. A correlation study covering online
advertising and mobile advertising may further benefit the
domain of digital advertising.

X. CONCLUSION

Digital advertising is now heavily integrated into many
aspects of mobile devices. As a result, people who use smart
devices for traditional online browsing and for mobile appli-
cations have become an integral part of the digital advertising
ecosystem. This ecosystem also consists of brokers, publish-
ers, advertisers, and malicious agents. As such, users have new
concerns to consider regarding the use of their personal infor-
mation (which they trade for services) as well as the power
and data constraints of their devices. Additionally, brokers
and publishers seek to determine how to best monetize their
efforts while meeting advertiser demands without alienating
their users. Advertisers also have a vested interest in target-
ing the right customers for their products to best maximize
their advertising investments. These objectives have created
unique relationships between all of these parties. Yet, this
ecosystem must also remain vigilant in its efforts to thwart
rogue agents seeking to compromise these relationships for
malicious purposes.

Considering the above concerns, this survey strives to
uncover the numerous layers of the advertising ecosystem,
ranging from ad cost and revenue generation to privacy and

malware concerns. We also focus on in-app mobile advertis-
ing and online browsing from mobile devices because these
activities represent the growing number of users today. As pre-
viously stated, over 60% of video is now watched on mobile
devices. Similarly, over 62% of mobile users are using their
mobile devices to check email and access the internet while
99.5% access content [179]. Social networking is also driving
many changes for how users interact with ads in their mobile
app and online viewing.

To further understand the intricacies of digital advertising,
this paper explores the background and components of ad
networks. Some of which includes advertiser, ad network, pub-
lisher, and user relations, CPC objectives, auctions, and privacy
protection. Additionally, malvertising and associated protection
measures continue to be challenging arenas for researchers.
Part of that research includes better security in mobile sys-
tem functions, the mobile operating systems, and advertising
libraries. Additionally, the unique limitations of power and data
continue to be explored to reduce unnecessary network traf-
fic, conserve precious mobile power, and reduce unnecessary
financial expenditures by mobile users.

Of equal importance is the tracking and profiling limitations
of mobile devices, both for targeted advertising and user protec-
tion. The fact that mobile devices are often located with their
users leads to even greater privacy concerns. Of course, these
concerns lead to greater security requirements–policy changes
to address them are then added to the advertising ecosystem. To
improve security, greater attention to application permissions
and library bundles are required. Likewise, better notifica-
tion for users on what permissions are granted to mobile-app
developers is also needed. Again, we highlight the fact that
most apps found in Google Play require 3 to 15 permissions.
Consequently, additional options for users to opt out of such
demands on their privacy are desired.

Since ad networks are also interested in what users are
willing to tolerate, the above mentioned issues are of compa-
rable importance to their business models. Multiple surveys
discussed in this paper offer suggestions for ad networks and
publishers. By paying attention to such literature along with
user preferences and developing policies, ad networks can fur-
ther evolve their business models and tracking techniques to
improve marketing, security, and privacy protection. For this
reason, it is important that researchers (both in academia and
industry) continue to identify new incentives that contribute to
the pushes and pulls within the advertising ecosystem. Thus,
each advancement towards controlling permissions, protecting
privacy, and limiting app malware while gauging and mone-
tizing user interests brings us ever closer to an appropriately
balanced advertising ecosystem.
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