
Ad Hoc Networks 53 (2016) 1–16

Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier.com/locate/adhoc

A simple visualization and programming framework for wireless

sensor networks: PROVIZ

�

Shruthi Ravichandran

b , Ramalingam K. Chandr asekar b , A. Selcuk Uluagac

a , ∗,
Raheem Beyah

b

a Electrical and Computer Engineering Department, Florida International University, 10555 West Flagler St, Miami, Florida, 33174, USA
b Communications Assurance and Performance Group, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia,

30332, USA

a r t i c l e i n f o

Article history:

Received 5 January 2016

Revised 19 May 2016

Accepted 27 June 2016

Available online 24 August 2016

Keywords:

Wireless sensor networks

Visualization

Programming

Simulation

PROVIZ

a b s t r a c t

Wireless Sensor Networks (WSNs) are rapidly gaining popularity in various critical domains like health

care, critical infrastructure, and climate monitoring, where application builders have diversified devel-

opment needs for programming, visualization, and simulation tools. However, these tools are designed

as separate stand-alone applications. To avoid the complexity of using multiple tools, we have designed

a new extensible, multi-platform, scalable, and open-source framework called PROVIZ. PROVIZ is an in-

tegrated visualization and programming framework with the following features: PROVIZ includes (1) a

visualization tool that can visualize heterogeneous WSN traffic (with different packet payload formats)

by parsing the data received either from a packet sniffer (e.g., a sensor-based sniffer or a commercial

TI SmartRF 802.15.4 packet sniffer) or from a simulator (e.g., OMNeT); (2) a scripting language based on

the TinyOS sensor network platform that aims at reducing code size and improving programming effi-

cacy; (3) an over-the-air programming tool to securely program sensor nodes; (4) a visual programming

tool with basic sensor drag-and-drop modules for generating simple WSN programs; and (5) a visual

network comparison tool that analyzes packet traces of two networks to generate a juxtaposed visual

comparison of contrasting network characteristics. PROVIZ also includes built-in extensible visual demo

deployment capabilities that allow users to quickly craft network scenarios and share them with other

users. In this work, we introduce the various features of PROVIZ’s visualization and programming frame-

work, analyze test scenarios, and discuss how all the tools can be used in sync with each other to create

an all-encompassing development and test environment.

© 2016 Elsevier B.V. All rights reserved.

1

t

t

v

a

r

o

n

w

s

e

A

s

t

l

h

1

. Introduction

Recent advances in sensors and wireless technology have led

o the proliferation of wireless sensor networks in health, struc-

ural, and environmental control and monitoring systems. Such di-

erse use cases result in a broad spectrum of WSN users, from

dvanced WSN application developers, who develop scalable and

eliable WSN algorithms and applications, to intermediate devel-

pers, who use WSNs for simple environment data gathering, to

ovices and young students, who have just started experimenting

ith sensors. This diverse set of usage scenarios necessitate a WSN

oftware programming framework with both advanced and simple

asy-to-use tools.
� This work is supported by the National Science Foundation, under grant NSF-

CI-1339781.
∗ Corresponding author.

E-mail address: selcuk@gatech.edu (A. Selcuk Uluagac).

ttp://dx.doi.org/10.1016/j.adhoc.2016.06.015

570-8705/© 2016 Elsevier B.V. All rights reserved.
The PROVIZ software framework introduced in this work, is one

uch open-source, platform-independent, and scalable framework

hat aims to serve the needs of the diverse user base with the fol-

owing features. PROVIZ supports:

• visualization of live and pre-captured traffic from a variety

of real sensors (e.g., MicaZ, Iris, TelosB) including the ability

to work with multiple sniffers simultaneously in a distributed

setup to visualize a large WSN deployment. It can also visualize

packet trace data generated from a WSN simulator (e.g. OMNeT

[1]).

• a set of built-in tools for developing sensor applications, pro-

gramming sensor nodes over-the-air [2] , and simulating in OM-

NeT.

• built-in extensible visual demo deployment capabilities, which

allow users to quickly craft network scenarios and export them

as XML files to easily modify or share with others.

http://dx.doi.org/10.1016/j.adhoc.2016.06.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/adhoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2016.06.015&domain=pdf
mailto:selcuk@gatech.edu
http://dx.doi.org/10.1016/j.adhoc.2016.06.015

2 S. Ravichandran et al. / Ad Hoc Networks 53 (2016) 1–16

a

d

2

w

f

W

2

t

c

d

d

t

W

e

a

M

I

(

fi

i

a

c

r

s

a

w

l

t

t

s

m

s

N

c

i

p

O

i

m

W

b

b

t

b

a

s

t

W

o

m

N

g

t

s

w

v

a

i
• a network discovery module to identify the sensors available in

a WSN and an optional thin-client in sensor nodes to send sen-

sor state information periodically. With the help of these pe-

riodic reports, users of PROVIZ can easily identify a network

anomaly and can take necessary corrective measures for avoid-

ing failures in the WSN.

One of PROVIZ’s main features is the visualization of live, pre-

captured or simulated WSN data. There are many visualization

tools for WSNs that are either real-time visualizers [3,4] or visu-

alizers built with WSN simulators [5,6] . These tools, albeit very

useful, do not offer offline visualization and lack the ability to de-

liver useful network statistics to the user such as packet load in the

network, average delay between nodes, etc. The visualization and

network comparison tools introduced within PROVIZ aim at clos-

ing this gap by visualizing real-time, offline or simulated WSNs (all

from one platform) and allowing users to compare two WSNs and

visually verify differences in the performance of the two networks

in terms of link characteristics.

PROVIZ also aims to make TinyOS [7] programming easier for

novices interested in implementing simple sensor programming.

TinyOS is one of the most widely used sensor network platforms

to develop and program a myriad of applications in many different

sectors [8,9] . Despite its large user base, novice application devel-

opers face a very steep learning curve in writing TinyOS applica-

tions in nesC [10] to perform basic data collection and distribu-

tion. A lot of systems that provide application-specific modules as

add-ons to the main WSN program have been developed [11,12] .

These modules implement the most commonly used sensor net-

work applications like data collection, link estimation, etc., that can

be added as single line function calls to the main program. How-

ever, they lack the flexibility of a simple scripting language that

allows users (even novices) to experiment with their code and de-

velop something beyond these add-on modules. Hence, the script-

ing tool developed in PROVIZ concentrates on this feature while

still being relatively easy to use even for novices.

Moreover, efforts to introduce programming to middle or high

schoolers [13,14] also strengthen our motivation for PROVIZ to pro-

vide a similar user-friendly graphical user interface (GUI) for sen-

sor network application development. The afore-mentioned tools

are extremely user friendly that they can be used to teach chil-

dren programming concepts such as loops and if-else statements

in a very simple graphical user environment. Nevertheless, there

are not many tools that attempt to do the same with wireless

sensors. Indeed, sensors are very attractive to young minds with

their multi-color LEDs, light and temperature sensors, and radio

interface. With these tangible interfaces, one can teach the stu-

dents similar programming concepts, but with readily observable

outputs in the LEDs or through RF packets that can be visualized

from packet traces. Hence, the visual programming tool for WSNs

aims to offer a simple GUI for K-12 students to interact easily with

sensors and progress rapidly into programming sensors with the

scripting language.

In summary, in this work we introduce the PROVIZ frame-

work; its main advantage is that it is a complete integrated system

where visualization, programming, and simulation can be done

from the same software architecture as opposed to other similar

useful works in the literature. The remainder of this paper pro-

ceeds as follows. We first discuss the related work in Section 2 . In

Section 3 , we discuss the PROVIZ architecture and each of its mod-

ules. We elaborate on the visualization tool features in Section 4 .

Section 5 provides an overview of the network comparison tool. In

Section 6 , we describe the TinyOS scripting language and provide

examples for the same. We analyze the visual programming tool

and its supported operations in Section 7 and then discuss a us-
ge scenario for PROVIZ in Section 8 . We conclude the paper and

iscuss future work in Section 10 .

. Related work

The relevant literature to our work can be subdivided into

orks on WSN visualization and analysis tools, scripting languages

or sensor network programming, and graphical programming of

SNs.

.1. WSN visualization and analysis

When deploying multiple sensor networks, it might be impera-

ive to debug the deployments, obtain network characteristics, and

ompare them for differences and irregularities. For instance, this

ebugging capability will help a developer to compare two WSN

eployments based on link characteristics obtained from packet

races.

There are a lot of useful tools that visualize and monitor the

SN and obtain network properties such as topology, packet loss,

tc. The following are some of the relevant tools developed in this

rea. MOTE-VIEW [15] is a user interface software developed by

EMSIC [16] for monitoring and visualizing a WSN deployment.

t acts as a health monitoring tool that queries a database server

populated by packets from nodes) to retrieve node status and con-

guration of all nodes in the network. It is also used for visual-

zing node qualities such as throughput, bandwidth, link quality,

nd congestion (obtained from server) in color codes in a topology

hart. Livenet [17] is a tool developed to analyze a sensor network

econstructed from packet traces. The tool uses multiple packet

niffers and merges all the packet traces to get a more detailed

ccount of the WSN behavior. From this merged packet trace, net-

ork characteristics such as topology, bandwidth usage and packet

oss are analyzed and plotted. SNIF [18] and Sympathy [19] are

ools developed for network debugging and fault finding within

he WSN. While Sympathy debugs control information sent by sen-

ors along with regular traffic to a sink node, SNIF uses a deploy-

ent support network [11] , which is a network of secondary sen-

ors, used specifically for debugging to find faults in the network.

etViewer [3] is a real-time visualization and monitoring tool. It

ollects data from a sink node and based on packet format spec-

fied by user, parses the packets, visualizes the packets, displays

ayload information, and demonstrates topology of the network.

ther than the topology, this work does not provide any other

mportant network detail to the user. Octopus [4] is also a WSN

onitoring, visualization, and a control tool. Besides visualizing the

SN in real-time, Octopus can also reconfigure the sensor network

y sending out short control messages. Code for this tool has to

e installed in the sensor along with the sensor network program

o avail its functions or, the program and packet structure have to

e developed according to Octopus specifications. NetTopo [5] is

n integrated simulation and visualization framework which is de-

igned for validating algorithms used in WSNs. NetTopo is essen-

ially a simulator which is integrated with a real testbed to run the

SN algorithms and validate them. It is able to visualize the topol-

gy used in the simulation environment and it updates the infor-

ation about connections, sensed data of each node, etc. However,

etTopo is specifically designed for simulating and validating al-

orithms and hence it cannot do live or off-line WSN visualiza-

ion and also cannot program a sensor node. TOSSIM [6] is a WSN

imulator, which can simulate a homogeneous wireless sensor net-

ork with sensors running a common application. It provides a

isualization tool called TinyViz [6] , which can be used to visu-

lize, control, and analyze TOSSIM simulations. TinyViz can visual-

ze the sensor nodes and the network traffic in a WSN. It provides

S. Ravichandran et al. / Ad Hoc Networks 53 (2016) 1–16 3

i

m

c

t

n

a

e

s

p

t

2

n

A

m

i

a

o

v

v

W

u

f

t

s

S

t

P

C

o

a

o

i

P

t

i

u

p

S

p

p

n

a

c

r

c

P

t

r

2

c

p

G

p

g

w

T

b

T

w

a

t

s

g

t

c

a

O

t

t

a

i

f

p

b

a

u

d

a

u

r

t

m

n

S

t

f

s

p

m

m

c

c

e

H

i

a

v

e

t

n

c

s

3

t

[

b

t

d

f

a

p

a

i

p

a

c

3

g

nformation about the data transfered between nodes, serial com-

unication packets, LED states, and provides a control window to

hange the simulation parameters. However, TOSSIM is a simula-

or and cannot do off-line visualization or interact with real sensor

odes. Although, the tools discussed above are efficient monitoring

nd/or fault detection tools for WSNs, they are essentially differ-

nt from the PROVIZ software framework that they do not provide

pecific network characteristics to the user such as average size of

acket, average packet delay, etc. nor have the capacity to compare

wo networks.

.2. WSN scripting languages

TinyOS [7] is a widely used operating system for sensors. It uses

esC [10] , a language based on C for developing WSN applications.

lthough nesC is very well established and can be used to write

any complex applications, the process is still very tedious involv-

ng writing multiple files (configuration and implementation files)

nd many lines of code. Hence, the following works have devel-

ped various scripting languages to reduce the complexity of de-

eloping applications in nesC.

SNACK [12] is a kit consisting of a configuration language, a ser-

ice library and a compiler for programming WSNs. With SNACK,

SN users spend minimal time to put together an application by

sing its in-built service library that consists of commonly used

unctions such as routing, sensing, etc. The compiler will compile

his application written in the configuration language to nesC. The

yntax of the configuration language is still hard for novices and

NACK does not give users the flexibility to add user-defined func-

ions to its library or reuse program blocks like the scripting tool in

ROVIZ. Ceu [20] is another higher level programming language for

 and nesC that reduces program size and the complexity of devel-

ping applications in TinyOS. However, despite reducing code size

nd programming time considerably, the scripting language devel-

ped is not very user-friendly and requires quite a bit of famil-

arizing. The language is not part of an integrated framework like

ROVIZ where code can also be developed and simulated. Addi-

ionally, it does not implement TinyOS concepts such as modular-

ty thereby, relinquishing the code reuse property of TinyOS mod-

les and interfaces. DSN [21] is a declarative language and com-

iler for fast and efficient sensor network programming. Similar to

NACK, it also offers a library of add-on modules to be added to

rograms written in Snlog, a dialect of Datalog [22] . The DSN com-

iler compiles this program to configuration and module files in

esC. Since the DSN is based on a data querying language, novices

gain, face a steep learning curve. The scripting languages dis-

ussed above, despite having shorter code sizes compared to nesC

equire some time to comprehend. They also do not support the

ode reuse property (modularity) of TinyOS. The scripting tool in

ROVIZ tries to keep the code size to a minimum and at the same

ime ensures flexibility for users to develop their own code and

euse them across different applications and files.

.3. WSN visual development

The relevant visual development tools for WSNs can be broadly

lassified into application development environments and visual

rogramming tools. Application development environments are

UIs for creating TinyOS configuration files by visually wiring com-

onent and module files from the TinyOS library, while visual pro-

ramming tools use visual blocks and icons for creating sensor net-

ork programs.

Viptos [23] is a graphical application development tool for

inyOS-based WSNs. It allows users to develop TinyOS programs

y constructing block and arrow diagrams of TinyOS components.

his is to remove the programming complexity of locating and
iring various components from the TinyOS library. TOSDev [24] is

nother application development tool for TinyOS. Like Viptos, this

ool also offers graphical editing of wiring diagrams along with a

ource code editor similar to Eclipse [25] . RaPTEX [26] is an inte-

rated code development, simulation, and emulation environment

hat offers TinyOS protocol stack development with wiring and

omponent connection diagrams similar to Viptos. It allows cre-

tion of topology and simulation of network level performance in

MNeT and emulation of node-level behavior using Avrora [27] as

he underlying-emulator. With this integrated environment, the

ool allows easy customization of existing TinyOS protocol suites

nd acts as a platform for testing nesC applications before deploy-

ng to a WSN. PROVIZ is different from RaPTEX that PROVIZ of-

ers additional tools for post-deployment analysis of a WSN such as

acket trace visualization and comparison and a simpler scripting-

ased programming environment for novice users. WISDOM [28] is

 platform-independent visual programming tool that uses a mod-

lar approach to programming. Users can create modules in C, in-

ependent of platforms, connect them graphically with connectors

nd the tool will generate platform-specific code from the mod-

les. However, this work is not very well documented. It does not

eveal how sensor-relevant code (e.g., timer, radio, and LED func-

ion calls) are declared in C. SEAL [29] offers a visual program-

ing and standard programming language (as an alternative to

esC) for WSNs. The visual programming language abstracts the

EAL programming language using Google Blocky [30] . Although,

he programming language is easy for novices, by steering away

rom TinyOS, it loses some advantages offered by TinyOS such as

plit-phase operations and code reuse. TinyInventor [31] is a visual

rogramming tool that adopts the OpenBlocks [32] visual program-

ing language to create a TinyOS relevant programming environ-

ent for WSNs. The programs are a collection of functional blocks

reated by users with drag and drop components. The blocks are

ompiled to generate nesC code for sensors. The tool is simple and

asy to use and is similar to Scratch that also uses OpenBlocks.

owever, the main disadvantage is that the tool is not part of an

ntegrated system like PROVIZ where visualization, programming,

nd simulation can be done from the same system. Moreover, the

isual programming tools discussed above are simple to use. How-

ver, they lack the pictorially descriptive drag-and-drop modules

hat the visualization tool developed in our work offers and are

ot part of an integrated framework like PROVIZ where programs

an be built, simulated or programmed and visualized, all from a

ingle environment.

. PROVIZ design overview

PROVIZ is an integrated multi-platform, modular, generic, ex-

ensible, and scalable programming and visualization framework

33] developed using the QT GUI Framework [34] . QT is a C++

ased, open-source and a cross-platform application and user in-

erface development framework supporting most of the popular

esktop and mobile operating systems. Fig. 1 shows the PROVIZ

ramework design, where PROVIZ runs in a host machine and has

 PROVIZ Client , which can run in a local or remote host and gather

acket data using different sniffers. As shown in Fig. 1 , PROVIZ has

 modular architecture, which enables the user to replace or mod-

fy a module, without affecting the overall system behavior. PROVIZ

rovides two main functionalities. One is the functionality to visu-

lize the data and the other is the functionality to develop appli-

ations and program sensor nodes.

.1. Modules for programming functionality

This sub-section discusses the design of modules for the pro-

ramming functionality.

4 S. Ravichandran et al. / Ad Hoc Networks 53 (2016) 1–16

Fig. 1. PROVIZ architecture.

a

r

c

a

i

s

t

i

u

r

a

u

i

3

i

3

s

s

e

N

f

s

3

t

t

t

3

s

B

3

m
3.1.1. Visual programming

The visual programming tool has rows of actions or functions

for each sensor. Basic input (light, temperature sensor), output

(LEDS, Radio) and operation (On, Off) modules can be dragged and

dropped onto these rows to create actions. Each sensor is given a

node ID and once all actions are created, the user can drag and

drop the sensor onto a canvas and connect to the other sensors

via radio as required. Code is generated in the scripting language

for each sensor.

3.1.2. Scripting language

The scripting language inherits the best of TinyOS concepts such

as modularity and split-phase operations and at the same time is

simple enough for a novice programmer to develop programs for

data collection, monitoring and distribution. The scripting language

uses simple C/C++ abstractions of TinyOS concepts. Programs are

written in an editor window, which is integrated with the visual-

ization window in such a way that the user can switch between

the tools easily by a single mouse click. Details of this language

are discussed in Section 6 .

3.1.3. Code generator

After entering the script in the editor window, the user can use

the Generate Code option in PROVIZ to generate the nesC code from

the scripting language.

3.1.4. Code distributor

After generating the code, the user can modify or change the

implementation details in the nesC code and use the Program WSN

option to generate the WSN application binary. It uses the Commu-

nication Interface to remotely program wireless sensor nodes using

wireless code dissemination. Or, in the case of resource unavail-

ability, the framework interfaces with the OMNeT simulator [1] to

simulate the WSN and users can verify program functionality from

the output generated by OMNet.

3.1.5. Communication interface

After the Code Distributor generates the nesC code image, the

Communication Interface is utilized to disseminate the code image.

3.1.6. Wireless code dissemination

For wireless code dissemination, PROVIZ uses the SIMAGE pro-

tocol [2] . SIMAGE uses the LQI value to asses the link quality be-

tween the nodes and then dynamically adapts the packet size. In
 WSN having nodes with poor link quality, the dynamic packet

esizing technique reduces the number of retransmissions during

ode dissemination. Along with dynamic packet resizing, SIMAGE

lso provides energy efficient security services, confidentiality and

ntegrity provided by the CC2420 [35] transceiver module in sen-

ors (e.g., MicaZ, TelosB, etc.).

For programming a WSN, PROVIZ uses the Control Node (i.e.,

he node connected to the computer) as a base station for dissem-

nating the code image. All the nodes in the WSN along with the

ser application should have a Code Receiver module, which can

eceive the disseminated code image to program the sensor node

nd transfer it to the neighboring nodes. The Control Node is also

tilized in the visualization functionality as a sniffer as explained

n the next sub-section.

.2. Modules for visualization functionality

This sub-section discusses the design of modules for the visual-

zation functionality.

.2.1. Communication interface

This interface has a generic packet receive module for the vi-

ualization functionality, which can receive packets from different

ources: 1) a PROVIZ Client with a sensor-based sniffer attached to

ither a remote or a local host, 2) WSN simulators such as OM-

eT [1] , and 3) a packet trace file, generated by commercial snif-

ers, e.g., the PSD [36] file format created by the TI SmartRF packet

niffer [36] .

.2.2. OMNeT Packet Receiver

While simulating the WSN application in the OMNeT simulator,

he OMNeT radio receive driver outputs the time-stamped packet

race. The OMNeT Packet Receiver receives the network simulator

race and sends it to the Communication Interface.

.2.3. Packet Receiver buffer

The Communication Interface receives the packet data and

tores the data in the form of a byte-array in the Packet Receiver

uffer queue, which can be fetched later for processing.

.2.4. Multi-Threaded packet analyzer

While capturing the packets, PROVIZ initiates a multi-threaded

odule, which parses the packet data stored in the Packet Receive

S. Ravichandran et al. / Ad Hoc Networks 53 (2016) 1–16 5

B

h

i

l

i

a

t

i

u

u

p

t

a

w

w

3

a

E

a

i

m

s

S

p

d

b

j

b

v

c

s

r

b

m

3

p

l

d

o

u

c

e

n

p

p

v

a

W

u

u

3

m

t

P

fi

i

t

Fig. 2. PROVIZ network discovery module.

P

T

t

a

a

c

N

s

3

s

N

fi

t

P

t

n

r

m

s

k

T

K

b

h

C

k

w

t

r

b

v

n

b

s

r

a

m

t

t

k

e

e

i

P

d

uffer queue. It parses for the packet arrival time, IEEE 802.15.4

eader information [37] , and the packet payload and matches

t with the user-defined packet formats. Since the Packet Ana-

yzer has to parse all the incoming packets and translate them,

t becomes a computationally intensive operation. In order to

chieve faster processing and avoid any performance bottlenecks,

he Packet Analyzer module is designed in a multi-threaded fash-

on. The number of threads running in the Packet Analyzer mod-

le is a configurable parameter, which can be modified by the

sers based on the incoming packet arrival rate. Whenever the ap-

lication starts, based on the value in the thread count parame-

er, PROVIZ creates sufficient amount of worker threads and forms

 thread-pool. So, whenever the user starts a visualization, the

orker threads from the thread-pool is used to parse the packets,

hich eliminates the delay in thread creation.

.2.5. PROVIZ visualization events engine

After parsing the packets, the Packet Analyzer module creates

 packet transfer event and adds it to the PROVIZ Visualization

vents Engine , a multi-map data structure with the time of event

s the key. The Events Engine multi-map includes all the events

n sequence, sorted based on the time of the event. In order to

ake the Visualization Engine extensible, PROVIZ defines an ab-

tract class with event handler methods as pure virtual functions.

o, if users want to extend PROVIZ with new features, they sim-

ly need to inherit the abstract class and define the event han-

ler methods, which can implement features like node mobility,

attery-level monitoring, etc. The new modules can add event ob-

ects in the Events Engine multi-map and these event handlers will

e called by the Events Engine at the appropriate time. When the

isualization starts, the time of the first event in the event queue is

onsidered as the current visualization time and the Events Engine

tarts a periodic timer. Whenever the timer is triggered, the cur-

ent visualization time is incremented and the events that are to

e executed at this current visualization time are identified in the

ulti-map and they are triggered by calling their event handlers.

.2.6. Network comparison

If the user would like to compare two traces, the network com-

arison tool gets the parsed packet data from the Packet Ana-

yzer and computes the differences between two networks for pre-

etermined link characteristics (e.g, average packet delay, number

f packets sent). On comparing the two traces, the tool informs the

ser if the networks match based on a threshold matching per-

entage. The tool also shows the two network topologies next to

ach other with missing and extra links (with respect to the first

etwork) indicated and the link properties of each link are dis-

layed when the link is right-clicked.

For visualization, PROVIZ either shows two networks in com-

arison or in the case of visualization of a single network, pro-

ides a graphical canvas (Fig. 4) for visualizing the sensor nodes

nd packet transfers. Also, it includes a PROVIZ Packet Data Display

indow (Fig. 6), which shows the parsed packet information in a

ser readable format. The details of the visualization tool are artic-

lated in Section 4 .

.3. PROVIZ client design

PROVIZ provides a PROVIZ Client application running in local or

ultiple remote machines for gathering WSN packets. The Con-

rol Node is connected to these remote/local machines running the

ROVIZ Client. This node works as a sniffer for gathering WSN traf-

c while also serving as a base station for disseminating the code

mage over-the-air.

Client Communication Interface : The Client Communication In-

erface receives the sniffed packets from the Control Node and the
ROVIZ Packet Logger module adds a time-stamp to the packet data.

he time-stamped packet data is sent to the visualization host over

he network using a TCP socket.

Network Time Protocol client : To synchronize the data collection

nd visualization in a distributed environment, the PROVIZ Clients

re time-synchronized with the help of the Network Time Proto-

ol (NTP) [38] . The NTP Client requests the global time from the

TP server and then synchronizes the system time based on the

erver’s reply.

.3.1. Thin-client and network discovery

PROVIZ provides an optional thin-client module that resides in

ensor nodes along with user programs. PROVIZ also includes a

etwork Discovery process in the PROVIZ Client, which is used to

nd the number of sensor nodes available in a WSN and their

ypes. Fig. 2 illustrates the procedure of network discovery in

ROVIZ. When the PROVIZ Client starts, it triggers the Control Node

o send a network discovery broadcast message. All the sensor

odes running the PROVIZ thin-client , on receiving this message,

espond back to the Control Node with a specific message. This

essage includes the ID and the type (e.g., MicaZ, TelosB) of the

ensor. After receiving the reply, the Control Node sends an ac-

nowledgment and sends the received data to the PROVIZ Client.

he PROVIZ Client identifies the unique Node IDs and creates a

eep-Alive bit-vector of appropriate size. Also, it reports the num-

er of sensor nodes and their types to the PROVIZ visualization

ost. The thin-client, after getting an acknowledgment from the

ontrol Node, starts sending a periodic (e.g., every 10 seconds)

eep-alive message to the Control Node. The periodic interval in

hich the keep-alive message has to be transmitted, is sent with

he network discovery broadcast message. The PROVIZ Client, on

eceiving a keep-alive message, updates the Keep-Alive bit-vector

ased on the source Node ID. At the end of the periodic inter-

al, the PROVIZ Client checks the bit-vector for nodes which did

ot send a keep-alive message in that round and then clears the

it-vector before proceeding to the next round. If a node fails to

end keep-alive messages continuously for a specified number of

ounds, the PROVIZ Client communicates the node IDs to the visu-

lization host, which in turn notifies the user. Then, PROVIZ decre-

ents the number of live sensors that can be used for visualiza-

ion. When the user closes the PROVIZ Client, it triggers the Con-

rol Node to send a broadcast message to stop sending the periodic

eep-alive messages. The PROVIZ Client can do the network discov-

ry for WSNs without thin-client, by analyzing the sniffed pack-

ts and creating a bit-vector based on this information. However,

n this case PROVIZ cannot get the sensor state information. Thus,

ROVIZ can still work with WSNs without thin-client, but with re-

uced functionalities.

6 S. Ravichandran et al. / Ad Hoc Networks 53 (2016) 1–16

Fig. 3. PROVIZ distributed framework model.

P

c

t

d

i

d

t

o

s

4

8

p

C

t

v

R

t

P

t

i

s

t

p

t

c

P

s

s

L

w

i

O

t

m

c

w

c

S

P

4

s

P

w

s

P

f

a

P

f

a

l

f

t

t

t

t

c

m

c

d
3.4. PROVIZ distributed framework model

For visualizing a large WSN, PROVIZ uses a distributed approach

that uses multiple sniffers as shown in Fig. 3 . In the distributed

setup, the PROVIZ visualization tool runs in a host machine and

multiple sensor-based sniffers are placed in a distributed fashion

so that a packet transmitted by a sensor node can be sniffed by at

least one of the sniffers. The PROVIZ Client program runs in a time-

synchronized remote or local host connected to a sniffer and sends

the time-stamped packet data to the visualization host for visual-

ization, utilizing the NTP protocol as explained in Section 3.3 . In a

distributed setup, some nodes will be in the sniffing range of mul-

tiple sniffers and hence, PROVIZ can receive duplicates of a same

packet. However, since the PROVIZ Clients are time-synchronized,

PROVIZ Events Engine can identify and remove the duplicates by

validating the time-stamp and packet data.

4. Visualization tool features

This section discusses the various features of PROVIZ visualiza-

tion functionality.

Fig. 4 shows the screen shot of the PROVIZ visualization tool

with a group of infrastructure monitoring sensors sending struc-

tural health information [9] periodically to a cluster head. The

PROVIZ Visualization User Interface window has a: 1) Control tool-

bar , which provides the control buttons for the visualization; 2)

Drag and Drop Window Holder , which has sub-windows to hold the

images of sensor nodes that are available in a WSN and to hold

the demo application icons; and 3) Graphical Work Area , a canvas

where the sensor node images are placed and the packet transfers

are visualized.

4.1. Control toolbar

The Control toolbar provides control options to start, pause, and

stop the visualization. Also, it has a support to zoom-in, zoom-out,

and clear the nodes in the Graphical Work Area.

4.2. Drag and Drop Window Holder

The Drag and Drop Window Holder has multiple sub-windows

and these sub-windows can hold either sensor node icons or icons

associated with demo applications. The sensor icons displayed in

the sub-window include an image of sensor node and a count as-

sociated with them. The count depicts the number of sensors of

that type available in a WSN and it is determined by the PROVIZ

Network Discovery module (Section 3.3.1) in the PROVIZ Client.
ROVIZ uses this count value associated with each sensor icon to

ontrol the number of sensors that can be visualized. In order

o visualize a WSN, the sensor icons in the sub-windows can be

ragged and dropped into the Graphical Work Area. Each node that

s dropped needs to be associated with a unique Node ID, which is

isplayed along with the sensor icon. Also, a signal strength me-

er showing the signal strength of a node is displayed at the top

f each sensor node icon. The signal level value is received from

ensors in real time as explained below.

.3. Packet visualization

The Control Node sniffs the packets complying with IEEE

02.15.4 and transmits the header and payload information of

ackets to the PROVIZ Client through serial communication. The

ontrol Node, having CC2420 transceiver module [35] , can estimate

he wireless link quality and give a Link Quality Indicator (LQI)

alue. The sniffer program in the Control Node fetches the LQI and

SSI value information from the CC2420 transceiver and appends it

o the packet payload before sending the sniffed packet data to the

ROVIZ Client. The PROVIZ Client sends this data to the visualiza-

ion host and the multi-threaded Packet Analyzer (Section 3.2.4)

n the visualization host parse the packets for LQI value and as-

ociate it with the packet transfer event, which is enqueued in

he PROVIZ Visualization Events Engine (Section 3.2.5). When the

acket transfer event handler is triggered, the signal strength me-

er of corresponding node is updated with the new value. On re-

eiving the packets from the serial interface of Control Node, the

ROVIZ Client prepends the time-stamp to the packet data and

ends it to the visualization host. This packet information format

tarting with the time-stamp, followed by packet data, RSSI and

QI is also used by the popular TI SmartRF packet sniffer [36] ,

hich ensures that PROVIZ is generic and extensible. This feature

s also utilized to visualize the packet transfers simulated by the

MNeT simulator, with the help of OMNeT Packet Receiver . For this,

he TinyOS communication driver for the OMNeT simulator was

odified to output the packet information whenever a node re-

eives a packet and the OMNeT simulator creates a packet trace

ith this time-stamped packet information. The OMNeT Packet Re-

eiver module reads the packet information and converts it to the

martRF packet sniffer packet format, which can be parsed by the

ROVIZ Packet Analyzer.

.4. Heterogeneous WSN visualization

Most WSNs are heterogeneous with different types of sen-

or nodes sending packets with different packet payload formats.

ROVIZ is capable of visualizing such a heterogeneous sensor net-

ork and it can understand different packet formats. In order to

elect multiple packet formats for visualization, PROVIZ provides a

acket Format Selector window, which lists the user-defined packet

ormats from which the users can select the packet formats and

 feature to define the packet format graphically using the PROVIZ

acket Format Specifier as shown in Fig. 5 . For defining a packet

ormat, PROVIZ expects the users to start the packet format with

 unique message ID, which is used by the PROVIZ Packet Ana-

yzer to identify and match the packet data to a particular packet

ormat. Then, the user can add multiple packet fields and specify

he data-type for the field and the packet field name for each of

he packet fields. After defining the packet format, PROVIZ expects

he users to select a packet animation color using the color selec-

ion tool. The packets matching this format are visualized with the

olor specified by the user. The user can then save the color infor-

ation along with the packet format details in an XML file, which

an be exported or shared with other PROVIZ users. Also, users can

efine the packet format in the form of XML directly and give that

S. Ravichandran et al. / Ad Hoc Networks 53 (2016) 1–16 7

Fig. 4. Screen shot of PROVIZ visualizing a infrastructure monitoring WSN.

Fig. 5. PROVIZ packet format selector and specifier.

a

i

t

Listing 1. Packet format XML.

d

l

p

i

t

m

p

p

s

l

h

t

p
s input to PROVIZ. A sample packet format XML snippet is shown

n Listing 1 .

By default, the Packet Analyzer can understand and translate

he IEEE 802.15.4 header information [37] in the input packet
Fig. 6. Screen shot of PROVIZ
ata. After interpreting the header information, the Packet Ana-

yzer matches the raw packet payload data with a user-defined

acket payload format based on the message ID value. After find-

ng a match, the Packet Analyzer extracts the necessary bytes and

ype-casts it to the data-type mentioned in the packet payload for-

at. Similarly, the rest of the packet data is type-casted to the ap-

ropriate data-types specified by the packet fields in the packet

ayload format and it is displayed along with the packet field de-

cription in the PROVIZ Data Display (Fig. 6). If the Packet Ana-

yzer cannot find a match with a packet format, it displays the

ex value of the payload in the Data Display window. Fig. 6 has

he translated packet information of packets matching the packet

ayload format shown in Fig. 5 and also shows the hex value of
packet display window.

8 S. Ravichandran et al. / Ad Hoc Networks 53 (2016) 1–16

Listing 2. Demo scenario visualization XML.

Table 1

Example link score calculation for a graph.

Properties Weights (“%”) Property score

Number of packets 30 80

Average packet delay 0 0

Number of bytes 0 0

Average packet size 0 0

Periodicity 70 100

Weighted average link score 94

fi

T

a

t

t

s

d

p

(

t

w

p

p

p

t

o

e

’

t

r

t

s

s

l

b

p

m

b

a

t

6

a

t

a

m

t

t

o

m

6

c

fi

t

p

o

o
the packet payload, whose format does not match with any of the

user-defined packet payload format.

Demo scenario visualization : PROVIZ includes built-in extensible

visual demo deployment scenarios, on which users can click and

visualize easily as shown in Fig. 4 . Users can use this feature to

create a demo scenario to visualize a critical/complex WSN deploy-

ment and share it with other PROVIZ users. The demo visualization

can be developed by creating an XML file, which specifies the node

type to be used, number of nodes, node ID, node location, and the

time, when the packet transfers should happen. To define a packet

transfer, each transfer is considered as a frame, which has the in-

formation such as the node IDs between which the transfer should

happen and the time when the transfer should be initiated. A sam-

ple demo visualization XML snippet is shown in Listing 2 .

5. Network comparison tool

The network comparison tool is a tool designed to compare two

networks based on their respective link characteristics. The tool

can be used by researchers who would like to compare two current

deployments or two past deployments. The tool can also be em-

ployed in the education of programming concepts in the middle or

high school levels. The educators can assign homework to students

to program a WSN according to specifications. These programming

assignments can be created by expert programmers along with so-

lution packet traces. This eliminates the involvement of educators

who might not be well versed with programming and WSN con-

cepts. The tool can then be used to compare the solution packet

trace of the prescribed WSN and the trace from the WSN simulated

or programmed by students. Students can be graded by percentage

similarity to the solution network and can even themselves visually

identify and learn the differences in the two WSNs.

5.1. Design

The network comparison tool extracts packet information (ar-

rival time, the IEEE 802.15.4 header [37] , and the packet payload)

from PSD trace files generated by a packet sniffer (e.g, TI SmartRF

Packer Sniffer). The tool first writes this packet information to XML
rst for easier access and manipulation of packet characteristics.

he parsed XML file is read and a graph structure with nodes

nd links is created. The tool uses a weighted-average approach

o match the packet traces based on weights given by a user. Five

ypical link characteristics that a user tries to identify in a sen-

or network are utilized: number of packets sent, average packet

elay, number of bytes sent, average packet size, and periodicity of

ackets sent. Depending on the user’s preferred properties, weights

in percentages of the total score) for each of these link proper-

ies are obtained from the user before comparing the traces. These

eights are considered for calculating individual scores for each

acket trace. The trace file to be compared is referred to as the

roblem and the trace to be compared against is the solution .

A score for each of the properties is calculated based on the

ercentage accuracy of the value of the property with respect to

he value in the corresponding link of the solution trace. Once this

ne-to-one mapping for all the properties is done, a weighted av-

rage of the link score is calculated. If the score passes a threshold

N’, the link gets a score of 1, else, it gets a 0. If N percent of the

otal number of links have a score of 1, trace matching/similarity is

eported. Once this process of mapping the two traces is done, the

wo graphs are displayed along with the link properties to help vi-

ually identify the difference in properties, links and nodes. Table 1

hows the calculation of a link score as an example.

After initiating this comparison and calculating network simi-

arity, the two networks are plotted using the Graphviz graph li-

rary [39] in Qt [40] and the percent network similarity is re-

orted. The two networks are shown next to each other along with

issing nodes/links color coded in red and extra nodes/links in

lue. The features and capabilities of the network comparison tool

llow one to successfully compare two traces. An example usage of

he network comparison tool is shown in Fig. 9 .

. Scripting language for TinyOS

TinyOS [7] is an operating system for WSNs that uses nesC [10] ,

 C-based language for developing sensornet applications. The sys-

em is widely used, but its main shortcomings for programmers

re the complicated structure of the nesC language itself and the

ultiple files that have to be implemented for a single applica-

ion. The scripting language in PROVIZ was developed to overcome

hese difficulties by having a simpler, user-friendly language based

n C/C++ concepts with single-line commands for commonly used

odules, and developing the entire application in a single file.

.1. Application development with nesC

TinyOS requires the creation of two files for building an appli-

ation - a configuration file and an implementation file. The con-

guration file contains wiring of modules (i.e., functions) and in-

erfaces that are used and provided by this application. The im-

lementation file is where the actual behavior is written. TinyOS

perations are split-phase operations, meaning, function calls for

perations like send packet, start timer, etc. that take too long

S. Ravichandran et al. / Ad Hoc Networks 53 (2016) 1–16 9

Listing 3. Configuration file for the application.

Listing 4. Part of the implementation file for the application.

t

a

b

c

m

T

l

n

p

s

g

e

6

d

d

g

e

v

a

t

c

l

c

t

g

a

t

fi

s

i

a

T

u

o

t

i

d

e

t

t

u

i

a

t

v

i

f

d

c

t

i

s

t

6

o

a

i

w

u

T

N

a

e

i

i

v

v

T

c

l

t

7

s
o execute are not blocking calls. Instead, the calls are immedi-

tely returned and when the operation finishes execution, call-

acks (events) are generated. For a novice developer, these con-

epts are hard to grasp.

Listings 3 and 4 are snapshots of the configuration and imple-

entation files of a sample RadioCountToLeds application in TinyOS.

he application starts a counter that updates itself every n mil-

iseconds and sends out a packet containing the counter value. A

ode that receives this packet will read the counter value from the

ayload of the packet and displays the LSB on the LEDs. The snap-

hot of the implementation file is only about half the entire pro-

ram. As is apparent, this is information overload for a novice user

ven if the user has basic programming knowledge.

.2. A simple scripting language

In the previous sub-section, a sample TinyOS application was

iscussed and the difficulty in programming with nesC was

emonstrated. Considering this, the design of the scripting lan-

uage in PROVIZ was influenced by the following three factors: 1)
liminating the writing of a configuration file and the wiring in-

olved, 2) abstracting interfaces and making it simpler to create

nd reuse code, and 3) developing a language that can be scaled

o include more abstracted functions and complex applications.

With these factors in mind, a C-based scripting language was

hosen as C’s basic principles are simple, intuitive, and easy to

earn. While there are some scripting language specific function

alls and include headers, the rest of the program written with

his language follows only C. Therefore, users can port any C pro-

ram to this script by simply modifying only those functions that

re sensor-specific. Listing 5 shows the RadioCountToLeds applica-

ion written in the new scripting language.

In the TinyOS application, a boot-up sequence of actions speci-

ed by the user is the starting point of the program. This boot-up

equence is called when the sensor boots, but this function call

s not visible to users. To avoid this confusion, a main() function is

dded prior to the script that has a single function call to INITIAL().

he users will, then, have to define actions in INITIAL() as the boot-

p sequence. The scripting language tries to expose the split-phase

peration of function calls in TinyOS as much as possible while still

rying to remain tractable. Apart from calling the timer and radio

nterfaces to start the timer or send packets, the user will have to

efine what has to be done in the callbacks (events) that are gen-

rated. This TinyOS concept was retained in the scripting language

o offer more flexibility to the users in developing their applica-

ion.

Listings 6 and 7 describe the TinyOS property of providing and

sing interfaces as a C++ abstraction of static classes. Creating an

nterface (a sequence of TinyOS commands and events) involves

n interface name and the name of the module that implements

he interface. This is the only way TinyOS allows the user to de-

elop code in one file and use it across many files. This complex-

ty can be abstracted to the concept of a static C++ class (inter-

ace) and the include file in which the static class functions are

efined (module). Functions to be exported are defined as static

lass functions and the program that uses these functions, calls

hem like regular static class functions (without a class object) and

ncludes the name of the program that implemented them. By ab-

tracting this TinyOS concept to C++ classes, novice users can save

ime writing nesC code and understand nesC concepts better.

.3. OMNeT simulation

Our script generates nesC code that can be either programmed

nto a WSN or simulated in the OMNeT simulator [1] , which is

 C++ based, modular network simulator. The advantages in us-

ng OMNeT is that it allows heterogeneous network simulations

here each node in the network can run their own application

nlike TOSSIM [6] that can simulate only homogeneous networks.

inyOS applications can be simulated in OMNeT using NesCT [41] .

esCT is a language translator that takes nesC programs as input

nd generates OMNeT code that can be simulated in the OMNeT

nvironment. However, NesCT only takes version 1 of TinyOS as

nput while the latest release of TinyOS is version 2. The script-

ng language in PROVIZ generates TinyOS-2.x code as well. To con-

ert TinyOS-2.x code to TinyOS-1.x code, a custom parser was de-

eloped in Python. There are a few differences in TinyOS-2.x and

inyOS-1.x code and the parser simply parses these variations in

ode and generates TinyOS-1.x code that can be fed into the NesCT

anguage translator. After simulating in OMNeT, the packets from

he simulator output are sent to PROVIZ for visualization.

. Visual programming tool

The visual programming tool can be used to introduce young-

ters to programming concepts with the help of sensors. The tool

10 S. Ravichandran et al. / Ad Hoc Networks 53 (2016) 1–16

Listing 5. RadioCountToLeds in the new scripting language.

Listing 6. Sample script that implements an interface in the form of static class

functions.

Listing 7. Sample script that uses routing functions implemented in the previous

script.

Fig. 7. User interface of the visual programming tool.

a

t

l

m

l

7

o

C

(

a

c

i

-
aids in creating a heterogeneous WSN with multiple sensors run-

ning custom programs. It has simple, visually descriptive drag-and-

drop icons to create a sensor network program and connect sen-

sors via radio. With this tool, reading temperature or light sensor,

playing with the LEDs, sending messages over the air and setting

up timed actions in sensors become much simpler. This tool gener-
tes code in the scripting language described in the previous sec-

ion. The tool can easily be a stepping stone for young minds in

earning a new language such as C and sensor network program-

ing. They can visually see how their drag-and-drop icons trans-

ate to the scripting language and learn there onwards.

.1. Design

The visual programming tool was developed in Qt [34] on top

f the PROVIZ framework. Qt is an open source, multi-platform,

++ based framework for developing graphical user interfaces

GUIs). The user interface (UI) of the tool has five components

s shown in Fig. 7 . They are: 1) Control toolbar - for generating

ode and resetting the UI, 2) Programming icons - drag-and-drop

cons to create sensor programs, 3) Program development interface

 for creating action sequence, setting timer values, node ID, etc.,

S. Ravichandran et al. / Ad Hoc Networks 53 (2016) 1–16 11

Table 2

Operator list.

Icon Type of function Name Function

Input operators Light sensor Reads the light sensor value

Input operators Temperature sensor Reads the temperature sensor value

Input operators Radio Reads payload value sent via radio

Main operators Turn off Turns off the LED

Main operators Turn on Turns on the LED

Main operators Send to Sends input value over to radio

Main operators Flash LEDs Flashes LSB to output LEDs

Output operators All LEDs Operation routed to all LEDs

Output operators Green LED Operation routed to Green LED

Output operators Red LED Operation routed to Red LED

Output operators Yellow LED Operation routed to yellow LED

Output operators Radio Input value sent over radio

4

v

a

p

b

7

s

S

7

-

h

s

7

r

c

a

t

t

t

b

T

l

t

7

s

u

c

o

7

a

r

c

i

s

d

8

P

d

w

8

e

b

a

c

c

w

m

t

t

r

t

t

p

t

s

d

a

r

T

s

r

s

m

t

a

t

s

t

s

m

a
) Generated Sensors - list of sensors developed in the program de-

elopment interface and, 5) Sensor network canvas - canvas for cre-

ting a sensor network environment with sensors generated by the

rogram development interface. These components are discussed

elow.

.1.1. Control toolbar

The control toolbar has options to reset the whole interface and

tart fresh and to generate code once the WSN is created in the

ensor Network Canvas .

.1.2. Programming icons

This interface has three sets of draggable icons for programming

 input operators, output operators and operations. These icons

ave to be dragged and dropped onto the table to create an action

equence. Table 2 describes the function of each operator icon.

.1.3. Program development interface

This interface has a dynamically sized table where each row

epresents an action sequence in a sensor. For example, a sequence

an be reading a sensor value and flashing the value using LEDs or

nother action sequence such as turning on the red LED. An ac-

ion sequence can be repeated with a timer by selecting the row

o be repeated and specifying the timer value in milliseconds. Ac-

ion rows can be deleted or added dynamically. Once the sensor is

uilt, a node ID is given to the sensor and the sensor is generated.

hat is, the program for this sensor is generated in the scripting

anguage in the background and visually, the sensor is added to

he Generated Sensors list.

.1.4. Generated sensors

Once a sensor is built in the Program Development Interface , the

ensor is added as an icon to this list along with node ID. As the

ser continues building programs for other sensors, sensors are ac-

umulated in this list. These sensors can be dragged and dropped

nto the Sensor Network Canvas .

.1.5. Sensor network canvas

Sensors can be dragged and dropped onto this canvas to create

 heterogeneous WSN. Nodes can be removed from the canvas by

ight-clicking a node and selecting the delete option. Nodes can be

onnected to each other via radio by right-clicking and connect-

ng to a list of nodes in the canvas. By selecting this option, if the

ource node has an output Radio operator, packets are sent to the

estination node ID specified.
. Usage scenarios

In this section, we first demonstrate a scenario in which,

ROVIZ is used to visualize and debug a security attack. Then, we

emonstrate the usage of the packet trace comparison tool. Finally,

e show the visual programming capability of PROVIZ.

.1. Visualization

We use PROVIZ to visualize a WSN and show how the tool

nables visual debugging to identify a security breach such as a

lack-hole attack [42] . To demonstrate the black-hole attack, first

 compromised node advertises a route message to other nodes,

laiming to have a shortest route to the cluster head. Then, the

ompromised node starts receiving the packets from other nodes,

hose packets it eventually drops.

Fig. 8 shows the visualization of a WSN with three environment

onitoring sensor nodes, with Node IDs 10, 20 and 30 and a clus-

er head, with Node ID 80. The sensor nodes in the WSN gather

he environment information (e.g., temperature, ambient light) pe-

iodically and sends it to the cluster head. The sensor nodes use

he Dynamic Source Routing (DSR) [43] protocol for determining

he route to the cluster head and uses source-routing to route the

ackets to the destination. In DSR, to determine a route to a par-

icular node ID, the sender generates a Route Request (RREQ) mes-

age for the destination ID and then broadcasts it. The interme-

iate nodes, on receiving this message, will append their node ID

nd re-broadcasts the RREQ message, until the destination node

eceives the RREQ and replies with a Route Reply (RREP) message.

he RREP message has the route information that the RREQ mes-

age took and it is source-routed to the sender. The sender, on

eceiving the first RREP message, gets the route information and

tarts sending the packets.

Node 10 in the WSN sends the data to the cluster head, in a

ulti-hop route through nodes 20 and 30 as shown in Fig. 8 . In

he same network, we assume that node 40 is compromised by

n attacker to demonstrate the black-hole [42] attack scenario. Al-

hough, node 40 is not a single hop neighbor of the cluster head, it

ends a route advertisement claiming that it is one hop away from

he cluster head. After receiving the route advertisement, node 10

tarts sending the data packets through node 40 and the compro-

ised node starts dropping the packets, thus initiating a black-hole

ttack. When an attack of this type is launched, it may not be triv-

12 S. Ravichandran et al. / Ad Hoc Networks 53 (2016) 1–16

Fig. 8. PROVIZ demonstrating the visualization of a black-hole attack.

Fig. 9. Comparison of graphs when right-clicking a common link.

8

s

n

t

n

t

s

t

p

s

N

P

t

t

s

i

9

s

t

ial for a user to understand this attack and to identify the mali-

cious node. In the mean time, the compromised node might have

dropped critical time-sensitive data. The user needs to analyze the

packet logs continuously to detect an anomaly in the WSN, which

is a time consuming process. Also, if the black-hole attack is ini-

tiated intermittently, then it will be hard to detect the attack by

packet log analysis. However, with the help of PROVIZ visualiza-

tion tool, the researcher can monitor or replay the packet trans-

fers from the point when the cluster head stops receiving pack-

ets and can visually debug and identify that node 40 is compro-

mised. Fig. 8 shows that node 40 receives packets from nodes 10

and 20 and drops the packets, which depicts a black-hole attack.

On identifying the black-hole attack, the researcher can use the

PROVIZ programming functionality to modify the WSN application

and program the compromised node over-the-air. Thus, the visu-

alization tool can be used as a visual monitoring and debugging

tool to detect a network anomaly and its programming functional-

ity can be used to provide an instant fix for the attack by repro-

gramming the sensor node.

8.2. Network comparison

The packet trace comparison tool was tested on real sensors

(MicaZ) and WSNs to ensure robustness and efficiency. We set up

five MicaZ sensors in two different network configurations with 5

nodes each. Packet trace (.psd) files of the two networks were ob-

tained from the TI SmartRF Packet Sniffer. These traces were com-

pared by the packet comparison tool and the graph comparison UI

was generated using the Graphviz.

In this demo, we first receive weights from the user for each

of the five link characteristics. With the weights, the two net-

works are compared as discussed earlier. Fig. 9 shows the two

traces’topology in comparison to each other. The extra nodes/edges

are drawn in blue and the missing nodes/edges in red. On right-

clicking each link, the properties of that link and the link in the

other graph are displayed respectively. When a missing or extra

edge is right-clicked, only link properties are reported.

Finally after the comparison is computed, the tool reports via

a dialog pop-up the two traces’percent matching. In our case, the

match percentage was 93. We note that our purpose is not to pro-

vide a higher percentage in matching. Indeed, a higher percent-

age means that the two networks are very similar, while a lower

percentage means that they differ in many aspects based on the

weight of every characteristic provided by the user. This is espe-

cially useful for educators or developers when they are trying to

debug or understand the results. For instance, an educator would

be able to understand how much a student’s submission matches

a specific expected result.
.3. Visual programming

In this sub-section, we demonstrate a usage scenario for the vi-

ual programming tool provided in PROVIZ.

Fig. 10 shows a sequence of actions for developing a two-

ode heterogeneous WSN. The user drags and drops opera-

ors/operations to create a row of sensor actions, gives the sensor a

ode number and places the sensor on the canvas. Lines drawn be-

ween sensors show the direction of communication between sen-

ors. In this scenario, Node 4 senses light and sends the value over

he radio. Node 5 receives packets from the radio and flashes the

ayload to the LEDs. Node 4 is connected to Node 5 in the sen-

or network canvas and packets generated in Node 4 are sent to

ode 5. The automatic code generated in the scripting language in

ROVIZ for the two sensors created with the visual programming

ool are shown in Listings 8 and 9 . With this step-by-step approach

o sensor programming, novices can first experiment with the vi-

ual programming tool and study the code generated by the script-

ng language to get a better grasp of programming in nesC.

. Benefits of PROVIZ

In this section, we articulate various ways PROVIZ would be in-

trumental to engineers, scientists, and educators in accomplishing

asks in their domains.

• Working with heterogeneous wireless sensors : Today, most wire-

less sensor deployments are heterogeneous with different types

of sensor nodes (e.g., MicaZ, IRIS, Telosb) sending packets with

different packet payload formats. In these settings, the sensor

nodes have varying architectures with different limited hard-

S. Ravichandran et al. / Ad Hoc Networks 53 (2016) 1–16 13

Fig. 10. Creation of a WSN and generating its code.

Listing 8. Program for node 25.

Listing 9. Program for node 5.

ware components (e.g., memory size, battery sizes) and a het-

erogeneous wireless sensor network deployment allows for effi-

cient utilization of the limited resources onboard sensors and to

maximize the lifetime of the sensor network with sensors with

different com position of resources. PROVIZ is capable of visu-

alizing and programming such a heterogeneous wireless sensor

network and it is able to understand different packet formats

generated by different sensors.

• Support for distributed deployment of wireless sensors : For visu-

alizing a large wireless sensor deployment, PROVIZ is able to

support a distributed approach that uses multiple sniffers. In

the distributed setup, the PROVIZ visualization tool can run in
a host machine and multiple sniffers are placed in a distributed

fashion so that a packet transmitted by a sensor node can be

sniffed by at least one of the sniffers. The PROVIZ framework

can also utilize the NTP protocol to synchronize the packets re-

ceived from multiple sniffers.

• Built-in extensible visual demos : PROVIZ includes built-in exten-

sible visual demo deployment scenarios, which enables one to

easily visualize pre-defined sensor scenarios. Researchers can

use this feature to create a demo scenario to visualize a criti-

cal/complex wireless sensor deployment and share it with other

PROVIZ users. In addition to default scenarios, the demo vi-

sualization scenarios can be extended or customized by users

with an XML file, in which users will be able to specify the

sensor type to be used, number of sensors, and other details.

These easy-to-run demonstrations would be also instrumental

in pedagogical contexts. For instance, undergraduate, graduate,

and even students in K-12 can have an opportunity to learn to

use different sensors and appreciate their use in science and

engineering fields.

• Connection to external simulators : PROVIZ framework includes a

capability to connect to external network simulators (e.g., OM-

NeT). Specifically, it will be able to visualize data trace gener-

ated by a wireless sensor network deployment in an external

simulation environment. Further, it is able to generate the code

that can run in the simulator. In this way, simulators popularly

used by computer engineers and scientists can also be accessi-

ble to researchers and engineers of other fields (e.g., civil en-

gineers, geophysicists) and PROVIZ is able to alleviate the com-

plexity associated with programming network simulators.

• Visual debugging of wireless sensor deployments and data : PROVIZ

can visualize the wireless sensors and their data by continu-

ously monitoring the network activity and can be used by re-

searchers for visual debugging purposes. Further, it can also

be utilized for detecting possible malicious activity by vi-

sual inspection and can aid in providing a software fix (re-

programming the sensor).

• Easy programming of wireless sensors : PROVIZ framework in-

cludes two simplified development environments (languages)

to program wireless sensors. The first one is a visual program-

ming language where scientists and researchers can use visual

blocks and certain shapes as programming constructs and the

other one is a scripting language, which is a domain specific

14 S. Ravichandran et al. / Ad Hoc Networks 53 (2016) 1–16

t

t

c

p

h

m

n

b

y

A

fi

m

v

M

t

R

simplified language with simple commands to ease program-

ming tasks. These simplified languages can allow researchers

in other disciplines to easily program the sensors and focus

more on the tasks in their domains rather than on the over-

head of learning how to program sensors and the details of

the underlying sensor software architecture (i.e., TinyOS, nesC).

Hence, PROVIZ can significantly expedite the development of

programs for sensors and, therefore, give the scientists and en-

gineers from other disciplines more time to make stronger re-

search contributions.

• Over-The-Air Remote (Re)programming of wireless sensors : Sen-

sors are deployed in various locations such as underwater, vol-

cano regions, and underground, making them hard to recover or

replace. Due to this diverse deployment of wireless sensors, re-

programming the deployed sensor nodes through wireless links

becomes a necessary and desirable task. For instance, if soft-

ware running on the sensor requires an update as a result of a

security patch or additional functionality, it would be necessary

to replace the existing code on the sensor with the new up-

dated code. This situation is daunting and error-prone for a civil

engineer or geophysicist who have to connect hundreds of sen-

sors to a desktop computer with a cable to update their code.

To address these needs, the PROVIZ framework includes a capa-

bility to program/reprogram sensors remotely over the air. This

is a instrumental feature for researchers who would not be able

to recover their wireless sensors easily.

10. Conclusion and Future work

In this work, we introduced PROVIZ, which is an integrated

visualization and programming framework developed for WSNs.

PROVIZ is an open-source framework, which is designed to be

modular, scalable, and platform independent. PROVIZ is capable of

visualizing a WSN and the packet transfers occurring between the

sensor nodes in real-time. PROVIZ visualization tool is generic and

extensible such that it can take packet data input from various

sources like live sensor-based sniffers, commercial sniffers (e.g., TI

SmartRF packet sniffer [36]) and the OMNeT simulator [1] . PROVIZ

can take multiple user-defined packet formats as input and trans-

late the raw packet data from a heterogeneous network into a

user readable content. Users can define the packet formats graph-

ically using the PROVIZ Packet Format Specifier. Also, PROVIZ in-

cludes built-in extensible visual demo deployment scenarios that

can even be shared among the users in the form of XML files. The

network comparison tool can enable users to compare two net-

work deployments for differences in link characteristics such as

average packet delay, number of bytes in payload, etc. This tool

can help make programming concepts easier for K-12 students. It

can aid teachers unfamiliar with programming to grade WSN pro-

gramming assignments. The scripting language inside PROVIZ of-

fers application development for TinyOS in a single file, eliminating

complicated concepts such as the wiring and interface in TinyOS.

It has a scalable design where more add-on modules for projects

like data collection, monitoring, routing, etc. can be programmed

in TinyOS and abstracted to functions. The tool also allows pro-

grammers to reuse WSN functions developed in some other file.

The visual programming tool has simple drag-and-drop icons to

create WSN programs and connect sensors via the radio interface.

Again, this tool can help teach students basic programming con-

cepts. Finally, PROVIZ is capable of remotely programming the sen-

sor nodes by disseminating the code wirelessly. Compared to other

similar useful sensor programming works in literature, PROVIZ’s

main advantage is that it is a complete integrated system where

visualization, programming, and simulation can be done from the

same software architecture.
Our future work will extend PROVIZ to get sensory data like

emperature, battery level, etc. and enhance the functionalities of

he network comparison tool. We will also improve PROVIZ to in-

lude a capability to define notifications to the user whenever a

redefined network condition is reached. These features will be

elpful when a researcher, developer, or user need to continuously

onitor a WSN to get notifications. For instance, the user can be

otified whenever the battery level of a sensor node goes down

eyond certain limit or when the temperature readings goes be-

ond certain threshold.

cknowledgment

This work was supported by NSF-ACI-1339781. Any opinions,

ndings and conclusions or recommendations expressed in this

aterial are those of the authors and do not necessarily reflect the

iews of the funding agencies. The authors would also like to thank

ike Alan of Florida International University for his contributions

o the project.

eferences

[1] A. Varga, Omnet simulator, 2014, (http://www.omnetpp.org/).

[2] R.K. Chandrasekar , V. Subramanian , S. Uluagac , R. Beyah , SIMAGE: secure and
Link-Quality cognizant image distribution for wireless sensor networks, in:

IEEE Global Telecommunications Conference, 2012, pp. 616–621 .
[3] L. Ma , L. Wang , L. Shu , J. Zhao , S. Li , Z. Yuan , N. Ding , Netviewer: a univer-

sal visualization tool for wireless sensor networks, in: Proceedings of the IEEE
Global Telecommunications Conference (GLOBECOM), 2010, pp. 1–5 .

[4] R. Jurdak , A.G. Ruzzelli , A. Barbirato , S. Boivineau , Octopus: monitoring, visual-

ization, and control of sensor networks, Wiley Wireless Commun. Mobile Com-
put. 11 (8) (2011) 1073–1091 .

[5] L. Shu , C. Wu , Y. Zhang , J. Chen , L. Wang , M. Hauswirth , Nettopo: beyond sim-
ulator and visualizer for wireless sensor networks, in: Proceedings of the Sec-

ond IEEE International Conference on Future Generation Communication and
Networking, 1, 2008, pp. 17–20 .

[6] P. Levis , N. Lee , M. Welsh , D. Culler , TOSSIM: accurate and scalable simula-

tion of entire tinyOS applications, in: Proceedings of the 1st ACM international
conference on Embedded networked sensor systems, 2003, pp. 126–137 .

[7] TinyOS, TinyOS documentation, 2014. URL http://docs.tinyos.net/ .
[8] A. Burns , B.R. Greene , M.J. McGrath , T.J. OShea , B. Kuris , S.M. Ayer , F. Stroiescu ,

V. Cionca , SHIMMER – a wireless sensor platform for noninvasive biomedical
research, IEEE Sens. J. 10 (9) (2010) 1527–1534 .

[9] N. Kurata , B. Spencer , M. Ruiz-Sandoval , Risk monitoring of buildings with

wireless sensor networks, Struct. Cont. Health Monit. 12 (3–4) (2005) 315–327 .
[10] D. Gay , P. Levis , R. von Behren , M. Welsh , E. Brewer , D. Culler , The nesc lan-

guage: a holistic approach to networked embedded systems, in: Proceedings of
the ACM Conference on Programming Language Design and Implementation,

2003, pp. 1–11 .
[11] M. Dyer , J. Beutel , T. Kalt , P. Oehen , L. Thiele , K. Martin , P. Blum , Deployment

support network, in: Springer Wireless Sensor Networks, 2007, pp. 195–211 .

[12] B. Greenstein , E. Kohler , D. Estrin , A sensor network application construction
kit (SNACK), in: Proceedings of the 2nd ACM International Conference on Em-

bedded Networked Sensor Systems, 2004, pp. 69–80 .
[13] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Bren-

nan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, Y. Kafai, Scratch: pro-
gramming for all, Commun. ACM 52 (11) (2009) 60–67, doi: 10.1145/1592761.

1592779 .

[14] Alice, Alice, 2014. URL www.alice.org/ .
[15] M. Turon , J. Suh , MOTE–VIEW: a sensor network monitoring and management

tool, in: Proceedings of the 2nd IEEE workshop on Embedded Networked Sen-
sors, 2005, pp. 11–17 .

[16] MEMSIC, memsic, 2014. URL www.memsic.com/ .
[17] B.-R. Chen , G. Peterson , G. Mainland , M. Welsh , Livenet: using passive mon-

itoring to reconstruct sensor network dynamics, in: Proceedings of Springer

Distributed Computing in Sensor Systems, 2008, pp. 79–98 .
[18] M. Ringwald , K. RÃ¶mer , A. Vitaletti , SNIF: Sensor Network Inspection Frame-

work, Technical Report, ETH Zurich, Institute for Pervasive Computing, 2006 .
535

[19] N. Ramanathan , E. Kohler , L. Girod , D. Estrin , Sympathy: a debugging sys-
tem for sensor networks [wireless networks], in: Proceedings of the 9th

Annual IEEE International Conference on Local Computer Networks, 2004,
pp. 554–555 .

[20] F. SantAnna , N.d. L. R. Rodriguez , R. Ierusalimschy , Ceu: embedded, safe, and

reactive programming, PUC-Rio, Tech. Rep 12 (2012) 12 .
[21] D. Chu , L. Popa , A. Tavakoli , J.M. Hellerstein , P. Levis , S. Shenker , I. Stoica , The

design and implementation of a declarative sensor network system, in: Pro-
ceedings of the 5th ACM International Conference on Embedded Networked

Sensor Systems, 2007, pp. 175–188 .

http://www.omnetpp.org/
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0001
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0001
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0001
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0001
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0001
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0002
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0002
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0002
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0002
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0002
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0002
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0002
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0002
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0003
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0003
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0003
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0003
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0003
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0004
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0004
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0004
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0004
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0004
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0004
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0004
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0005
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0005
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0005
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0005
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0005
http://docs.tinyos.net/
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0006
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0006
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0006
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0006
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0006
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0006
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0006
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0006
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0006
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0007
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0007
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0007
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0007
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0008
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0008
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0008
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0008
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0008
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0008
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0008
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0009
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0009
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0009
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0009
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0009
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0009
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0009
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0009
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0010
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0010
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0010
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0010
http://dx.doi.org/10.1145/1592761.1592779
http://www.alice.org/
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0012
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0012
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0012
http://www.memsic.com/
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0013
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0013
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0013
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0013
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0013
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0014
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0014
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0014
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0014
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0014
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0015
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0015
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0015
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0015
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0015
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0016
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0016
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0016
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0016
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0017
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0017
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0017
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0017
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0017
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0017
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0017
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0017

S. Ravichandran et al. / Ad Hoc Networks 53 (2016) 1–16 15

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

22] J. McCarthy, Datalog: deductive database programming, 2014, (docs.
racket-lang.org/datalog/).

23] E. Cheong , E.A. Lee , Y. Zhao , Viptos: a graphical development and simulation
environment for tinyos-based wireless sensor networks, in: Proceedings of the

3rd ACM International Conference on Embedded Networked Sensor Systems,
2005 . 302–302

24] W.P. McCartney , N. Sridhar , Tosdev: a rapid development environment for
tinyos, in: Proceedings of the 4th ACM International Conference on Embedded

Networked Sensor Systems, 2006, pp. 387–388 .

25] Eclipse, Eclipse, 2014, (https://www.eclipse.org/).
26] J.B. Lim , B. Jang , S. Yoon , M.L. Sichitiu , A.G. Dean , RaPTEX: rapid prototyp-

ing tool for embedded communication systems, ACM Trans. Sens. Netw. 7 (1)
(2010) .

[27] B.L. Titzer , D.K. Lee , J. Palsberg , Avrora: scalable sensor network simulation
with precise timing, in: Proceedings of the 4th IEEE International Symposium

on Information Processing in Sensor Networks, 2005, p. 67 .

28] F. Vieira , B.A. Vitorino , M.A. Vieira , D. Silva , A. Fernandes , A. Loureiro , Wisdom:
a visual development framework for multi-platform wireless sensor networks,

in: Proceedings of the 10th IEEE Conference on Emerging Technologies and
Factory Automation, 2, 2005 .

29] A. Elsts , J. Judvaitis , L. Selavo , SEAL: a domain-specific language for novice
wireless sensor network programmers, in: Proceedings of the 39th IEEE EU-

ROMICRO Conference on Software Engineering and Advanced Applications

(SEAA), 2013, pp. 220–227 .
30] N. Fraser, Blocky: a visual programming editor, 2014. URL https://code.google.

com/p/blockly/ .
[31] M.T. Hansen, B. Kusy, Tinyinventor: a holistic approach to sensor network ap-

plication development,Extending the Internet to Low power and Lossy Net-
works, (2011).
32] R.V. Roque , OpenBlocks: an extendable framework for graphical block pro-
gramming systems, Ph.D. thesis, Massachusetts Institute of Technology, 2007 .

33] R.K. Chandrasekar , S. Uluagac , R. Beyah , Proviz: an integrated visualization and
programming framework for wsns, in: Proceedings of the 38th IEEE Conference

on Local Computer Networks Workshops (LCN Workshops), 2013, pp. 146–149 .
34] Qt, Qt: A GUI development framework, 2014, (http://qt-project.org/).

35] TI, Cc2420 rf transceiver, 2014. URL http://www.ti.com/lit/ds/symlink/cc2420.
pdf .

36] TI, TI smartrf packet sniffer, 2014, (http://www.ti.com/tool/packet-sniffer).

[37] IEEE-SA , in: Approved draft revision for ieee standard for information tech-
nology-telecommunications and information exchange between systems-lo-

cal and metropolitan area networks-specic requirements-part 15.4b: Wire–
less medium access control (mac) and physical layer (phy) specications for

low rate wireless personal area networks (wpans) (amendment of ieee std
802.15.4–2003), IEEE Std P802.15.4/D6, 2006 .

38] D.L. Mills, Network time protocol project, 2014, (http://www.ntp.org/).

39] A.L. Research, Graphviz – graph visualization software, 2014, (http://www.
graphviz.org/).

40] N. Bergont, Interactive qt graphviz display, 2014, (http://code.google.com/p/
qgv/).

[41] O.S. Kaya, Nesct: a language translator, 2014, (http://nesct.sourceforge.net/).
42] Y.-C. Hu , A. Perrig , D.B. Johnson , Wormhole attacks in wireless networks, IEEE

J. Sel. Areas Commun. 24 (2) (2006) 370–380 .

43] D.B. Johnson , D.A. Maltz , Dynamic source routing in ad hoc wireless net-
works, in: T. Imielinski, H. Korth (Eds.), Mobile Computing, The Kluwer Inter-

national Series in Engineering and Computer Science, 353, Springer US, 1996,
pp. 153–181 .

http://docs.racket-lang.org/datalog/
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0018
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0018
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0018
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0018
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0018
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0019
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0019
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0019
https://www.eclipse.org/
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0020
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0020
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0020
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0020
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0020
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0020
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0021
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0021
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0021
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0021
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0022
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0022
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0022
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0022
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0022
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0022
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0022
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0023
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0023
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0023
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0023
https://code.google.com/p/blockly/
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0024
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0024
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0025
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0025
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0025
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0025
http://qt-project.org/
http://www.ti.com/lit/ds/symlink/cc2420.pdf
http://www.ti.com/tool/packet-sniffer
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0026
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0026
http://www.ntp.org/
http://www.graphviz.org/
http://code.google.com/p/qgv/
http://nesct.sourceforge.net/
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0027
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0027
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0027
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0027
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0028
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0028
http://refhub.elsevier.com/S1570-8705(16)30163-9/sbref0028

16 S. Ravichandran et al. / Ad Hoc Networks 53 (2016) 1–16

nics and Communications Engineering from Anna University, India in 2012 and an M.S.

gia Institute of Technology, Atlanta, USA in 2014. Since then, she has been with National
 for Timing and Synchronization modules.

 He received his B.E. in Electrical and Electronics Engineering (EEE) from PSG College of

a, in 2008. He was awarded with the most prestigious Koorathalwar award, for his ex-
iety. After his graduation, he worked with TOSHIBA, India, for three years as a Software

lutions group. He received his M.Sc. in Electrical and Computer Engineering (ECE) from

ng his Masters, he served as a Graduate Research Assistant (GRA) in the Communications

nd has several publications in the area of security and Wireless Sensor Networks (WSNs).

novation Center (QUIC), Boulder, CO. In QUIC, he worked with the Android power man-
king as a full-time Software Engineer at QUIC from July 2013. Also, he is a trustee of the

ation (CKF), which work towards helping students to get basic education.

in the Department of Electrical and Computer Engineering (ECE) at Florida International

rch Engineer in the School of Electrical and Computer Engineering (ECE) at Georgia Insti-
 Research Engineer at Symantec. He earned his Ph.D. with a concentration in information

Tech in 2010. He also received an M.Sc. in Information Security from the School of Com-
rnegie Mellon University in 2009 and 2002, respectively. The focus of his research is on

d applied aspects. He is interested in and currently working on problems pertinent to the
. In 2015, he received a Faculty Early Career Development (CAREER) Award from the US

restigious award in support of junior faculty who exemplify the role of teacher-scholars

 integration of education and research within the context of the mission of their organi-
 of Sponsored Research (AFOSR)s 2015 Summer Faculty Fellowship. In 2007, he received

from the School of ECE, Georgia Tech. He is also an active member of IEEE (senior grade),
els and leading journals and conferences in the field. Currently, he is the area editor of

d serves on the editorial board of the IEEE Communication Surveys and Tutorials. More
selcuk .

lectrical and Computer Engineering at Georgia Tech where he leads the Communications
of the Institute for Information Security & Privacy (IISP) and the Communications Systems

ah was an Assistant Professor in the Department of Computer Science at Georgia State
ech CSC, and a consultant in Andersen Consulting’s (now Accenture) Network Solutions

gineering from North Carolina A&T State University in 1998. He received his Masters and

a Tech in 1999 and 2003, respectively. Dr. Beyah has served as a Guest Editor for MONET
s Communications and Mobile Computing Journal. His research interests include network

n and performance, and critical infrastructure security. He received the National Science
ARPA’s Computer Science Study Panel in 2010. He is a member of AAAS, ASEE, a lifetime

Shruthi Ravichandran received her B.E. degree in Electro

degree in Electrical and Computer Engineering from Geor
Instruments as a Software Engineer and works on drivers

Ramalingam was born on July 8, 1986 in Madurai, India.

Technology, affiliated to Anna University, Tamilnadu, Indi
cellent work in academics, sports, and service to the soc

Engineer in the Multi-Function Printer (MFP) network so
Georgia Institute of Technology, Atlanta, GA, in 2013. Duri

Assurance and Performance (CAP) group at Georgia Tech a

In Summer 2012, he did his internship with Qualcomm In
agement team and after his graduation; he continued wor

non-profit organization named Computer Kindness Found

Dr. A. Selcuk Uluagac is currently an Assistant Professor

University (FIU). Before joining FIU, he was a Senior Resea
tute of Technology. Prior to Georgia Tech, he was a Senior

security and networking from the School of ECE, Georgia
puter Science, Georgia Tech and an M.Sc. in ECE from Ca

cyber security topics with an emphasis on its practical an
security of Cyber-Physical Systems and Internet of Things

National Science Foundation (NSF), which is NSF’s most p

through outstanding research, excellent education and the
zations. In 2015, he was awarded the US Air Force Office

the “Outstanding ECE Graduate Teaching Assistant Award”
ACM, and ASEE and a regular contributor to national pan

Elsevier Journal of Network and Computer Applications an
information can be obtained from: http://web.eng.fiu.edu/

Raheem Beyah is an Associate Professor in the School of E
Assurance and Performance Group (CAP) and is a member

Center (CSC). Prior to returning to Georgia Tech, Dr. Bey
University, a research faculty member with the Georgia T

Group. He received his Bachelor of Science in Electrical En

Ph.D. in Electrical and Computer Engineering from Georgi
and is currently an Associate Editor of the (Wiley) Wireles

security, wireless networks, network traffic characterizatio
Foundation CAREER award in 2009 and was selected for D

member of NSBE, and a senior member of ACM and IEEE.

http://web.eng.fiu.edu/selcuk

	A simple visualization and programming framework for wireless sensor networks: PROVIZ
	1 Introduction
	2 Related work
	2.1 WSN visualization and analysis
	2.2 WSN scripting languages
	2.3 WSN visual development

	3 PROVIZ design overview
	3.1 Modules for programming functionality
	3.1.1 Visual programming
	3.1.2 Scripting language
	3.1.3 Code generator
	3.1.4 Code distributor
	3.1.5 Communication interface
	3.1.6 Wireless code dissemination

	3.2 Modules for visualization functionality
	3.2.1 Communication interface
	3.2.2 OMNeT Packet Receiver
	3.2.3 Packet Receiver buffer
	3.2.4 Multi-Threaded packet analyzer
	3.2.5 PROVIZ visualization events engine
	3.2.6 Network comparison

	3.3 PROVIZ client design
	3.3.1 Thin-client and network discovery

	3.4 PROVIZ distributed framework model

	4 Visualization tool features
	4.1 Control toolbar
	4.2 Drag and Drop Window Holder
	4.3 Packet visualization
	4.4 Heterogeneous WSN visualization

	5 Network comparison tool
	5.1 Design

	6 Scripting language for TinyOS
	6.1 Application development with nesC
	6.2 A simple scripting language
	6.3 OMNeT simulation

	7 Visual programming tool
	7.1 Design
	7.1.1 Control toolbar
	7.1.2 Programming icons
	7.1.3 Program development interface
	7.1.4 Generated sensors
	7.1.5 Sensor network canvas

	8 Usage scenarios
	8.1 Visualization
	8.2 Network comparison
	8.3 Visual programming

	9 Benefits of PROVIZ
	10 Conclusion and Future work
	 Acknowledgment
	 References

