
OS Independent and Hardware-Assisted Insider
Threat Detection and Prevention Framework

Enes Erdin∗, Hidayet Aksu∗, Selcuk Uluagac∗, Micheal Vai† and Kemal Akkaya‡
∗ Cyber-Physical Systems Security Lab,

Florida International University, Miami, FL
{eerdi001, haksu, suluagac}@fiu.edu

† MIT Lincoln Laboratory
Lexington, MA
mvai@ll.mit.edu

‡ Advanced Wireless and Security Lab,
Florida International University, Miami, FL

kakkaya@fiu.edu

Abstract—Governmental and military institutions harbor crit-
ical infrastructure and highly confidential information. Although
institutions are investing a lot for protecting their data and assets
from possible outsider attacks, insiders are still a distrustful
source for information leakage. As malicious software injection
is one among many attacks, turning innocent employees into
malicious attackers through social attacks is the most impactful
one. Malicious insiders or uneducated employees are dangerous
for organizations that they are already behind the perimeter
protections that guard the digital assets; actually, they are trojans
on their own. For an insider, the easiest possible way for creating
a hole in security is using the popular and ubiquitous Universal
Serial Bus (USB) devices due to its versatile and easy to use plug-
and-play nature. USB type storage devices are the biggest threats
for contaminating mission critical infrastructure with viruses,
malware, and trojans. USB human interface devices are also
dangerous as they may connect to a host with destructive hidden
functionalities. In this paper, we propose a novel hardware-
assisted insider threat detection and prevention framework for
the USB case. Our novel framework is also OS independent. We
implemented a proof-of-concept design on an FPGA board which
is widely used in military settings supporting critical missions,
and demonstrated the results considering different experiments.
Based on the results of these experiments, we show that our
framework can identify rapid-keyboard key-stroke attacks and
can easily detect the functionality of the USB device plugged in.
We present the resource consumption of our framework on the
FPGA for its utilization on a host controller device. We show
that the our hard-to-tamper framework introduces no overhead
in USB communication in terms of user experience.

I. INTRODUCTION

Military bases and other governmental institutions put a
lot of effort in order to protect their confidential data from
attackers. For that purpose, they either assign different level of
permissions to the users or implement firewalls or log activities
or create honeypots. However, an intentional or unintentional
information leakage by an insider makes the biggest impact
on cyber assets as such perimeter defenses are, most of the
time, useless for an insider.

Information assurance is usually provided by logging the
activities or limiting the abilities of the users via software-
based solutions at the operating system level, e.g., file activity
monitoring software. Although the software-based loggers are
useful in many ways, like easiness of implementation or main-
tenance or interoperability, an attacker with enough motivation
and skills can circumvent such defensive barriers. In fact,
defensive software products have deficiencies in theory. First

of all, they are implemented on a proprietary hardware. One
can not verify full trust unless she knows the full design details
of the hardware being used. Secondly, in a computing system
the software and the operating system used are important such
that all low level protocols are implemented in the operating
system and are brought into use as libraries or kernel-level
modules; those libraries can easily be modified by malware or
viruses. Third, the configuration of the software tools is also
important; for example, a misconfiguration of a single firewall
will cause catastrophic results when attacked. Indeed, every
company is vulnerable to being hacked [1].

When it comes to preventing the information leakage,
Universal Serial Bus (USB) devices are handy devices for
transferring a vast amount of information from one source
to another. Due to past notorious incidents (e.g., Stuxnet [2])
and its destructive behavior, USB flash disk usage is still
limited and regulated for the last 15 years in military bases
[3]. However, the attacks originating from the USB devices
other than mass storage devices are becoming more complex
and unexpected and yet easier as the firmware of the USB
devices are more complex. Indeed the firmware of a specially
tailored USB device can easily be modified in order to mimic
human interface devices such as keyboards and mice [4], [5].
Additionally, those devices can open a network or a printer
interface on the host machine in order to attack to the host or
steal information from it.

In this paper, we propose a novel hardware-based insider
threat detection and prevention framework focusing on USB.
USB is the most powerful interface on a computing platform
contrary to its underestimated power of flexibility. Indeed,
organizations are investing in systems for network security for
preventing attacks from outsiders; however, USB usage (where
ability of turning into a network interface is only one out of
many capabilities of it) is under the mercy of its user with its
innate vulnerable nature. So, USB is the weakest yet strongest
interface for the use of an insider.

To address these issues, we implemented a novel detection
and prevention framework on a ZedBoard [6] hosting a Zynq
system-on-chip (SoC) from Xilinx [7]. The power of Zynq
comes from not only holding a dual core ARM processor
(PS), but also utilizing a rich logic environment (PL) which
can be served either for the use of the processor or standalone
use. Note that, FPGAs are widely used in military missions

Milcom 2018 Track 3 - Cyber Security and Trusted Computing

978-1-5386-7185-6/18/$31.00 ©2018 IEEE 926Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 17:11:49 UTC from IEEE Xplore. Restrictions apply.

supporting a wide range of forces, Air Force, Navy, Army, etc.
In our case, ARM processor is running a Linux desktop which
resembles the PC under protection. Around the processor, in
the programmable logic part (PL), we implemented a config-
urable and flexible USB sniffer and an independent monitoring
unit observing the data going through the USB connection. As
described previously, either the ARM processor or the Linux
OS may be vulnerable to attacks. However, the logic core
we designed monitors the USB communication and alerts the
system administrator through an independent administrative
channel so that reconnaissance can be done more efficiently.
Contributions: Our contributions are as follows:
• We implemented a novel USB communication sniffer as

a detection and prevention framework on the PL part of
Zynq SoC. The implementation can serve for high-level
synthesis implementation well with small modifications.

• The designed hardware core is flexible for serving the
needs related to the security policy of the organization.

• Since the offered design is fully transparent and isolated
from the main system, it creates no performance related
issues, no overhead in terms of consuming system re-
sources.

• The design supports low speed, full speed, and high speed
data transfers.

• Thanks to being just a physical addition to the system, it
is independent of the OS of the host, and it can be further
developed as a tamper proof defense mechanism.

Organization. The paper continues as follows: In Section
II, the background for the USB is discussed. In section III
the threat model is introduced. In Section IV, the test-bed is
introduced. In Section V, some use cases and results for related
experiments are presented. After summarizing related works
in Section VI, the paper is concluded with Section VII.

II. BACKGROUND

In this section we will briefly describe the USB communica-
tion protocol, its components and will define the term “insider
threat” in addition to well-known precautions for preventing
data leakage caused by insiders.

In the first years of modern computing simple peripheral
ports such as serial ports and the parallel printing ports were
enough to handle the data transfer between PC and the external
devices. Due to the increasing data amount to be transferred
and increasing capability of the peripheral devices with new
functionalities, USB emerged. The introduction of USB was
apparently one of the greatest advances in the communication
technology. Recently, most of the devices are shipped with
only USB and other I/O connections like video or network
connectors are omitted.

USB brings an undeniably rich user experience with its
built in functionalities. Power of being functional brings the
complexity. For example, for the Linux kernel, functionality
with flexibility caused a complex layered architecture for han-
dling the USB connection. Figure 1 shows the visited layers
and loaded drivers when handling a simple USB keyboard
in GNU/Linux OS; when a USB device is connected to a

Fig. 1. An overview of layers visited and drivers loaded while handling a
USB Human Interface Device (HID) in GNU/Linux OS.

computer, signal level change in the bus creates an interrupt
at the Host Controller. After recognizing that change, the initial
messaging starts. With suitable detection of the device, final
required drivers are loaded and the user starts to use the device
through the desired application. Being flexible comes with a
vulnerable nature which makes USB a good source of attack.
A smartly designed attack can open a serial port terminal over
TeleTYpewriter (TTY) on victim’s PC with root access, or a
USB can be programmed to mimic behavior of other devices
in order to create fake inputs.

USB is designed to operate in a master-slave fashion where
a host machine initiates and controls the communication be-
tween itself and the USB device. With the introduction of the
USB on-the-go standard, USB devices which are traditionally
thought to be slaves are able to act as hosts and can interact
with slave devices on some occasions, e.g., smart phones. USB
3.1 standard also started a new era in USB history with extra
capabilities like charging laptops while connecting displays
via it [8]. The new capabilities make USB standard hard to
vanish in the near future.
USB Communication Protocol. USB interface is the de facto
peripheral interface in computer systems. From network to
human interface device communications to printing to camera
applications, USB is serving users well as it was aimed.
The advancement in both communication bandwidth, man-
ufacturing capabilities and physical connectors with holding
backward compatibility USB will be used for decades to come.
Because of its popularity and ubiquity, we picked the USB
connection as the main source for an insider threat since, if
not secured, it is the most convenient way for getting lots of
information from a computer.
ULPI interface. The first USB transciever designs were
shipped with Macrocell Interface (UTMI) as a digital interface.
Since UTMI was consuming a big area because of the pin
count, lower pin count version of that intarface was introduced,
UTMI+ Low Pin Interface (ULPI).

Host Controller Interface (HCI). Host controller is the phys-
ical interface for connecting a device (USB in our case) to a
computer. It is basically the first level where the USB signaling
is converted into register transfer level signals for the use of
the operating system. HCI is the specification defining how

Milcom 2018 Track 3 - Cyber Security and Trusted Computing

927Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 17:11:49 UTC from IEEE Xplore. Restrictions apply.

the OS should interact with the host controller. For USB case,
Open, Universal, Enhanced and Extensible host controller
interfaces (OHCI, UHCI, EHCI, XHCI) are the four mostly
utilized specifications. The target of those HCIs are different
USB specification versions. We believe that realization of our
proposed design is best suited for the usage in host controllers.

USB Device Enumeration. When a device is first plugged
into a computer, change of voltage levels creates an interrupt
assertion in the host controller. The controller identifies the
specification version of the device. When the device specifi-
cation version is identified the initial message exchange starts.
In USB communication, the slave can not do anything until
the master asks for it to do.
• First message blocks: The host asks for the “Device

Descriptor” from the attached device. The address of the
device is initially 0 by default. The device descriptor is
the first crucial step for identifying the device type.

• Second message blocks: Host identifies the number of
interfaces the device has. Additionally, the host assigns
an address to the attached device. The interfaces can be
thought as the definition of capabilities that the attached
USB device has. For example, a simple web-cam device
has camera and microphone capabilities, those require
different interface drivers. With these messages the host
learns about the device by requesting configuration de-
scriptors, interface descriptors and endpoint descriptors
as needed.

• Remaining message blocks: After getting all the capabil-
ity information from the device, the OS loads the required
drivers and applications start using the capabilities of the
device in the way it is defined in the device driver.

For more information, we advise the readers to visit the
USB Implementers Forum (USB-IF) [9].
USB Packets. There are four different kinds of USB packets:
token, data, handshake, and start/end-of-frame packets and
four kinds of transfer types: isochronous, interrupt, control,
and bulk packet transfers. Each packet is identified by observ-
ing the 8-bit packet identification (PID) field in the beginning
of corresponding packet. Packet transmission starts right after
the transmission of synchronization bits. Synchronization bits
are utilized for the use at the electrical level in order to align
the data sampling clocks. So in practice, PID is the first byte
carrying information in a given USB packet.

III. THREAT MODEL

This section defines the insider threat problem and describes
the threat model. The term “insider threat” is used to define the
potential of data breach or harm to the assets of an organization
due to the actions carried out by an employee. The intent of the
employee can either be malicious such that the she wants to
give harm to the organization or she may be innocent that she
may harm the company accidentally. Insiders with malicious
behavior can steal the confidential data of an organization or
can create a backdoor for the outsiders for a more systematic
and persistent attack.

We consider an adversary (i.e., insider) who has restricted
access to a computing system. The adversary initiates physical
attacks to the host such as plugging a completely forbidden
or previously allowed but later modified USB device. The
attacker has physical access to the system; however, entrance
to the facility is controlled; hence, she can alter the device
hardware or firmware but, she can not completely replace
sub-systems with new ones. This type of adversary might
exist in facilities where the computers’ USB ports are directly
reachable. Additionally, computers can be protected by BIOS
passwords and the computer can be initialized by a live
operating system after taking required steps to change the
BIOS settings. Network connections to the computers are
allowed which creates another attack surface for the hosts.
The ultimate target of the attacker can be either exfiltrate data
from the host device or suspend the system.

Attacker can take the following specific actions in order to
be successful:
• Modified device insertion. The adversary can plug in

a previously allowed but later modified USB device.
BadUSB or USB devices with modified firmware fall into
this type of attack.

• Unauthorized Devices. This type of devices can be used
after eluding the software related security barriers. An
example of this type of attack can be starting the host
with external boot option so that the attacker can run a
live OS in the victim host.

• Access manipulation. The attacker can modify the
firmware of the USB devices such that she can alter
the capabilities of the device. USB device functionalities
other than usual human interface device or mass storage
device fall into that type of attack. Among those are
added microphone, headphone or network functions to
the device. Super-human typing, e.g., rapid key strokes
and rapid scrolling also fall into this category.

IV. DESIGN OVERVIEW OF THE FRAMEWORK

In this section, we detail the technical background of our
framework. In the heart of our design, there is a USB data
sniffer implemented in the logic part of the FPGA. Ideal way
of sniffing the data packets on the bus is transforming them
into lower speed digital signals like UTMI or ULPI packages.
The USB data are turned into ULPI signals. Based on the level
change in the control signals, the data capture between host
and the device is initiated. The USB enumeration process is
observed by utilizing finite state machines accordingly. Any
kind of descriptor supplied by the USB device is stored. The
rules supplied by the system administrator are also stored
in the logic part. The communication interface between the
administrator and the system can be any of the current
communication protocols. For the sake of the security it is
advised that communication should be other than that used
in the entire organization for networking. In our case just to
show the proof-of-concept, we used switches and the LEDs
on the board. The rules are input by the administrator in order
to allow or block certain type of devices. These rules can be

Milcom 2018 Track 3 - Cyber Security and Trusted Computing

928Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 17:11:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Overview of the proposed framework.

manufacturer and the product IDs or they can be specific inter-
face descriptors like keyboards, mice, printers, mass storage
devices and so on. When the rule matches with a property
of a connected USB device the design detects it and disrupts
the communication, namely, it resets the communication. The
best place for utilizing such a design is the host controller,
where every connection reaches out there before being served
by the operating system. This proof-of-concept design shows
applicability of our approach.

The proposed framework can be seen in Figure 2. In the
figure, the PC is the computer which is protected by the
organizational security policy, USB device is the device that
will be attached to the PC, and the shim icon at the lower
side represents the control unit which resembles the system
security administrators in practice. Defining the communica-
tion interface with the framework is not covered in this study.
In our case, monitoring is done via Logic Analyzer and control
is carried out via switches and buttons on the ZedBoard.

We used ZedBoard from Digilent [6] as the testbed. Zed-
Board’s Zynq has a hardly implemented ARM processor (PS)
core with a high speed USB interface attached to it. That built-
in USB interface of the Zynq SoC had given us a great idea
for implementing our design on the ZedBoard. However, the
USB interface of the processor can not be reached from the
logic part (PL) of the FPGA due to the limitations brought by
multiplexed input/output (MIO) and extended MIO (EMIO)
configuration options, by default design of the SoC. As a solu-
tion to that problem, an external USB physical layer USB3300
PHY is utilized [10]. USB3300 is a USB2.0 compliant USB
PHY which is widely used in commercial products.

VHDL is used for programming the FPGA and verification
is carried out by tests describing various scenarios directly on
the hardware via Vivado integrated logic analyzer (ILA).

In order to make the implementation hassle-free some points
should be clarified related to hardware design issues.
• Signal Integrity (SI) Issues. For a successful communica-

tion between the ZedBoard and the USB3300 evaluation
board, one should be careful about the SI related issues.
Since the USB PHY interface is using a clock of 60 MHz
frequency, in order to mitigate the SI related problems
we designed a custom board targeting the most possible
shortest signal trace. Long connections done with jumper
cables will be problematic. On the other hand, ZedBoard

is shipped with a serial 200 Ω resistors placed on the
general purpose test connectors. In order not to cause a
decrease in the signal strength, these resistors are replaced
by 0 Ω resistors.

• ZedBoard configuration. The processor part of the Zynq
is configured with the ability of running a full featured
Linux Desktop. The Linux kernel used is supplied by
Xilinx. The root file system is picked to be the Linaro
desktop (a debian based Linux distribution) which is
known to be supporting ARM devices [11]. So the final
design demonstration includes a Linux desktop with a
valid USB interface on the processor part and an active
USB packet sniffer on the logic part controlled and
monitored via switches and LEDs.

In the PHY part, observing a level change in “data direction”
pin, PID data can be captured. Captured PID type triggers a
finite state machine which gives data packets to the output
of the module. Those outputs are fed in to another finite
state machine so that the enumeration process is observed
and validated successfully. After observing the packets system
can infer the addresses of the USB devices, vendor IDs,
device IDs, number of endpoints, type of endpoints etc. If
administrator wants to prevent a particular type of device or
endpoint, she can define rules through the configuration input.

V. PERFORMANCE EVALUATION

In this section, experiments related to different use cases
and their results are discussed. During the evaluation we try
to find answers to the following questions: (1) whether if we
can measure the packet inter-arrival times in order to detect
fast key stroke-based attacks, (2) if we can identify the USB
device based on advertised descriptors, (3) what the resource
consumption of our framework on the FPGA will be, (4) how
we can hinder the communication when a malicious behavior
is noticed, (5) how we can verify our design, (6) how we can
come up with a testbed, and (7) how the framework is not
affected by the OS of the host.

A. Testbed Design

Fig. 3. Testbed setup to evaluate the framework. USB3300 is connected to
the Zynq board via a custom interconnect board.

Milcom 2018 Track 3 - Cyber Security and Trusted Computing

929Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 17:11:49 UTC from IEEE Xplore. Restrictions apply.

The final implementation of the proposed design is realized
on a combination of ZedBoard and the USB3300 evaluation
board as shown in Figure 3. The USB device is to be connected
to the USB3300 PHY. The USB port of the computer is also
connected to the USB3300 through a secondary connector.
PHY is configured by the logic part of the SoC and it is
assigned to be in the bypass mode.

B. Communication Disruption

As stated earlier in order to implement a fully functional
detector, the design should be located in the host controller.
Although our design can not be thought as a USB bridge, it
can still prevent USB from connection by disrupting the USB
bus. As USB specification points out, the USB devices can be
put into reset mode by asserting SE0 signal state on the bus.
This can be achieved by writing 0x50 to the Function Control
register of the PHY. Figure 4 is a screen capture after the USB
bus is disrupted on a PC running Windows 10.

Fig. 4. Unrecognized USB device warning after bus poisoning

C. Design Verification

Design is verified by conducting hardware level simulations
via integrated logic analyzer (ILA) as seen in Figure 5 in
conjunction with the usbmon dynamic kernel module [12].
Verification of the state machine based packet processing is
done by the help of GNU/Octave scripting language [13]. The
scripts are written in a way to simulate the hardware structure
for easiness and consistency of verification.

Fig. 5. Integrated Logic analyzer output waveform during design verification

D. Rapid keyboard strokes

This use case is a realization of the peensy attack [5]. In
this attack, the attacker loads a programmable USB device

with a malicious file and rapid keyboard entries via creating a
keyboard interface. This combination makes the attack highly
destructive. The attack can occur either on insider’s own PC
or the attacker can infect an unattended PC quickly.

To realize this experiment, we programmed the Teensy
board to mimic a keyboard in such a way that it sends
malicious commands to the PC. The script helps Teensy open
a terminal on Linux, modifies .bashrc file and closes the
terminal. Steps are shown below:

• Send a Ctrl + Alt + T combination to the PC. In
GNU/Linux OS this opens a terminal window.

• Send echo ′′alias lsclone = ls” >> ∼ /.bashrc′′ com-
mand as a payload which creates an alias named lsclone,
basically a command which mimics ls command.

• Send ALT + F4 or Ctrl + D key combination so that
the terminal is closed.

In order to create a defense for such rapid keyboard stroke
attack, we create a histogram of the inter-arrival times of the
key strokes. If the frequency or number of the rapid keystrokes
exceeds a previously defined threshold an alert is created. The
rationale behind this defense is that USB HID devices are
transmitted as interrupt data packets, and maximum frequency
for interrupt packages is 1Khz in modern operating systems.
A key is composed of two packets, one for hit the key and
the other is relase the key. So in theory, one can send 500
characters per second with a programmed keyboard.

This simple attack takes around 600ms of which is the
waiting time for terminal to be opened. The idea behind the
experiment is demonstrating that an employee with a malicious
intent can insert some malicious code to the computer of her
colleague by only plugging a USB device in a very short time.
During the experiments, it is realized that Teensy introduced
itself as a keyboard with additional 2 interfaces where, an
ordinary USB keyboard introduces only one interface which
defines itself as a HID-Keyboard device. The same experiment
replicated with the Rubber Ducky. Rubber Ducky successfully
introduced itself as a keyboard device. That makes Rubber
Ducky a tough target for defense.

E. Network interface

In this experiment, we try to identify different types of
devices and interfaces. Since it creates a very large attack
surfaces we picked USB network interface which is to be
identified. We plugged in a network USB adapter in order
to observe the enumeration process. The device introduced
itself with interface class and subclass codes as FF which
corresponds to a vendor specific class definition. We observed
the device ID and vendor ID, it was a device manufactured
by AX88179 Gigabit ehternet device from ASIX Electronics
Corporation. For preventing (or allowing) that type of device,
we created a filter to identify that vendor and device ID.
Hence, the USB device with that vendor ID is prevented when
plugged in.

Milcom 2018 Track 3 - Cyber Security and Trusted Computing

930Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 17:11:49 UTC from IEEE Xplore. Restrictions apply.

F. OS independency

Due to the nature of its open structure, the solutions in the
literature are based on modification of the Linux kernel. How-
ever, for insider threat detection, identification and prevention,
we should keep in mind that around 50% of the companies
are running in Windows OS [14]. Thanks to well defined USB
and USB driver specifications, the design we propose is OS
independent. We conducted all of our experiments in not only
Linux, but also in Windows OS, too.

G. Evaluation and Results

1) Effects on data bit rate: Since our design is purely
based on hardware flow, it does not have a direct effect on
communication bit rate. In order to observe the overhead of
the framework on effective bit rate, we transferred files from a
host to a USB mass storage device. Figure 6 shows the results
of file transfers with 3 different file sizes. In the experiments
files of sizes 600 KB, 6 MB, and 256 MB are transferred. The
mean of the duration of the transfers are plotted in Figure 6.
From the figure, we see that our design does not introduce a
significant latency in packet transmission.

Fig. 6. Average time for sending different size files from PC to USB Flash
disk with FPGA and without FPGA

2) Resource Allocation on the FPGA: In this section, the
resource allocation of the FPGA design are discussed. The
resources consumed in the Zynq SoC is shown in Table I.
Achievable maximum clock frequency is out of discussion
since the USB PHY we use has a fix 60 MHz clock. As a
proof-of-concept limited number rules are defined, extending
the rule table will introduce a slight increase in the resource
allocation. For an increase in the number of rules, a block
RAM utilization will be feasible. Resource utilization result
offers us that extending a USB host controller with such
capabilities is highly feasible and yet, it will be beneficial.

TABLE I
RESOURCE USAGE IN THE FPGA

Resource Name Usage (count)
Slice LUTs 785

LUT as logic 497
LUT as Memory 288

Slice Registers - Flip Flops 390

VI. RELATED WORK

In this section, we summarize the current literature about
the studies conducted to attack hosts through USB ports and
corresponding measures taken to prevent them. In order to
prevent insider threats, the companies are taking extreme pre-
cautions. Some of these precautions are employee screening,
legal obligations, education, duty separation, authentication,
activity monitoring and so on. Due to the competitive nature
of companies, much of those precautions are not satisfied, and
insider threats still remain to be one of the biggest problems
of the cyber world. For preventing data breach, both parties,
the employee and the organization, have responsibilities. In
that manner, the organization can make a stride in order to
harden their defense line. We mention some of these seemingly
efficient solutions.
• Activity monitoring and role-based authentication seems

to be a fast and easy solution for keeping data secure as
it relies on software based solutions. However, employee
still has the potential to pacify that software based secu-
rity burden and endanger the security of data and assets.

• Full disk encryption (FDE) is another solution for secur-
ing data. However, one should recall that the issue is the
insider. Full disk encryption is only effective when the
PC is initiated. After satisfying the login credentials the
information on the PC is vulnerable to all kinds of attacks
by the insider.

• Trusted platform module (TPM) is another instrument
helping to satisfy the integrity of the sub-systems.
Nonetheless as pointed out in FDE, TPM provides a
benefit for keeping the integrity of the assets. Besides,
successful attacks on TPM and FDE is another topic and
it is not the concern of this paper.

The security of USB ports always has been a topic of discus-
sion. Network attacks are prevented by complex systems built
by service providers, firewalls, demilitarized zone implemen-
tations or built-in defence mechanisms by operating systems.
However, due to its host level handling complexity, USB is a
major source for attack, and the victim can be affected even
by her own will by plugging a USB she found around [15].
USB mass storage devices still provide a good environment for
spreading digital viruses to victims. For instance, Stuxnet is
one of the most notorious and stealthy malware attack believed
to be initiated by a USB storage device [2]. Different from
the existing work, in our project we aim to filter the USB
data connection through a harder-to-compromise independent
channel by demonstrating its implementation on a hardware
test setup.

In 2016, an employee was accused for stealing 50TB of
data from National Security Agency (NSA) [16]. Tha attacker
is believed to be using a sophisticated software that leaves no
forensic footprint behind. He is reported that the insider might
be using a USB-bootable operating system in conjunction with
Tor or a VPN. In a similar attack an employee stole confiden-
tial data from his organization [17]. Aside from the fact that
the insider took advantage of being a system administrator as

Milcom 2018 Track 3 - Cyber Security and Trusted Computing

931Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 17:11:49 UTC from IEEE Xplore. Restrictions apply.

an insider, he carried the information via a USB flash disk and
made internal secrets public. BadUSB was the first practical
demonstration of how evil a USB device can turn into by
modifying its firmware [18]. In that study, it was shown that
USB firmware can be re-programmed so that the device can
behave in many different ways. For example, it behaves as a
mass storage, which is expected by the user, but behind the
scenes, it creates a network interface and inserts malicious
commands to the host. Yet, with a device like Rubber Ducky
USB, the hackers can create different attack vectors easily.

One similar application is the PoisonTap Attack [19].
In [19], a RaspBerry Pi Zero mini single board computer
was crafted for mimicking a USB device which maliciously
siphons the web cookies, exposes an internal router and creates
a backdoor for the attacker. The attack in the experiment is a
persistent one in which even after the removal of the device
the backdoor continues as intended. The attack detailed in
[20] shows that by plugging a visually ‘safe’ USB flash disk
into a Windows OS based PC an attacker can acquire the
login and e-mail credentials of the PC. Indeed, the method
is not new. Hacking passwords of many different applications
by numerous attacks can be achieved via USB drives [21].
For preventing USB-based attacks authors in [22] suggests
implementing a filter similar to the netfilter framework in
Linux kernel which regulates the USB packet traffic. As a
proof-of-concept Linux kernel of version 3.13 is modified.
The framework gives user the ability to perform USB ac-
tions selectively. Although the idea is good as mentioned
previously, it relies on pure software usage. In [23], the
author implements a hardware-based firewall. The approach is
using a two USB capable microprocessor and making them
communicate via SPI ports. The design is made in order
to mitigate the malicious behavior of the BadUSB network
attack. The drawback of the design is it supports low speed
and full speed communication.

VII. CONCLUSION

In this paper, we detailed, to the best of our knowledge,
the first proof-of-concept design of a hardware-assisted insider
threat detection and prevention module concentrated on USB
on an FPGA and presented the results of conducted experi-
ments for different use cases, namely, rapid keyboard stroke
attack and USB device type detection. We also demonstrated
the resource usage of the framework in the FPGA. The
framework supports low, full and high speed communication
specifications which is the limit of the PHY used throughout
the experiments. However, the design can easily be extended
to support recent USB 3.1 specification. We offer that the
administration access should be done through an independent
channel and our design is a realization of this idea. The design
is fully transparent to the normal user and there is no perfor-
mance limitations. In addition to all of these advantages, the
design is free from the architecture and type of the operating
system due to the nature of the USB communication standard.
Since the design has full access to the USB PHY, custom
USB packets can be created or monitored. That makes the

ZedBoard design a good test bed for future USB studies. As
a future work, packet detection based on behavioral analysis
for an extensive identification will be studied.

ACKNOWLEDGMENT

This work was supported in part by NSF-CAREER-CNS-
1453647 and NSF-1663051. The views expressed are those
of the authors only.

REFERENCES

[1] TechCrunch. (2017) Google’s Heather Adkins thinks everybody
is going to get hacked and you need to be ready. [Online].
Available: https://techcrunch.com/2017/09/18/googles-heather-adkins-
thinks-everybody-is-going-to-get-hacked-and-you-need-to-be-ready/

[2] Kim Zetter. (2014) An Unprecedented Look At Stuxnet,
The World’s First Digital Weapon. [Online]. Available:
http://www.wired.com/2014/11/countdown-to-zero-day-stuxnet/

[3] United States Naval Academy. (2018, April) USNA Laptop, USB
Flash Drive and External Hard Drive User Policy. [Online]. Available:
https://www.usna.edu/PAO/documents/CSI

[4] HAK5. (2018, April) USB Rubber Ducky. [Online]. Available:
https://hakshop.com/products/usb-rubber-ducky-deluxe

[5] Offensive Security. (2012, April) Advanced Teensy Penetration
Testing Payloads. [Online]. Available: https://www.offensive-
security.com/offsec/advanced-teensy-penetration-testing-payloads/

[6] Avnet. (2017) ZedBoard Zynq-7000 Development Board. [Online].
Available: http://zedboard.org/product/zedboard

[7] Xilinx. (2017) Zynq-7000 All Programmable SoC Product. [Online].
Available: https://www.xilinx.com/products/silicon-devices/soc/zynq-
7000.html

[8] Toms Hardware. (2017) All Things USB 3.1 And USB Type-C: An
Explainer. [Online]. Available: http://www.tomshardware.com/news/usb-
31-usb-type-c-refresher,29933.html

[9] (2017) Usb implementors forum. [Online]. Available:
http://www.usb.org/home

[10] (2017) USB3300, Hi-Speed USB Host, Device or OTG
PHY with ULPI Low Pin Interface. [Online]. Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/00001783C.pdf

[11] (2017) Linaro: Leading collaboration in the arm ecosystem. [Online].
Available: https://www.linaro.org/

[12] (2017) Usbmon - the linux kernel archives. [Online]. Available:
https://www.kernel.org/doc/Documentation/usb/usbmon.txt

[13] (2017) GNU Octave. [Online]. Available: gnu.org/software/octave/
[14] S. J. Vaughan-Nichols. (2017) Today’s most popular operating systems.

[Online]. Available: http://www.zdnet.com/article/todays-most-popular-
operating-systems/

[15] M. Tischer, Z. Durumeric, S. Foster, S. Duan, A. Mori, E. Bursztein,
and M. Bailey, “Users really do plug in usb drives they find,” Security
and Privacy (SP), 2016 IEEE Symposium on, 2016.

[16] Cyrus Farivar. (2016) Feds seized 50TB of data
from NSA contractor suspected of theft. [Online]. Avail-
able: https://arstechnica.com/tech-policy/2016/10/feds-nsa-contractor-
stole-at-least-50tb-worth-of-highly-classified-data/

[17] Peter Weber. (2013) How Edward Snowden stole his cache of NSA
secrets. [Online]. Available: http://theweek.com/articles/463185/how-
edward-snowden-stole-cache-nsa-secrets

[18] Security Research Labs. (2016) USB peripherals can turn against their
users. [Online]. Available: https://srlabs.de/bites/usb-peripherals-turn/

[19] Dan Goodin. (2016) Meet PoisonTap, the $5 tool
that ransacks password-protected computers. [Online]. Avail-
able: https://arstechnica.com/information-technology/2016/11/meet-
poisontap-the-5-tool-that-ransacks-password-protected-computers/

[20] R. ’mubix’ Fuller. (2016) Snagging creds from locked machines.
[Online]. Available: https://room362.com/post/2016/snagging-creds-
from-locked-machines/

[21] S. Ramesh. (2017) How to hack passwords using a usb drive. [Online].
Available: https://www.gohacking.com/hack-passwords-using-usb-drive/

[22] D. J. Tian, N. Scaife, A. Bates, K. Butler, and P. Traynor, “Making USB
great again with USBFILTER,” in 25th USENIX Security Symposium,
2016, pp. 415–430.

[23] R. Fisk. (2017) The usg is good, not bad. [Online]. Available:
https://github.com/robertfisk/USG/

Milcom 2018 Track 3 - Cyber Security and Trusted Computing

932Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 17:11:49 UTC from IEEE Xplore. Restrictions apply.

