
LightningStrike: (In)secure Practices of E-IoT Systems in the
Wild

Luis Puche Rondon, Leonardo Babun, Ahmet Aris, Kemal Akkaya, and A. Selcuk Uluagac
Florida International University - {lpuch002, lbabu002, aaris, kakkaya, suluagac}@fiu.edu

ABSTRACT

Thewidespread adoption of specialty smart ecosystems has changed
the everyday lives of users. As a part of smart ecosystems, Enter-
prise Internet of Things (E-IoT) allows users to integrate and control
more complex installations in comparison to off-the-shelf IoT sys-
tems. With E-IoT, users have a complete control of audio, video,
scheduled events, lightning fixtures, shades, door access, and relays
via available user interfaces. As such, these systems see widespread
use in government or smart private offices, schools, smart buildings,
professional conference rooms, hotels, smart homes, yachts, and
similar professional settings. However, even with their widespread
use, the security of many E-IoT systems has not been researched
in the literature. Further, many E-IoT systems utilize proprietary
communication protocols that rely mostly on security through ob-
scurity, which has perhaps led many users to mistakenly assume
that these systems are secure. To address this open research prob-
lem and determine if E-IoT systems are vulnerable, we focus on
one of the core E-IoT components, E-IoT communication buses.
Communication buses are used by E-IoT proprietary protocols to
connect multiple E-IoT devices (e.g., keypads and touchscreens) and
trigger pre-configured events upon user actions. In this study, we
introduce LightningStrike, the implementation of four proof-of-
concept attacks that demonstrate several weaknesses in E-IoT pro-
prietary communication protocols through communication buses.
With LightningStrike, we show that it is feasible for an attacker
to compromise E-IoT systems using E-IoT communication buses.
We demonstrate that popular E-IoT proprietary communication
protocols are susceptible to Denial-of-Service, eavesdropping, im-
personation, and replay attacks. As E-IoT systems control physical
access, safety components, and emergency equipment, an attacker
with a low level of knowledge and effort can easily exploit E-IoT
vulnerabilities to impact the security and safety of users, smart
systems, and smart buildings worldwide.

CCS CONCEPTS

• Security and privacy → Denial-of-service attacks; • Net-
works → Cyber-physical networks.

KEYWORDS

Enterprise Internet-of-Things, E-IoT Security, Attacks, Cresnet

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WiSec ’21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8349-3/21/06. . . $15.00
https://doi.org/10.1145/3448300.3467830

ACM Reference Format:

Luis Puche Rondon, Leonardo Babun, Ahmet Aris, Kemal Akkaya, and A.
Selcuk Uluagac. 2021. LightningStrike: (In)secure Practices of E-IoT Systems
in the Wild. In 14th ACM Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec ’21), June 28-July 2, 2021, Abu Dhabi, United
Arab Emirates. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3448300.3467830

1 INTRODUCTION

The current, rapid adoption of specialty smart systems has changed
the lives of millions of users worldwide [23]. As part of these smart
ecosystems, Enterprise Internet of Things (E-IoT) are smart systems
designed to allow users to integrate and control very complex
installations at a higher cost than off-the-shelf IoT systems. As
such, E-IoT systems are usually vendor-installed, and grant users a
robust, reliable, and accepted solution for smart installations. Many
vendors such as Savant, LiteTouch, Crestron, and Control4 offer
E-IoT solutions, which are then deployed and configured to a user’s
specification by trained installers. In effect, E-IoT systems are often
found in smart settings where security oversight is critical (e.g.,
smart buildings, hotels, smart homes, offices, yachts, colleges).

While the security of numerous off-the-shelf IoT smart systems is
well-understood due to prior research and mainstream knowledge,
very little research exists on E-IoT and their proprietary technolo-
gies. With many of these E-IoT systems deployed in high-profile
locations (e.g., government and enterprise offices, colleges, confer-
ence rooms, hospitals), evaluating possible threats for these E-IoT
smart systems should be of utmost importance. However, many
E-IoT systems use proprietary communication protocols that rely
solely on security through obscurity. The motivation of this paper
is to shed light upon the security of E-IoT systems and uncover
possible vulnerabilities of E-IoT proprietary communication pro-
tocols that can affect millions of E-IoT deployments. To address
this open research problem and determine if E-IoT systems are
susceptible to attacks, we focus on one of the core E-IoT compo-
nents, E-IoT communications buses. E-IoT communication buses
are used by E-IoT proprietary communication protocols to carry
out fundamental internal communication functions such as inter-
actions between user interfaces and the central controller. As such,
communication buses are used to trigger programmed E-IoT events
on integrated devices. In this work, we take a look at Crestron’s
Cresnet, a proprietary communication bus protocol used by one
the major E-IoT system vendors. Crestron is a great example of a
globally accepted E-IoT system with billions in sales, deployments
in over 90% of Fortune 500 companies, and thousands of indepen-
dent installers [30]. In order to demonstrate how feasible it is for an
attacker to compromise an E-IoT system through insecure commu-
nication protocols, we propose LightningStrike, a set of practical
proof-of-concept attacks created to leverage insecure communica-
tion buses, namely Cresnet, to an attacker’s advantage. Specifically,

106

https://doi.org/10.1145/3448300.3467830
https://doi.org/10.1145/3448300.3467830
https://doi.org/10.1145/3448300.3467830
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3448300.3467830&domain=pdf&date_stamp=2021-06-28

WiSec ’21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates L. Puche Rondon, L. Babun, A. Aris, K. Akkaya, and A. S. Uluagac

with LightningStrike we demonstrate that it is feasible for an at-
tacker with limited resources to easily compromise an E-IoT system
through an E-IoT communication bus threat vector.

In this work, we execute LightningStrike attacks in a realistic
Crestron E-IoT environment. Further, we show that with Light-
ningStrike, an attacker can use proprietary communications vul-
nerabilities to take arbitrary control of E-IoT operations. Therefore,
we demonstrate that an attacker can (1) cause Denial-of-Service
(DoS) conditions in an E-IoT system, (2) maliciously eavesdrop sys-
tem communication, (3) execute replay attacks to cause undesired
behavior (e.g., open a door), and (4) impersonate other devices.
As E-IoT buses used by proprietary communication protocols are
outside the scope of any traditional networks (e.g., WiFi, TCP/IP),
LightningStrike provides attackers with an effective, practical,
and covert mechanism to compromise E-IoT systems. We believe
that LightningStrike may act as the initiator of research on se-
curity of E-IoT communication, the consequences of which can
broadly impact the security of millions of current and future E-IoT
deployments. We hope that our work will raise the awareness in
the community, and encourage further research in the field.

Contributions: The contributions of this work are as follows:
• We introduce LightningStrike, a set of proof-of-concept
attacks against E-IoT proprietary communication protocols.

• We demonstrate that communication buses used by E-IoT
vendors (e.g., Cresnet) can be used as an attack vector against
E-IoT systems using LightningStrike.

• We test LightningStrike attacks in a real-life E-IoT Cre-
stron testbed and leverage communication buses to cause
undesired behavior on behalf of an attacker.

• We articulate the implications LightningStrike attacks on
E-IoT security and any integrated component.

Organization: The rest of this work is organized as follows: Sec-
tion 2 provides background information on E-IoT, protocols, and the
communication buses. Section 3 presents the definitions, problem
scope, and the threat model. In Section 4, we cover architecture for
the proof-of-concept LightningStrike attacks. Section 5 describes
the testbed configuration, software, hardware, and attack imple-
mentations used to evaluate LightningStrike attacks. Section 6
highlights the attack process and implications of LightningStrike-
based attacks. In Section 7, we discuss findings, contributions, possi-
ble defense mechanisms, and challenges against LightningStrike
attacks. In Section 8 related work is highlighted. Finally, we con-
clude the paper in Section 9.

2 ENTERPRISE INTERNET-OF-THINGS

In this section, we highlight background information on E-IoT
systems and protocols used in E-IoT communication.

2.1 E-IoT Systems

Enterprise IoT (E-IoT) systems are closed-source smart systems that
follow unique design and deployment practices, separating them
from off-the-shelf IoT systems [37]. Specifically, E-IoT systems gen-
erally come at a higher cost and are more complex than off-the-shelf
IoT systems. E-IoT deployments require specialized training and
proprietary tools as they are customized and configured according

Figure 1: Use-cases of E-IoT systems.

to users’ specifications [9, 11]. As a result, a trained programmer
and installer, also known as an integrator, is needed to configure
E-IoT systems. Integrators perform the physical installation, testing,
device configuration, and future technical support of the E-IoT sys-
tem for a client. Further, E-IoT equipment is not usually sold to the
end-user and the user must rely on the integrator for any service
or modification to the E-IoT system. This complexity and added
functionality have led E-IoT systems to become popular in loca-
tions such as classrooms, conference rooms, smart buildings, smart
offices, yachts, and luxury smart homes. We highlight common uses
of E-IoT systems in Figure 1.

A generalized implementation of an E-IoT system is shown in
Figure 2, which consists of E-IoT components deployed in different
rooms in a smart environment such as a business office in a smart
building. The equipment room usually contains the core E-IoT com-
ponents, such as a controller, a power supply, and light control
modules. The controller is the core processing unit of an E-IoT and
contains the execution logic for user actions on controlled devices
(e.g., pressing button 1 on a keypad opens a security door, press-
ing button 6 turns off all the lights). This highly-programmable
component is configured by the integrator during deployment or
maintenance stages of an E-IoT according to a user’s specification.
The power supply of an E-IoT system powers keypads and other in-
terfaces integrated into the core system as well as the controller and
light control modules. The lighting control modules are the physical
high-voltage and relay based interfaces between the E-IoT system
and controlled devices. Controlled devices are any light fixture, shade,
relay-operated door, or any physical device controlled by the E-IoT
system. Finally, the communication buses are the daisy-chain lines
that traverse through different equipment, rooms, and multiple
connection endpoints where devices such as keypads, touchscreens,
and other user interfaces connect to the communication bus. Such
interfaces can be accessible by general users while other interfaces
are only accessible in restricted locations. As Figure 2 shows, the
daisy chain wiring saves integrators the need to wire all interfaces
back to the main equipment room. With daisy chain, the physical
wiring can connect from device to device instead of requiring that
every individual device is wired back to the equipment room, saving
in labor and wiring costs.

107

LightningStrike: (In)secure Practices of E-IoT Systems in the Wild WiSec ’21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates

Figure 2: An example E-IoT system with wired bus commu-

nication and two daisy-chain paths. Restricted areas high-

lighted in red, common areas in blue.

2.2 E-IoT Protocols

E-IoT supports a variety of protocols, while some supported proto-
cols are widely-known and well-documented (e.g., ZigBee, Z-wave,
and TCP/IP), other protocols used by E-IoT systems are entirely
proprietary in nature. As E-IoT system vendors need protocols de-
signed for their specific purposes, they may modify existing known
protocols or design entirely new protocols. Specifically, user in-
terfaces such as keypads and touchscreens use wired and wireless
protocols for communication purposes. For instance, in 2013, be-
fore Zigbee’s rise in popularity, Control4, a vendor that offers E-IoT
solutions, used a version called Embernet as a wireless solution
[10]. Lutron, a vendor that focuses on E-IoT lighting control sys-
tems, implemented a proprietary wireless communication known as
Somfy’s Radio-Technology Somfy (RTS) [29, 41]. E-IoT systems also
use proprietary wired protocols that use E-IoT communication buses.
For instance, Litetouch smart systems use a proprietary protocol
for user interfaces [27]. For similar purposes, Control4 employs
a proprietary communication protocol [8]. Savant uses communi-
cation buses and proprietary protocols for interfaces [39]. Finally,
Crestron, one of the most prolific E-IoT vendors, uses Cresnet, a
form of a proprietary protocol over communication buses for in-
terfaces and other components [12]. The technical specifications of
these highlighted protocols are not publicly available, and thus their
security, if any, is largely unknown. Since the communication is sim-
ple, reliable, and allows daisy-chain wiring between interfaces, this
communication is very prevalent in E-IoT. In comparison to proto-
cols such as Z-wave and ZigBee, wired communication buses are
preferred for E-IoT devices for three reasons. First, communication
buses often provide power to the connected devices through the
same communication line [13]. Second, communication buses are
seen as more reliable than wireless protocols over long distances
where mesh networking has range limitations (60 feet) [21]. Third,

wired E-IoT communication is not as susceptible to interference
as wireless communication, creating a more reliable system [46].
However, communication buses require physical cabling. As such,
mesh wireless may still be used in E-IoT for smaller or retrofit
deployments, where physical wiring is not a possibility.

3 PROBLEM SCOPE AND THREAT MODEL

In this section, we present the problem scope and the threat model
for LightningStrike-based attacks.

3.1 Problem Scope

This work assumes the existence of an E-IoT system with a com-
munication bus network within a smart building, with electric
loads integrated to the E-IoT system. Full integration is a realistic
assumption as the purpose of E-IoT systems is to integrate many de-
vices into common interfaces. The topology of the communication
network includes common components such as lighting modules,
switches, magnetic relays, lights, and user interfaces. As such, users
have communication bus interfaces (e.g., keypads, touchscreens)
available throughout the building to control the lights, physical
access, and other smart E-IoT functions. The attacker is Mallory,
a visitor with authorized access only to public areas of the smart
building. With security policies enacted on all traditional networks
(e.g., TCP/IP, WiFi), Mallory’s only avenue of attack is through
indirect means through an available communication bus in a smart
building.

With many wired communication bus interfaces, Mallory finds
an unsupervised wired device such as a touch screen docking sta-
tion. This is a viable assumption as it is unrealistic that every com-
munication bus endpoint and interface in the smart building (i.e.,
restroom, private office) is being supervised by the building secu-
rity. Mallory may easily find an empty room with a touchscreen
or a keypad and compromise the communication bus by insert-
ing a device such as a compact computer with a communication
adapter into a daisy-chain (communication bus) line. The inserted
device physically connects to the bus network and grants Mallory
the ability to eavesdrop and inject messages into the network bus.
Compromising the communication is possible as network buses
often do not have any form of security monitoring, as noted in
previous sections. An inserted device will not be detected as no
intrusion detection mechanisms exist for communication buses in
E-IoT. Additionally, bus-based communication is often unencrypted
and accessible to all devices that use the same bus. This behavior
allows Mallory to monitor and broadcast arbitrary messages to all
devices into the communication bus. As such, with the compact com-
puter (e.g., Raspberry Pi) inserted, Mallory can hide her inserted
device and begin executing her attacks elsewhere.
AttackPracticality.Whilewe proposed an example scenariowhere
an attacker can compromise an E-IoT deployment, there can be
many other practical scenarios.

• Third-party contractors. Repair and maintenance services of-
ten require external contractors (e.g., electricians, plumbers,
painters, external I.T.) with unsupervised temporary access
to facilities such as smart buildings. In some scenarios, such
as re-painting walls or repairing damages, contractors must
remove fixtures and mounted E-IoT devices (e.g., keypads,

108

WiSec ’21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates L. Puche Rondon, L. Babun, A. Aris, K. Akkaya, and A. S. Uluagac

Figure 3: General end-to-end implementation for LightningStrike-based attacks. Attack-related components are high-

lighted in gray, E-IoT components are in blue.

touchscreens). An attacker can be a part of the contractors
or can bribe an employee to insert a malicious device in the
communication bus line.

• Rented Rooms. Some locations may opt to rent conference
rooms, allowing outsiders to gain frequent access to parts
of the facility, with services such as LiquidSpace [26]. Con-
ference rooms need E-IoT interfaces for the users to control
projects, lightning, screens, and A/V required for a presen-
tation. If the communication bus wiring is shared between
the rented room and other areas of the facilities, it would
be trivial for attackers to insert their devices in the line and
later perform attacks.

• Neighbors. Locations with E-IoT systems may have neigh-
boring offices or other locations for rent. Cases of attackers
using their proximity to their target have occurred in the
past [16], as such, E-IoT systems can be attacked in a similar
manner. An attacker may temporarily rent a location (e.g.,
store, office) adjacent to the target E-IoT system as a way
to gain physical access to the communication bus wiring of
target location through a shared wall or a shared low-voltage
junction box. Once the attacker inserts a malicious device
into the communication bus, the boxes and the walls can be
closed up and the E-IoT system can be compromised.

3.2 Definitions

In this sub-section we cover essential definitions for the concepts
used in the LightningStrike attacks.
Limited-Access User. A limited-access user is any user, such as a
temporary visitor, with guest access to any facility. As such, he/she
has restricted access and limited permissions to a facility.
Attacker. The attacker is any user (e.g., temporary visitor) with
limited access to the facilities that attempts to gain access to unau-
thorized resources. The attacker’s motivations are to disrupt, gather
information, learn user behavior, gain unauthorized access, and
perpetrate attacks.
Interface Devices. An interface device is a device that a user can use
to interface and operate a smart system (e.g., keypads, touchscreens,
buttons, tablets, phones, remotes).

3.3 Threat Model

LightningStrike considers the following powerful threats as part
of the threat model.

Threat 1: Denial-of-Service.This threat considers Denial-of-Service
(DoS) attacks where Mallory disrupts an E-IoT system’s availability
through a communication bus connection. These attacks may target
specific devices or affect multiple devices. For instance, Mallory can
prevent the usage of multiple keypads by causing conflicts in the
communication bus or flooding the bus with redundant messages.
Hence, ordinary users cannot use E-IoT interfaces to open/close
magnetic doors, operate window shades, trigger lights, trigger emer-
gency panic buttons in case of an emergency situation.

Threat 2: Malicious Eavesdropping. This threat considers Mallory
monitoring the communication busmaliciously. As an unauthorized
user, this threat allows Mallory to maliciously gather potentially
sensitive information about an E-IoT system such as usage, button
sequences, and user activity.

Threat 3: Impersonation. This threat considers Mallory mali-
ciously impersonating devices connected to the communication
bus. For instance, Mallory altering the identification number of a
device to impersonate or cause an undesired E-IoT system behavior.

Threat 4: Replay Attack. This threat considers Mallory replaying
messages captured through the communication bus to cause un-
desired behavior on connected devices. For instance, Mallory can
replay a button press to unlock a door relay controlled by a lighting
system, turn all or specific lights on/off as frequently as she wants,
generate fake emergency button presses, and affect the quality of
the working/living environment in various ways.

Note that this work does not consider attacks that occur over
TCP/IP networks, software vulnerabilities such as buffer overflows,
or attacks on individual devices (e.g., keypad firmware exploits).
Similarly, other protocols used in E-IoT such as Bluetooth, Ethernet,
USB, and Zigbee are entirely outside the scope of this paper.

4 LIGHTNINGSTRIKE ARCHITECTURE

In this section, we describe the architecture and the end-to-end
implementation of LightningStrike-based attacks which involves
the interaction of three unique components: attacker client, attack
device, and target environment.

4.1 LightningStrike Overview

We highlight the architecture of LightningStrike in Figure 3. In
this architecture, Mallory (the attacker) has compromised the E-IoT
communication bus with the insertion of a malicious device (e.g.,
Attack Device). The attacks against the proprietary E-IoT commu-
nication protocol begin with Mallory, using LightningStrike’s

109

LightningStrike: (In)secure Practices of E-IoT Systems in the Wild WiSec ’21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates

Table 1: Hardware & software used in LightningStrike at-

tacks implementation and evaluation.

Hardware Software
Crestron DIN-PWS50 Eclipse IDE 2020-03
Crestron C2N-DB12W Crestron D3 Pro
Crestron DIN-EN-2X18 Crestron Toolbox
Crestron DIN-AP3 Java RX-TX Library

Crestron DIN-8SW8-I Java 8 SDK
Razer Blade 15 Laptop VNC Viewer 6.20.529
Acer GX-785 Desktop TightVNC 2.8.27

GearMo Mini USB to RS485 -

attacker client, such as a tablet, phone, or laptop, to communicate
with the attack device and initiate the attacks with the client soft-
ware 1 . In our case, Mallory sends the malicious payload and all
the information necessary to initiate the attacks to the attack device
using her client software. Communication between the attacker
client and the attack device may be wireless (e.g., cellular, Blue-
tooth, WiFi), using a command-line interface or a VNC connection.
The target environment is the E-IoT system being attacked and
contains the communication bus sub-components. As such, attack
device’s adapter sub-component acts as the physical connection
between the communication bus and the attack device. The soft-
ware modules sub-component is the software necessary to interface
with the communication bus and attack the proprietary commu-
nication protocol. With communication in place, Mallory begins
the LightningStrike attacks, transmitting attack-specific com-
mands (using the payload) to the target environment 2 . Finally,
the status and results of ongoing attacks are returned to Mallory’s
attack client with attack device’s communication sub-module as
the attacks are executed 3 . We further detail the components of
the LightningStrike end-to-end architecture.
Attacker Client. The attacker client is any device Mallory uses to
execute the attacks, such as a phone, laptop, computer, tablet, or
any device capable of running the necessary sub-components and
communicating wirelessly with the attack device. Mallory uses this
component to initiate, stop, and monitor ongoing attacks against
the target environment. As such, to execute the LightningStrike
attacks, the attacker client includes two sub-components, the client
software and the malicious payload. The client software is the pri-
mary means of communication with the attack device, and may be
a command-line interface, VNC client, IDE, or any piece of software
that can command and control the attack device. The malicious
payload contains all the necessary information to initiate the at-
tacks; for instance, if Mallory wants to execute a DoS attack, the
payload specifies the attack type and target. In effect, Mallory runs
the client software in the attacker client, submitting her malicious
payload to the attack device through her client software, where
responses and attack statuses are displayed.
Attack Device. In the proposed architecture, the attack device
is a compact device connected to the communication bus. For in-
stance, the attack device is connected physically to the physical
wires behind an unattended keypad, or hidden under a docking
station. The attack device is designed to act as the intermediary
communication point between the attacker client and the target

environment. As such, the attack device sends/receives messages
through the communication bus to/from the target environment on
behalf of Mallory. Additionally, the attack device receives the mali-
cious payload from the attacker client software and executes the
attacks. The attack device is comprised of three sub-components,
1) the communication, 2) the adapter, and 3) the software modules
sub-components. The communication sub-component allows the
attacker client to communicate with the attack device wirelessly
(e.g., Bluetooth, WiFi, cellular) or through wired communication.
The adapter sub-component, such as a USB-to-Serial interface, acts
as the attack device’s physical connection and is directly connected
to the E-IoT system’s communication bus. Finally, the software
modules component contains all software logic necessary to mon-
itor, interface, and attack the proprietary protocol through the
communication bus. It is configured to the baud rate and communi-
cation specifications of the communication bus. We elaborate on
independent software modules as follows:

• Monitoring Module. The monitoring module passively eaves-
drops on active bus communication without transmitting
messages. As bus-connected devices broadcast messages in
bus architectures, the monitoring module is able to capture
all messages transmitted.

• Injection Module. The injection module injects arbitrary mes-
sages from Mallory into the communication bus.

• Flooding Module. The flooding module is designed to cause
DoS conditions in the communication bus, by maliciously
flooding the communication bus.

• Re-addressing Module. The re-addressing module has the abil-
ity to re-address and modify the configuration in devices that
use the communication bus. As such, it may allow devices
to impersonate others by setting identification numbers and
other configurations.

• Filtering Module. The filtering module filters communication
received by the monitoring module to allow Mallory only
to view the information requested and make incoming data
easier to interpret.

Target Environment. The target environment is the E-IoT system
compromised by Mallory using the LightningStrike attacks. The
target environment integrates several physical devices (e.g., lighting,
shades, relays, magnetic door access, fans) into a central system.
With all the devices integrated, they are operated through any
user interface such as a keypad or a touch screen connected to the
communication bus. These interfaces are all connected through the
communication bus sub-component, which is used by the target
environment.

5 LIGHTNINGSTRIKE ATTACKS

IMPLEMENTATION

In this section, we describe the LightningStrike attacks imple-
mentation. We use LightningStrike to attack the Cresnet E-IoT
proprietary communication protocol. As noted earlier in Section 3
and Section 4, Mallory compromises an E-IoT system through the
insertion of a malicious attacker device into the communication
bus. To ensure that LightningStrike attacks are demonstrated
and evaluated realistically, we created an attack suite and a realistic
E-IoT testbed. The Attacker client was implemented as the Acer

110

WiSec ’21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates L. Puche Rondon, L. Babun, A. Aris, K. Akkaya, and A. S. Uluagac

Figure 4: Testbed used to implement LightningStrike at-

tacks, including a controller, power supply, smart modules,

and keypad interfaces.

GX-785 desktop and the attack device as the Razer Blade 15 laptop
with the attached Gearmo Mini USB-to-RS485 adapter. We estab-
lished the connection from the attacker client to the attack device
using a VNC client/server.
LightningStrike Testbed. As most E-IoT systems are propri-
etary systems that define their own specifications for protocols
using communication buses, we had to select a proprietary protocol
which is a representative of E-IoT systems for this work. To ensure
that we evaluate LightningStrike attacks realistically, we selected
Crestron for implementation and evaluation. Crestron represents
one of the most flexible and highly-deployed E-IoT systems avail-
able with 1.5 billion dollars in annual revenue [30]. Further, 90% of
Fortune 500 companies have some form of Crestron solution in their
facilities. In addition to being one of the largest players in smart
installations, Crestron highlights a commitment to security [14].
As such, Crestron is expected to be at or above industry security
standards for E-IoT systems. Specifically, we chose Crestron’s Cres-
net for analysis, a proprietary serial-based communication protocol
used in E-IoT integration and other smart use-cases.

We created an E-IoT testbed using common Crestron devices
highlighted in Figure 4. Crestron proprietary software was used for
testbed deployment and configuration. To configure the Crestron
system, we utilized D3 Pro and Toolbox, the software used by inte-
grators to deploy Crestron lighting systems. We utilized a Crestron
DIN-AP3 processor as the primary logic unit of the testbed and a
Crestron DIN-8SW8-I as the lighting module (8 controlled loads) for
the testbed. Crestron devices utilize a proprietary communication
protocol, namely Cresnet. To create a single Cresnet daisy-chain,
we implemented two C2N-DB12W keypads using Cresnet wiring.
The Cresnet-based 12-button keypads and similar interfaces are
common in public areas such as restrooms and are used as user in-
terfaces to control lights, door access, relays, and any programmed
functions. Finally, the entire system is powered by a Cresnet-based
DIN-PWS50 power supply.
The Cresnet Bus.With the need to interface multiple devices to-
gether, proprietary communication protocols using communication

Table 2: Assigned Cresnet ID Table.

Device Cresnet ID
Crestron DIN-AP3 (Controller) Self-Addressed

Crestron DIN-PWS50 (Power Supply) Self-Addressed
Crestron C2N-DB12W (Keypad) 03

Crestron DIN-8SW8-I (Lighting Module) 15
Crestron C2N-DB12W (Keypad) 23

buses are commonly used in E-IoT. Cresnet is a widely-used propri-
etary protocol of the popular Crestron E-IoT smart systems. Based
on RS-485 communication, Cresnet is used to power, control, update,
identify, and configure Cresnet-enabled devices (e.g., controllers,
lighting modules, keypads, touchscreens). As a proprietary protocol,
not much information is available on the technical specification
of the Cresnet protocol. Cresnet comes in a 4-wire configuration,
with 24 (red, power), Y (white, TX/RX+), Z (blue, TX/RX-), and G
(black, ground) [13]. While there is no public specification given,
we found the information to support that Cresnet communication
operates at a 38400 baud rate and half-duplex operation [12].

Cresnet ID. Devices in a Cresnet network are addressed with a
network ID. The IDs are hexanumerical and range from 00 to FF.
Cresnet IDs identify individual Cresnet devices in the network. The
integrator assigns unique Cresnet IDs to each Cresnet device during
the configuration.

Proprietary Protocol Analysis.AsCresnet is largely undocumented,
we faced a number of challenges in the analysis stage of this proto-
col. With no available documentation on the protocol, we referred
to some existing open-source software and legacy manuals to find
the proper baud rate and specification of the Cresnet protocol. With
this basic information, we could begin the analysis of the protocol.
While the data structure of Cresnet communication is not publicly
accessible; our initial analysis shows that Cresnet devices place their
Cresnet ID on packet headers. This was observed when connecting
new devices to the communication bus and observing initiation
packets after new devices were connected. Further, the controller
periodically queries the devices in the Cresnet bus and expects re-
sponses. If these responses are not received, the Cresnet controller
is observed to query until it receives a response. This behavior was
observed while manually disconnecting keypads and monitoring
active communication. In addition to this periodic query-response
traffic in the Cresnet bus, Crestron devices also create E-IoT appli-
cation traffic.
SoftwareModule Implementation. In order to execute the Light-
ningStrike attacks, we developed a number of software modules.
The attacks were implemented using open-source tools available
online. We used Java as the base language with RX-TX libraries
for serial-based communication [38]. Java was chosen as it is com-
patible with many platforms. Modules requiring communication
rate specifications were configured with a 38400 baud rate, eight
data bits, one stop bit, and no parity. The software modules are im-
plemented into the attack device, as highlighted in our end-to-end
implementation (Section 4).

1) Monitoring Module. The monitoring module was implemented
in Java and the RX-TX library for RS-485-based communication.

111

LightningStrike: (In)secure Practices of E-IoT Systems in the Wild WiSec ’21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates

As such, the module executes as a loop that listens to Cresnet
communication with the serial settings specified.

2) Injection Module. The injectionmodule was implemented using
RX-TX’s write() function. The write() function allows us to
inject any message as a hex string over the Cresnet bus.

3) Flooding Module. The flooding module is implemented using a
Java loop and RX-TX broadcasting RS-485 packets over the Cresnet
bus. This code was effective in causing a DoS condition in the target
E-IoT system.

4) Re-addressing Module. To perform an attack, we used existing
tools to allow an attacker to modify the configuration of Cresnet
devices. This module is implemented through Crestron’s D3 Pro
proprietary tools, allowing us to reconfigure Cresnet IDs in inter-
faces.

5) Filtering Module. The filtering module was implemented as
a Java character array ArrayList and a filtering component in the
monitoring module. While software such as Wireshark exists, pro-
grammed filtering was sufficient for testing purposes since the
protocol is proprietary.

6 LIGHTNINGSTRIKE ATTACKS

EVALUATION

In this section, we realize the LightningStrike attacks and analyze
their effects on E-IoT systems. Additionally, we discuss the results
and implications of individual attacks.

Attack 1: Flooding Denial-of-Service. This attack was created
to demonstrate that Threat 1 (DoS, Section 3) is viable through
LightningStrike by overwhelming the communication bus with
messages.

Step 1 - Activation.Activation of this attack was executed through
the attacker’s client interface. This initiated the attack condition
with the attack device and began the execution.

Step 2 - DoS Payload. As the attack executed, the attacker’s
adapter flooded the Cresnet bus with repeated RS-485 messages to
overwhelm communications. This was accomplished with Light-
ningStrike’s flooding module which injected messages that did
not even need to follow any special format to flood the Cresnet bus.

Evaluation. This attack was a complete success as all Cresnet
communication was rendered inoperable just in a few seconds. This
caused several notable negative impacts to the system. First, all
keypads connected to the communication bus were inoperable, thus
any control to any light or programmed event in the Crestron sys-
tem became inaccessible. Second, the attack is not easily traceable;
there were no messages or feedback from the system to notify a
user or an integrator that the system was being attacked. The quick
activation allows the attacker to easily control the availability of
the E-IoT system on activation and de-activation. As a DoS attack is
not easily identified, a user or technician may believe that there is
a faulty component in the system. This DoS attack is presented as a
proof-of-concept which can act as a part of more complex attacks.

Attack 2: Malicious Eavesdropping. Attack 2 demonstrates that
Threat 2 (Malicious Eavesdropping, Section 3) is viable on the Cre-
stron testbed. This attack used the monitoring and filtering modules
to observe and infer information from Cresnet packets.

Figure 5: A snapshot of the captured periodic query-

response traffic during Attack 2 (Malicious Eavesdropping)

where the Cresnet IDs are highlighted.

Step 1 - Activation. With the attacker’s device inserted into the
Cresnet bus, the attack began through the attacker’s client machine.
It started with the activation of the Java client and the monitoring
module began to sniff packets over the bus.

Step 2 - Monitoring. Using the monitoring module active, the
attacker eavesdropped on active communication occurring through
the Cresnet bus. The monitoring module operated in a loop, in an
independent thread and captured Cresnet communication.

Step 3 - Analysis and Filtering. During this step, we analyzed
the ongoing communication and performed traffic filtering using
the filtering module. This allowed us to filter the periodic query-
response traffic between the Crestron controller and the devices.
Such filtered messages allowed us to capture the unique Cresnet
IDs 00, 02, 03, 15, and 23 in the network.

Step 4 - Final Analysis. After the periodic query-response traffic
was filtered, we focused on the remaining E-IoT traffic and we ob-
served spikes in data packets when user actions were occurring. The
spikes signal Cresnet activity such as button presses, disconnected
keypads, or activity occurring in other rooms.

Evaluation. The attack monitored and gathered information from
the Cresnet bus successfully due to Cresnet’s lack of encryption.
We highlight a snapshot of the captured Cresnet communication in
Figure 5, where communication is in the order it was received. First,
monitoring the Cresnet bus easily allowed us to gather Cresnet IDs.
As such, an attacker can easily know howmany Cresnet devices are
connected to the communication bus through their unique IDs. Our
eavesdropping revealed at least four unique devices: the keypads,
the lighting module, and the controller. We could observe spikes of
activity when keypad buttons were pressed and other actions were
executed on the bus. An attacker can use this information to infer
building occupancy by identifying keypads in specified locations
and listening for events originating from the associated Cresnet
ID. As the attack was performed through passive monitoring, no
alarms, or any unexpected behavior occurred in the Cresnet bus or
any of the dependent devices (e.g., keypads, controller).

Attack 3: Impersonation-basedDenial-of-ServiceAttack.This
attack was designed to demonstrate another form of DoS attack
using Threat 1 and Threat 3 (DoS and Impersonation, Section 3)
through LightningStrike. As such, we accomplished a DoS con-
dition by creating an ID conflict between devices. The attack takes

112

WiSec ’21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates L. Puche Rondon, L. Babun, A. Aris, K. Akkaya, and A. S. Uluagac

Figure 6: Cresnet ID change window in D3 Pro Crestron

software during Attack 3 (Impersonation-based Denial-of-

Service).

advantage of Cresnet’s identification phase when a new device is
added to the system. Our research showed that new devices broad-
cast several packets upon connection and Cresnet relies solely on
the Cresnet ID to identify the individual devices, button presses,
and other actions.

Step 1 - Removal. We initiated the attack by disconnecting a
keypad (Cresnet ID: 03) from the network bus. Disconnection only
disables that keypad as it is offline. Disconnection is trivial as it
can be done by simply removing a keypad from the wall with a
screwdriver and disconnecting the physical Cresnet connector.

Step 2 - Modification. Using a spare controller and software, we
altered the Cresnet ID of the keypad to “23” without any form of
validation as shown in Figure 6. We changed the ID of a keypad
with the ID of an existing keypad to purposely cause an ID conflict
in the Cresnet bus. Additionally, this was also accomplished by
physically replacing the original keypad with an identical keypad
with a pre-assigned ID.

Step 3 - Re-connection. The altered keypad was reconnected to
the Cresnet bus, where the keypad attempted to advertise itself as
a new keypad with ID “23”. This caused an internal conflict in the
Cresnet network between both keypads, causing the keypads to
fall offline.

Evaluation. The attack was completely successful. When the
conflicting keypad was connected the Cresnet bus, both keypads
caused conflicts and stopped functioning. As such, this can act as a
form of targeted attack over the communication bus. Additionally,
an advantage is that our attack device in this case could also be an
existing keypad and would only require re-addressing an available
keypad to cause a DoS condition.

Attack 4: Replay Attack. This attack was created to demonstrate
that Threat 4 (Communication Replay, Section 3) is possible on the
Cresnet bus. Further, we highlight the implications of replay attacks
on E-IoT systems.

Step 1 - Activation. With the attack device connected to the
Cresnet bus, the attack was initiated through the attacker’s client
using the monitoring module.

Step 2 - Monitoring. With the monitoring module active, we
awaited keypad press commands relayed through the Cresnet bus.
The Cresnet communication was recorded for later analysis.

Step 3 - Analysis. After the initial capture, we determined the
packets issued from the device with Cresnet ID 03. We successfully
identified the Cresnet packet transmitted during a button press to
activate a programmed event (powering on light 1 in the lighting

Figure 7: A snapshot of the messages captured from Cresnet

bus during Attack 4 (Replay Attack).

module). The specific packet was identified from the header “0300”,
which notes the message from ID 03 (keypad) to ID 00 (controller).

Step 4 - Replay.With the packet captured, the same packet was
replayed using a user interface in the attack client. As such, the
message was then injected into the Cresnet bus. The testbed reacted
by powering on light 1 on the DIN-8SW8-I as if the button had been
pressed.

Evaluation. We evaluated this attack on the success of replaying
button presses from a Cresnet keypad. As such, the attack was en-
tirely successful in replaying button presses on the Cresnet bus. The
initial monitoring phase for messages was successful as the packets
were captured during physical button presses. Step 2 of the attack
can be observed in Figure 7. In this step we could easily observe
spikes in activity on button presses. With the messages captured,
our attempts to replay a button press (button 1) were successful,
with the testbed reacting by turning on a light associated with
button 1 as if the button had been pressed. Further, we could use
the same captured packet to turn on the light again, demonstrating
there is no replay protection in the Cresnet bus. The implications
of this attack show that an attacker could capture a button press to
unlock an Crestron-controlled door with the same captured code,
or ultimately assume control of integrated devices by replaying the
associated button presses.

SummaryAs LightningStrike attacks were developed and tested,
we demonstrated that insecure proprietary protocols can havemany
negative impacts on the security of E-IoT. From our attacks, we
concluded that without any form of security beyond obscurity, a
knowledgeable attacker can easily compromise E-IoT to their ben-
efit. All of the proposed attacks were implemented successfully,
the implications of which clearly show the potential of Light-
ningStrike attacks. In Attack 1 and Attack 3, we demonstrated that
multiple Cresnet-based interfaces can be disabled by an attacker.
This is a viable form of preventing access to any user-controlled
systems through a DoS attack. As E-IoT manages light control, gate
access, and other essential components, an authorized user can be
prevented from operating a connected system through the attack
proposed in our examples. Further, programmed events such as
panic buttons will not execute while a DoS attack is active on the
affected interfaces. In Attack 2 we showed that an attacker can
capture communication between multiple devices from a single
point of connection, the implications of which can be abused by an
attacker. With Attack 3, creating a Cresnet ID conflict would be no

113

LightningStrike: (In)secure Practices of E-IoT Systems in the Wild WiSec ’21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates

issue for attackers as all the source and destination addresses are
broadcasted over the communication bus. Further, if an attacker has
an idea of which Cresnet IDs belong in which locations, they can
infer which room is occupied. As button presses and messages are
broadcasted no matter where the keypad is located, an attacker can
infer information on unauthorized locations and query equipment
unreachable via traditional means (e.g., TCP/IP, WiFi, Bluetooth).
As Attack 4 (replay attack) was successful, we show that an attacker
can severely compromise the security of Crestron systems. For in-
stance, if an attacker manages to re-address a keypad using a replay
attack, it is possible to reprogram a number of devices. Understand-
ing the Cresnet protocol through further reverse engineering may
allow future attacks through generating Cresnet packets without
the need for capture and replay.

7 DISCUSSION

In this section, we outline the findings and contributions, and dis-
cuss the possible defense mechanisms and the corresponding chal-
lenges.
Findings. In this work, we explored the security of E-IoT and
found some inherent vulnerabilities of proprietary communication
protocols in E-IoT. Specifically, we focused on Crestron, one of
the most popular E-IoT vendors. We found that the widely-used
Cresnet protocol does not have any security mechanisms to ensure
confidentiality, authenticity, integrity, or access control. As such,
we found some notable vulnerabilities in the Cresnet protocol. First,
we found that Cresnet has no encryption in the protocol, allowing
any device in the Cresnet bus to capture andmonitor ongoing traffic.
Thus, it is trivial for an attacker to observe communication, collect
IDs, and infer user interactions. Second, there are no rate-limiting
functions, allowing an attacker to easily flood the communication
bus and cause DoS conditions. Third, Cresnet message integrity
is not guaranteed. Without timestamps or signatures, an attacker
can replay any message anytime as the protocol does not reject
older messages. An attacker can easily abuse the protocol and
replay malicious packets with the E-IoT system accepting them as
legitimate. Finally, Cresnet devices do not have protections against
unauthorized modification. For instance, re-addressing a keypad
for Crestron E-IoT can be done without any form of authorization.
An attacker can reconfigure devices to cause a DoS, or simply
disrupt E-IoT operation by altering the IDs of multiple devices.
Once the devices have been altered, the Crestnet-based system
cannot self-recover. In addition, the end-users cannot fix this issue
and will be forced to contact their integrator at a cost of time and
money. LightningStrike demonstrates that it is trivial for an
attacker to use communication buses in order to compromise E-IoT
through proprietary protocols. These threats could be critical, as
E-IoT systems such as Crestron, control emergency equipment and
physical access, the consequences of which may be as costly and
dangerous as well-known attacks with a low level of effort and
knowledge from an attacker.
Contributions. Our research provided several contributions to-
wards the security of E-IoT systems. As mentioned in Section 5,
we emphasized that the Crestron brand is currently one of the
most popular E-IoT systems available worldwide with 1.5 billion
dollars in annual revenue [30]. With this work, we demonstrated

that unsecured proprietary communication protocols used in E-IoT
systems can lead to downtime, a breach of privacy, and a breach of
physical security. Additionally, this work aimed to raise awareness
on lesser-known but widely-used protocols in E-IoT systems such
as Cresnet. As such, we highlighted vulnerabilities found during
our research, and how the lack of common security mechanisms in
proprietary-protocols can easily lead to critical vulnerabilities in
E-IoT systems. We used the LightningStrike proof-of-concept at-
tacks to expose these vulnerabilities, and presented several practical
attacks that can contribute towards more complex, larger attacks.
LightningStrike introduced a new threat vector, so that future
iterations of E-IoT systems and their proprietary protocols can be
designed with secure practices in mind for communication buses.
Since systems such as Crestron have been deployed for decades,
we expect that this work can motivate further research on E-IoT
attacks, security mechanisms, proprietary protocol security, highly-
deployed threat vectors, and other popular E-IoT systems that have
not received any form of security scrutiny.

Possible Defense Mechanisms and Challenges. Security for E-
IoT must go beyond ensuring the confidentiality, integrity, and
availability but also must consider the challenges associated with E-
IoT design, proprietary architecture, physical security, and software
security. One of the biggest challenges in securing proprietary E-
IoT communication is that most of these systems are closed-source
that use custom protocols. Without specifications available on most
proprietary protocols, the packet structure, exception cases, and
communication process have to be reverse engineered. Further,
depending on the system and software versions, the implementa-
tion of proprietary protocols can differ. Additionally, many E-IoT
systems require backward compatibility, making some traditional
solutions that patch existing protocols with security mechanisms
(e.g., encryption, signatures, timestamps) difficult to deploy on older
systems. Ideally, proprietary communication protocols should fol-
low a secure communication standard stack and implement vendor-
specific functions. However, a standard would require an agreement
between the top E-IoT vendors. For newer E-IoT systems, eaves-
dropping can be remedied by enabling encryption in the network.
Additionally, newer protocols should protect from impersonation
and replay attacks through the use of timestamps and signed mes-
sages. Physical-based mitigation strategies can also be helpful as
there are physical actions an attacker must take to compromise E-
IoT devices. For instance, E-IoT systems can use broadcast messages
from devices to identify when a keypad is removed or tampered and
notify administrators before an attack occurs. Such a design could
expand into a live-mode where any modifications to any devices
notify administrators as tampering. Further, it can be possible to
segment daisy-chain lines depending on the location of interfaces
(e.g., all devices of a sensitive location on one line, all devices in
public locations on another line). Sensor-based solutions can also
prevent physical tampering, as well as to provide a context-aware
solution to button presses. For instance, certain messages should
only be received if there is a sensor activity near the user interface.

8 RELATEDWORK

Smart Device Security. Attacks against smart devices has been
an ongoing topic of research in recent years. As early as 2013,

114

WiSec ’21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates L. Puche Rondon, L. Babun, A. Aris, K. Akkaya, and A. S. Uluagac

works have highlighted various threats in smart devices and how
attackers are in constant search of new threat vectors to infect and
compromise smart devices [1–4, 6, 24, 28, 40]. Further, research in
alternative threat vectors such as USB and HDMI shows how an
attacker can easily compromise devices using insecure protocols
[17, 18, 35]. Very little research exists on the specific vulnerabilities
of E-IoT systems or proprietary protocols. Coverage referring to
such systems often comes in the form of vendor guarantees for
security on traditional network attacks (e.g., TCP/IP components)
[15]. Research on proprietary smart system protocols and threats
has been mostly reserved to reverse engineering of protocols or
encryption such as Somfy RTS [33, 34]. Specifically for Crestron, the
Cresnet protocol is closed-source; thus, the only prior research we
identified is an attempt at creating a Cresnet protocol monitoring
tool [43]. Prior research on E-IoT lighting control systems (LCSs) by
the U.S. Department of Energy has highlighted some security risks
that come from LCSs [32]. In the topic of E-IoT, Puche et al. [36]
covered driver-based attacks against E-IoT systems, compromising
E-IoT through a software threat vector.
Industrial Bus Security. In terms of industrial bus security, sev-
eral researchers have proposed works in industrial control net-
works, in-vehicle networks, and other serial-based networks. Well-
known industrial protocols, such as Modbus, DNP3, S7comm, and
IEC 60870-5 employ serial-based communication buses for indus-
trial devices. Industrial networks can be targeted by several threats
such as man-in-the-middle (MITM). In this regard, the survey of
Conti et al. [7] highlighted MITM attacks. In terms of the studies
aiming to protect industrial networks, the works of Dudak et al. [19]
and Wilson [45] aimed to incorporate confidentiality, integrity, and
authenticity to industrial protocols against threats such as MITM at-
tacks. As a standardization effort to ensure the security of industrial
protocols, including serial-based communication buses, the IEEE
1711.2 working group proposed the Secure SCADA Communica-
tions Protocol [22]. A comprehensive review of security challenges
regarding both serial and non-serial-based communication buses
used by the industrial protocols can be found in the study of Volkova
et al. [44]. Further, solutions were proposed by researchers to de-
tect attacks targeting serial-based communication buses. To name
a few, Eigner et al. [20] proposed an ML-based defense approach
using K-nearest neighbors towards detecting MITM attacks against
industrial control networks (i.e., Modbus). Similarly, Lan et al. [25]
proposed a method of classifying S7comm traffic to detect data tam-
pering caused by MITM attacks. Controller Area Network (CAN)
bus used in in-vehicle networks employs serial communication [42].
CAN bus security has been a very active topic of research, and an
extensive analysis of intrusion detection systems in this regard can
be found in the work of Young et al. [47]. In the work of Buttigieg
et al. [5], the researchers investigated security issues and executed
MITM attacks against a CAN network. Morgner et al. [31] proposed
a novel attack that is based on third-parties deploying a malicious
implant that tampers with the serial communication of the target
hardware. In their study, the malicious implant is controlled by a
remote attacker via IoT communication protocols and is used to
conduct various attacks.

LightningStrikediffers frompriorworks as follows:While
prior works highlight threats against off-the-shelf IoT systems
through well-known attack vectors (e.g., TCP/IP, WiFi, Zigbee,

Z-Wave), our work is the first in the literature that uncovers the
insecurities of E-IoT by focusing solely on proprietary protocols
used in E-IoT. By this way, we shed light upon security of propri-
etary E-IoT communication through unconventional attack vectors.
In order to analyze the security of such systems and demonstrate
realistic attacks, we created a testbed utilizing real E-IoT devices
of one of the most popular E-IoT systems, namely Crestron. We
demonstrated four attacks, specifically two distinct types of DoS,
eavesdropping, and replay attacks. The scope of our attacks relies
on proprietary communication, and does not rely on any software-
based vulnerabilities, overflows, traditional network connectivity,
or fuzzing.

9 CONCLUSION

The widespread adoption of smart systems has changed the lives
of millions of users worldwide. In these smart ecosystems, E-IoT
allows users to control lighting fixtures, relays, shades, door access,
and scheduled events. E-IoT systems from various vendors in huge
quantities can be found in smart buildings, conference rooms, gov-
ernment or smart private offices, hotels, and similar professional
settings. One of the core E-IoT components are proprietary com-
munication protocols that are used for the communication between
E-IoT devices. In contrast to well-known communication protocols,
very little research exists that investigates the security of these
communication protocols. For this reason, users wrongly assume
that E-IoT systems and their proprietary components are secure. To
investigate the security of E-IoT, we proposed LightningStrike,
a series of proof-of-concept attacks that leverage insecure E-IoT
communication practices and vulnerabilities to an attacker’s ad-
vantage. Specifically, with LightningStrike we showed that it
would be very easy for an attacker with a low level of effort and
knowledge to compromise an E-IoT system through communica-
tion buses. To implement and test LightningStrike attacks in a
realistic manner, we created an E-IoT testbed using real E-IoT de-
vices. With LightningStrike, we analyzed the proprietary Cresnet
communication protocol and implemented a series of attacks on
the testbed. Specifically, we demonstrated that E-IoT is suscepti-
ble to Denial-of-Service, eavesdropping, impersonation, and replay
attacks due insecure communication practices. LightningStrike
attacks clearly demonstrated that millions E-IoT deployments in
various professional environments are not secure. In addition, these
threats could be very critical, as E-IoT systems may control emer-
gency equipment and physical access, the consequences of which
may be as costly and dangerous as well-known notorious attacks.
As future work, we aim to develop a security mechanism to protect
against LightningStrike-style attacks while considering the E-IoT
proprietary protocols’ use cases, designs, and limitations.

10 ACKNOWLEDGMENTS

This work is partially supported by the U.S. National Science Foun-
dation (Awards: NSF-CAREER-CNS-1453647, NSF-1663051). The
views are those of the authors only. We also thank the anonymous
reviewers and the shepherd for their valuable feedback and time
on this paper.

115

LightningStrike: (In)secure Practices of E-IoT Systems in the Wild WiSec ’21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates

REFERENCES

[1] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. SoK:
Security Evaluation of Home-Based IoT Deployments. In 2019 IEEE Symposium
on Security and Privacy (SP). 1362–1380. https://doi.org/10.1109/SP.2019.00013

[2] A. Arabo and B. Pranggono. 2013. Mobile Malware and Smart Device Security:
Trends, Challenges and Solutions. In 2013 19th International Conference on Control
Systems and Computer Science.

[3] Leonardo Babun, Hidayet Aksu, and A. Selcuk Uluagac. 2019. A System-Level
Behavioral Detection Framework for Compromised CPS Devices: Smart-Grid
Case. ACM Trans. Cyber-Phys. Syst. 4, 2, Article Article 16 (nov 2019), 28 pages.

[4] Leonardo Babun, Z. Berkay Celik, Patrick McDaniel, and A. Selcuk Ulu-
agac. 2019. Real-time Analysis of Privacy-(un)aware IoT Applications.
arXiv:cs.CR/1911.10461

[5] Robert Buttigieg, Mario Farrugia, and Clyde Meli. 2017. Security issues in con-
troller area networks in automobiles. In 2017 18th International Conference on
Sciences and Techniques of Automatic Control and Computer Engineering (STA).
93–98. https://doi.org/10.1109/STA.2017.8314877

[6] Z. Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu, Gang Tan,
Patrick McDaniel, and A. Selcuk Uluagac. 2018. Sensitive Information Tracking
in Commodity IoT. In 27th USENIX Security Symposium. 1687–1704.

[7] Mauro Conti, Nicola Dragoni, and Viktor Lesyk. 2016. A Survey of Man In The
Middle Attacks. IEEE Communications Surveys Tutorials 18, 3 (2016), 2027–2051.
https://doi.org/10.1109/COMST.2016.2548426

[8] Control4. 2013. Configurable Decora Wired Keypad Installation Guide.
https://www.control4.com/docs/product/wired-keypad/installation-
guide/english/revision/B/wired-keypad-installation-guide-rev-b.pdf. Online:
Accessed 20-March-2020.

[9] Control4. Jun, 2010. Getting Started with Composer Pro. https://www.
control4.com/files/dealers/200-00168-ComposerProGettingStarted.pdf. Online:
Accessed 10-December-2019.

[10] Control4. Mar, 2010. Composer Pro Software Release Update Instruc-
tions. https://www.control4.com/files/dealers/TechDoc00005_ComposerUpdate
Instructions_1 8 2.pdf. Online: Accessed 10-April-2020.

[11] Crestron. [n.d.]. Crestron Technical Institute. https://www.crestron.com/training.
Online: Accessed 10-December-2019.

[12] Crestron. 2006. Crestron Isys Touchpanel Operation Guide. https://www.
crestron.com/getmedia/818150e6-4976-4982-8c05-ba7d2b33957b/mg_tps-
12b_12w_15b_15w_17b_17w_1 Online: Accessed 10-April-2020.

[13] Crestron. 2020. Cresnet Wiring - Cable Types & Lengths for Connecting
Devices. https://support.crestron.com/app/answers/detail/a_id/1629//̃cresnet-
wiring—cable-types. Online: Accessed 10-April-2020.

[14] Crestron. 2020. Crestron’s Commitment to Security.
https://www.crestron.com/About/commitment-to-security. Online: Ac-
cessed 20-October-2020.

[15] Crestron. 2020. Security at Crestron. https://www.crestron.com/Security/Security-
at-Crestron. Online: Accessed 18-May-2020.

[16] David Kravets. 2011. Wi-Fi–Hacking Neighbor From Hell Sentenced to 18 Years.
https://www.wired.com/2011/07/hacking-neighbor-from-hell/. Online: Accessed
15-May-2021.

[17] Kyle Denney, Enes Erdin, Leonardo Babun, and A. Selcuk Uluagac. 2019. Dy-
namically Detecting USB Attacks in Hardware: Poster. In Proceedings of the 12th
Conference on Security and Privacy in Wireless and Mobile Networks. 328–329.

[18] Kyle Denney, Enes Erdin, Leonardo Babun, Michael Vai, and Selcuk Uluagac. 2019.
USB-Watch: A Dynamic Hardware-Assisted USB Threat Detection Framework.
In International Conference on Security and Privacy in Communication Systems.
Springer, 126–146.

[19] J. Dudak, G. Gaspar, S. Sedivy, P. Fabo, L. Pepucha, and P. Tanuska. 2019. Serial
Communication Protocol With Enhanced Properties–Securing Communication
Layer for Smart Sensors Applications. IEEE Sensors Journal 19, 1 (2019), 378–390.

[20] Oliver Eigner, Philipp Kreimel, and Paul Tavolato. 2016. Detection of Man-in-the-
Middle Attacks on Industrial Control Networks. In 2016 International Conference
on Software Security and Assurance (ICSSA).

[21] Josh Hendrickson. 2018. ZigBee vs. Z-Wave: Choosing Between Two Big
Smarthome Standards. https://www.howtogeek.com/394567/zigbee-vs.-z-wave-
choosing-between-two-big-smarthome-standards/. Online: Accessed 20-October-
2020.

[22] IEEE. 2020. IEEE Standard for Secure SCADA Communications Protocol (SSCP).
IEEE Std 1711.2-2019 (2020), 1–37.

[23] IoTBusinessNews. Sept, 2018. The number of smart homes in Europe and North
America reached 45 million in 2017. Online: Accessed 10-December-2019.

[24] C. Kaygusuz, L. Babun, H. Aksu, and A. S. Uluagac. 2018. Detection of Compro-
mised Smart Grid Devices with Machine Learning and Convolution Techniques.
In 2018 IEEE International Conference on Communications (ICC). 1–6.

[25] Haiyan Lan, Xiaodong Zhu, Jianguo Sun, and Sizhao Li. 2020. Traffic Data
Classification to Detect Man-in-the-Middle Attacks in Industrial Control System.
In 2019 6th International Conference on Dependable Systems and Their Applications
(DSA). 430–434. https://doi.org/10.1109/DSA.2019.00067

[26] LiquidSpace. 2021. LiquidSpace: Rent flexible office space.
https://liquidspace.com/. Online: Accessed 15-May-2021.

[27] LiteTouch. 2006. LiteTouch Lighting Control Systems Installation and Trou-
bleshooting Manual. http://sav-documentation.s3.amazonaws.com/Internal Doc-
umentation/LiteTouch and Savant Lighting/Troubleshooting Manual.pdf. Online:
Accessed 20-March-2020.

[28] Juan Lopez, Leonardo Babun, Hidayet Aksu, and A Selcuk Uluagac. 2017. A
Survey on Function and System Call Hooking Approaches. Journal of Hardware
and Systems Security 1, 2 (2017), 114–136. Accessed: 11-17-2018.

[29] Lutron. 2020. Lutron Integration Protocol.
http://www.lutron.com/TechnicalDocument Library/040249.pdf. Online:
Accessed 10-May-2020.

[30] Mark N. Vena. 2018. How Crestron Paved The Way For The Smart Home,
AndMore. https://www.forbes.com/sites/moorinsights/2018/08/23/how-crestron-
paved-the-way-for-the-smart-home-and-more/#397001f141f8. Online: Accessed
18-May-2020.

[31] Philipp Morgner, Stefan Pfennig, Dennis Salzner, and Zinaida Benenson. 2018.
Malicious IoT Implants: Tampering with Serial Communication over the Internet.
In Research in Attacks, Intrusions, and Defenses, Michael Bailey, Thorsten Holz,
Manolis Stamatogiannakis, and Sotiris Ioannidis (Eds.). Springer International
Publishing, Cham, 535–555.

[32] United States Department of Energy. 2018. Cyber Security for Lighting Sys-
tems. https://www.energy.gov/sites/prod/files/2018/06/f52/cyber_security_ light-
ing.pdf.

[33] Pushstack. 2016. Control4 driver decryption. https://pushstack.wordpress.com
/2016/03/06/control4-driver-decryption/. Online: Accessed 18-May-2020.

[34] Pushstack. 2016. Somfy Smoove Origin RTS Protocol. https://pushstack.
wordpress.com/somfy-rts-protocol/. Online: Accessed 18-May-2020.

[35] Luis Puche Rondon, Leonardo Babun, Kemal Akkaya, and A. Selcuk Uluagac. 2019.
HDMI-Walk: Attacking HDMI Distribution Networks via Consumer Electronic
Control Protocol. In Proceedings of the 35th Annual Computer Security Applications
Conference. 10.

[36] Luis Puche Rondon, Leonardo Babun, Ahmet Aris, Kemal Akkaya, and A. Selcuk
Uluagac. 2020. PoisonIvy: (In)Secure Practices of Enterprise IoT Systems in Smart
Buildings (BuildSys ’20). Association for Computing Machinery, New York, NY,
USA, 130–139. https://doi.org/10.1145/3408308.3427606

[37] Luis Puche Rondon, Leonardo Babun, Ahmet Aris, Kemal Akkaya, and A. Selcuk
Uluagac. 2021. Survey on Enterprise Internet-of-Things Systems (E-IoT): A
Security Perspective. arXiv:cs.CR/2102.10695

[38] RXTX. 2020. RXTX - A Java Cross Platform Wrapper Library For The Serial Port.
https://github.com/rxtx/rxtx. Online: Accessed 1-March-2020.

[39] Savant. 2014. Savant Smart Lightning Deployment Guide. https://support.savant.
com/pro. Online: Accessed 15-August-2020.

[40] Amit Kumar Sikder, Leonardo Babun, Hidayet Aksu, and A. Selcuk Uluagac.
2019. Aegis: A Context-Aware Security Framework for Smart Home Systems. In
Proceedings of the 35th Annual Computer Security Applications Conference. 14.

[41] Somfy. 2020. Control RTS Solutions with Most Automation Systems.
https://www.somfysystems.com/en-us/products/1810872/universal-rts-
interface. Online: Accessed 1-March-2020.

[42] H. M. Song, H. R. Kim, and H. K. Kim. 2016. Intrusion detection system based on
the analysis of time intervals of CAN messages for in-vehicle network. In 2016
International Conference on Information Networking (ICOIN). 63–68.

[43] Stephen Genusa. 2015. Crestron Cresnet Monitor.
https://pushstack.wordpress.com/somfy-rts-protocol/. Online: Accessed
18-May-2020.

[44] A. Volkova, M. Niedermeier, R. Basmadjian, and H. de Meer. 2019. Security
Challenges in Control Network Protocols: A Survey. IEEE Communications
Surveys Tutorials 21, 1 (2019), 619–639.

[45] Paul Lawrence Wilson. 2018. ModSec: A Secure Modbus Protocol. Master’s thesis.
Georgia Institute of Technology.

[46] Ryan Winfield and Mark Gerrior. 2006. Avoiding Interference in the 2.4-GHz ISM
Band. https://www.eetimes.com/avoiding-interference-in-the-2-4-ghz-ism-band/.
Online: Accessed 20-October-2020.

[47] C. Young, J. Zambreno, H. Olufowobi, and G. Bloom. 2019. Survey of Automotive
Controller Area Network Intrusion Detection Systems. IEEE Design Test (2019).

116

https://doi.org/10.1109/SP.2019.00013
http://arxiv.org/abs/cs.CR/1911.10461
https://doi.org/10.1109/STA.2017.8314877
https://doi.org/10.1109/COMST.2016.2548426
https://www. crestron.com/getmedia/818150e6-4976-4982-8c05-ba7d2b33957b/mg_tps-12b_12w_15b_15w_17b_17w_1
https://www. crestron.com/getmedia/818150e6-4976-4982-8c05-ba7d2b33957b/mg_tps-12b_12w_15b_15w_17b_17w_1
https://www. crestron.com/getmedia/818150e6-4976-4982-8c05-ba7d2b33957b/mg_tps-12b_12w_15b_15w_17b_17w_1
https://doi.org/10.1109/DSA.2019.00067
https://doi.org/10.1145/3408308.3427606
http://arxiv.org/abs/cs.CR/2102.10695

	Abstract
	1 Introduction
	2 Enterprise Internet-of-Things
	2.1 E-IoT Systems
	2.2 E-IoT Protocols

	3 Problem Scope and Threat Model
	3.1 Problem Scope
	3.2 Definitions
	3.3 Threat Model

	4 LightningStrike Architecture
	4.1 LightningStrike Overview

	5 LightningStrike Attacks Implementation
	6 LightningStrike Attacks Evaluation
	7 Discussion
	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References

