
Realizing an 802.11-based Covert Timing Channel
Using Off-The-Shelf Wireless Cards

Sakthi V. Radhakrishnan, A. Selcuk Uluagac and Raheem Beyah
CAP Group, School of ECE, Georgia Institute of Technology

Atlanta, GA 30363, USA
{sakthi03, selcuk}@gatech.edu, rbeyah@ece.gatech.edu

Abstract—By using covert channels, a malicious entity can
hide messages within regular traffic and can thereby circumvent
security mechanisms. This same method of obfuscation can
be used by legitimate users to transmit messages over hostile
networks. A promising area for covert channels is wireless
networks employing carrier sense multiple access with collision
avoidance (CSMA/CA) (e.g., 802.11 networks). These schemes
introduce randomness in the network that provides good cover
for a covert timing channel. Hence, by exploiting the random
back-off in distributed coordination function (DCF) of 802.11,
we realize a relatively high bandwidth covert timing channel for
802.11 networks, called Covert-DCF. As opposed to many works
in the literature focusing on theory and simulations, Covert-
DCF is the first fully implemented covert timing channel for
802.11 MAC using off-the-self wireless cards. In this paper, we
introduce the design and implementation of Covert-DCF that is
transparent to the users of the shared medium. We also evaluate
the performance of Covert-DCF and provide discussions on the
feasibility of this technique in a real world scenario.

Index Terms—Covert Channels, Covert DCF, Network
Steganography, 802.11 Covert Channel, Covert Timing Channel

I. INTRODUCTION

Covert channels are communication channels between a
sender and one or more receivers which is generally used for
secretive data exchange. This is in contrast to overt communi-
cation, where the data is sent over legitimate channels. Using
a covert channel, a malicious entity can hide messages and
other useful information (e.g., PIN, password) within regular
traffic which poses a great security threat.

The idea of covert communication channels has been around
as early as the 1970s [1]. Traditionally, covert communication
channels take two forms: (1) storage channels and (2) timing
channels. With storage channels, the secret data is directly
or indirectly embedded into a storage medium; covertness is
”distinguished based on what is sent” [2]. For instance, the
secret data can be transmitted by exploiting the unused fields
of communication protocol headers [3], or by using packets
of different lengths [3]. On the other hand, timing channels
use timing patterns or modulate the communication resources
over time to hide messages within regular communication. The
receiver, then observes these patterns over time to recover the
secret data.

This paper presents a covert timing channel implemented
over the 802.11 MAC protocol. Layer 2 Covert channels is
an area of research that is investigated mostly via simulations
or using theory. Theory and simulations provide researchers

an excellent opportunity to learn the necessary details to
accomplish a covert channel and replicate the results. However,
when evaluating timing channels, which significantly depend
on temporal environmental conditions, simulations and theory
provide a limited view into the actual performance of such
a channel. For instance, performance issues under collisions,
hardware fluctuations, interactions with other applications and
protocols on a real testbed or a device would better be observed
when a covert channel is actually implemented. Therefore,
practical realizations (implementations) allow researchers to
better evaluate the feasibility of a proposed covert channel.

On the other hand, studying covert channels at the MAC
layer via simulations and theory had been the best option,
since wireless drivers were closed source. However, in recent
years this has been changing. The number of companies
that offer open source versions of their wireless drivers are
quickly increasing. Today, almost all major wireless network
interface card manufactures, provide open source versions of
their wireless drivers.

Leveraging the proliferation of various open source wireless
drivers available, in this paper we realize a novel covert timing
channel for the 802.11 MAC protocol that employs carrier
sense multiple access with collision avoidance (CSMA/CA).
Our timing channel is called Covert-DCF and its theoretical
foundation was originally proposed in [4]. Randomness in
events provide a good opportunity of covert channels. In
our case, we exploit the random back-off mechanism that
exists in the distributed coordination function (DCF) of 802.11
to implement a covert channel. However, in this paper, as
opposed to many works in the literature focusing on theory and
simulations, we actually realize this covert timing channel. To
the best of our knowledge, Covert-DCF is the first fully imple-
mented covert timing channel for 802.11 MAC protocol. In this
paper, we introduce the design and implementation of Covert-
DCF that is transparent to the users of the shared medium. We
provide a detailed discussion of the implementation procedures
and obstacles faced in realizing this channel. We also evaluate
the performance of Covert-DCF on real hardware (i.e., laptops)
and include discussions on why this technique would work
even under contention from other wireless stations (STAs).

The rest of the paper is organized as follows. The related
work is discussed in the next section. Section III provides
an overview of the 802.11 MAC protocol. In Section IV,
we discuss the communication and threat model and give a

Globecom 2013 - Communication and Information System Security Symposium

978-1-4799-1353-4/13/$31.00 ©2013 IEEE 722Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 19:16:38 UTC from IEEE Xplore. Restrictions apply.

2

brief overview of Cover-DCF. In Section V we articulate the
details of our implementation. We evaluate the performance of
Covert-DCF on real systems in Section VI. Finally, Section VII
concludes the paper and gives the future work.

II. RELATED WORK

The term covert channel was first introduced by Lamp-
son [1] under the context of program confinement which tries
to ensure data privacy between processes. Although initial
studies on covert channels concentrated on secretive data
communication inside multi-level secure (MLS) systems, it
soon spread into computer networks and related areas.

Covert channels in computer networks can be broadly clas-
sified as either timing or storage channels. Channels that make
use of event timings are classified as covert timing channels
and channels that modify some form of storage objects (such
as header fields) are classified as covert storage channels.

Storage channels have been proposed in several works in the
literature and most of these techniques exploit unused header
fields which make them protocol dependent. For example, the
technique proposed in [5] works only over ICMP ping request,
whereas Covert-DCF works over any traffic stream. Moreover,
some of the networks re-normalize unused header fields [6],
which in turn will damage covert storage channels that make
use of such fields. In our case, this wouldn’t be a problem
because Covert-DCF is a timing channel, and thus does not
use any form of header manipulation.

Though covert timing channels have the advantage of being
protocol independent, and being immune to header field re-
normalization, they have their own disadvantages. For exam-
ple, the works discussed in [7]–[9] require that the sender and
receiver are in sync with one another. Such synchronizations
are not necessary for our timing channel implementation,
which is based off one of our previous works [4]. In [4]
we use theory and simulations as proof of concept, however,
with simulations it is not possible to understand the feasibility
or practicality of a covert channel. Though simulations can
account for time fluctuations introduced by network and MAC
layers, they do not consider the timing noise injected by
hardware fluctuations which arise due to variation in processor
load and implementation limits [10]. Studying the influence
of these factors require a real-time implementation and this
served as the primary motivation for this work.

Uniqueness: This work discusses in detail the real-time
implementation of an 802.11 MAC protocol based timing
channel and practical problems faced in doing so. To the best
of our knowledge, there are very few covert timing channels
based on layer 2 protocols [8] [11] [12] [13], and none of
them provide real-time implementation. They treat the matter
theoretically and use simulations for their proposed algorithms.
This makes Covert-DCF, the first real-time implementation of
a layer 2 timing channel utilizing random back-offs in 802.11
networks.

III. BACKGROUND: OVERVIEW OF 802.11 PROTOCOL

We realize Covert-DCF by exploiting the random back-off
values in the 802.11 MAC protocol in DCF mode of operation.

Hence, in this section, we briefly review the necessary details
of the DCF mode of operation.

The Distributed Coordination Function (DCF) uses a listen-
before-talk scheme called CSMA/CA. This scheme makes
every node in the medium responsible for channel sharing,
retransmission and collision avoidance. The major parameters
involved in the DCF mode of operation are, Contention
Window (CW), DCF Inter Frame Space (DIFS), and Small
Inter Frame Space (SIFS), shown in Figure 1. When a node has
data to transmit, it senses the channel to check if the channel
is busy. If the channel is free, then the sending node waits
for DIFS amount of time before transmitting the data. If the
channel becomes busy during this period, the sending node
choses a value between 0 and CWmin, and backs off for that
period of time. If the channel becomes busy during this period,
the node freezes the back-off countdown timer, and continues
to count down once the channel becomes free. If the node
counts down to zero while the channel is free, it possesses the
channel and transmits the data packet. If the ACK associated
with this transmission is not received, the sender assumes a
collision and doubles the upper limit on the CW and repeats
the entire process again.

IV. COMMUNICATION & THREAT MODEL

Covert-DCF is a covert timing channel which is imple-
mented over the IEEE 802.11 MAC protocol. In this section,
we explain the communication and threat model used in
Covert-DCF.

Our model is based on the traditional model for covert
communications, the prisoner problem [14], [15]. In this
model as illustrated in Figure 2, there is a covert sender
(Alice), a covert receiver (Bob), a warden (Wendy), and a
shared secret. The prisoners Alice and Bob try to communicate
an escape plan secretly in spite of the warden.

In our work, Bob and Alice use the random back-off process
in the 802.11 DCF to secretly convey messages to each other.
Before Alice and Bob can communicate using this covert
channel, they need to share a code book. This code book
includes the list of back-off values that the covert sender will
use and the corresponding symbol associated with it.

Assume that Alice wants to send the word ”CAB” over
the covert channel to Bob as seen in Figure 3. She first
chooses the back-off period associated with symbol ’C’, waits
for the backs-off amount of time according to the procedures
explained in the previous section, sends a data packet, and
then does the same for ’A’ followed by ’B’. On the other end,
Bob observes the back-off values used by Alice by monitoring
the wireless traffic. Once Bob has the back-off values, he
compares it with the back-off values in the code book to
recover the sent message “CAB”. The warden in our model

Fig. 1. Packets in the DCF mode of access in IEEE 802.11

Globecom 2013 - Communication and Information System Security Symposium

723Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 19:16:38 UTC from IEEE Xplore. Restrictions apply.

3

Fig. 2. Communication & Threat Model [14]

represents the person who would try to detect or block this
information exchange. Examples of warden include wireless
intrusion detection and prevention systems (WIDPS) such as
Motorola AirDefense [16], or systems for detecting greedy
behavior in wifi networks, such as Domino [17].

V. IMPLEMENTATION USING COMMODITY HARDWARE

In this section, we discuss the details of the implementation
of Covert-DCF. First, we introduce the hardware and software
architecture on which Covert-DCF was realized. Then, we
articulate the necessary operations involved at the covert
sender and receiver.

A. Hardware and Software Architecture
A prototype implementation of a covert timing channel like

Covert-DCF could be realized using FPGAs, GNU Radios,
and off-the-shelf wireless network interface cards available in
laptops. Although the flexibility is higher with the first two
options, we opted to implement Covert-DCF using off-the-
shelf wireless cards. The primary objective behind this was
to evaluate the feasibility and practicality of Covert-DCF with
commodity chiptsets which is available in most laptops today.

For our implementation, we chose the Atheros AR5212
chipset based commodity 802.11 a/b/g wireless hardware. This
chipset provides a great degree of software control over several
aspects of the wireless card and the drivers for the card
are open source. As seen in Figure 4, most of the 802.11
functionalities are defined outside the firmware and the hard-
ware access is regulated using a Hardware Abstraction Layer
(HAL). In our implementation, we used the Multiband Atheros
Driver for Wireless Fidelity (Madwifi) trunk version [18] as
the driver for the chipset. The reader is referred to [19] for
information about other open source wireless drivers available
for IEEE 802.11 network cards.

B. Covert-DCF Sender Operations
In order to implement Cover-DCF, the covert sender first

needs to convert the symbols to back-off values as explained
in Section IV. These values are then used as back-offs during
data transmission. In this sub-section, we discuss how this was
achieved at the covert sender.

Fig. 3. Covert-DCF Conceptual View

Fig. 4. Hardware & Software Architecture

1) Varying the Total Back-off: In order to send out mes-
sages using Covert-DCF, the sender needs to vary the back-
off values i.e., the total back-off time interval between an
ACK and the next Data packet (see Figure 1). Since the
code for back-off and other critical tasks reside in the
firmware, we manipulated the values of the hardware reg-
isters in the wireless card to obtain control over the back-
off values, on a per packet basis. Note that the Madwifi
wireless driver uses a single 32bit register to store the values
of CWmin (10bits), CWmax (10bits) and DIFS (12bits) (see
Figure 4). The initial values and the details of the regis-
ter addresses are located in ar5xxxreg.h. To manipulate the
registers, one can either use simple C functions such as
writel(value, register address) or just make use of built-in
functions such as OS REG WRITE(ath hal, address, value)
and OS REG READ(ath hal, address, value). Also, the Mad-
wifi driver that we used had a few built-in proprietary features
[20] under the name of Super A/G to increase throughput
and range of compatible devices. Among the set of features,
BURST and FAST-FRAME hindered the back-off process and
we had to disable them in order to get complete control over
the back-off.

2) Varying DIFS vs. Contention Window (CW): The ulti-
mate goal of the covert sender is to change the back-off time
between when the channel becomes idle (which in most case
is after the last ACK packet) and the transmission of the next
data packet. As can be seen in Figure 1, one can accomplish
this by varying either the DIFS or the congestion window.
These are discussed as different cases below.

Case1-Varying CW: In this case, the covert sender was
configured to transmit decimal values from 0 to 15 in a loop,
and the value of the CW was varied as explained above to
reflect these values in the back-off. Each decimal value was
transmitted with 15 time slots as buffer in order to reduce
erroneous decoding at the receiver. Thus, for a set of 16
symbols, a total of 225 slots were used (symbol 0 uses up
no slots). Figure 5(a) represents the back-off values of the
covert sender as seen by the covert receiver for this case.

Case2-Varying DIFS: In this case, instead of using CW, the
DIFS was used to reflect the symbol that had to be transmitted.
Figure 5(b) shows the back-off values that were recorded at
the covert receiver for this case. Note that the value of CW
was fixed at 0 slots during this experimentation.

From these figures, we see that changing DIFS shows a
more stable back-off variation than using CW. The primary

Globecom 2013 - Communication and Information System Security Symposium

724Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 19:16:38 UTC from IEEE Xplore. Restrictions apply.

4

(a) (b)

Fig. 5. (a) Case 1: Varying CW; (b) Case 2: Varying DIFS

reason for this is because, unlike DIFS, the value of CW is
not always used for back-off during a packet transmission. For
example, if a node wants to send a packet and it senses the
channel to be free, then it waits for DIFS amount of time and
sends out the packets (considering the channel is still free).
Hence, the value of CW is never used in such a scenario. As
explained in Section III, the value of CW is relevant only when
the channel is sensed to be busy or when the node experiences
a packet loss. This gives rise to inconsistent total back-off
behavior when the value of CW is manipulated. However,
since DIFS is always used, the back-off behavior is more
consistent as shown in Figure 5(b). One should also note that
we were not able to observe the same effect relevant to varying
DIFS vs. CW in our earlier work [4], which treated the concept
of Covert-DCF via simulations solely.

C. Covert-DCF Receiver Operations
In Covert-DCF, the receiver first monitors the wireless

channel, and then filters the back-offs of the covert sender
to extract the secret message. In this sub-section, we discuss
these operations in further detail.

1) Monitoring the Covert Sender’s Back-offs: The primary
task at the receivers’ side is to monitor the back-off values
of the sender. The first step to do this is to put the wireless
interface into monitor mode. In this mode, a wireless card will
capture all packets that are sent over the air (even if they are
not addresses to it). Although it is trivial to put a wireless
device into promiscuous mode, it should be noted that this
process requires a working combination of wireless chipset,
packet capturing software, and wireless device driver. For our
experimentation, we used, an AR5212 based wireless chipset,
tcpdump for packet capturing, and Madwifi as the wireless
driver, over Ubuntu 11.04 (linux kernel 2.6.38). Using such
a setup, the covert receiver records all the traffic that it hears
over the air. This capture is then passed through a Python script
which detects and computes the back-off values used by the
covert sender. In order to do this, our script identifies packets
sent out by the covert sender and computes the back-off used,
by simply subtracting the time of the previously seen ACK
packet from the time when the data packet was sent (Figure 1).

2) Filtering: In order to improve reliability, we introduce
redundant transmissions at the sender (each symbol is sent
x number of times) which is explained in Section VI-C.
Once the back-off values are collected, the covert receiver
applies a series of basic processing techniques to decode the
covert message. The basic steps involved in this process are

Fig. 6. Covert-DCF test topology

grouping, quantizing, and smoothing. In the grouping phase,
s size number of packets are taken for every iteration and the
minimum value of back-off in that sample is found and stored.
This is analogous to sampling, however in this case, a number
of packets are used to decide on a symbol value instead of
a single sampled packet. The grouping process essentially
yields back-off values that look similar to a pulse amplitude
modulated signal that is distorted due to channel characteris-
tics. Before translating the back-off values into symbols, these
values are quantized or rounded to the nearest value of back-
off available on the code book. The values obtained at the
end of quantization are further smoothened using Algorithm 1,
to reduce errors caused by timing fluctuations in the back-off
values (noticeable in Figure 5(b)). Once smoothened, a simple
lookup is used to decode the message.

Algorithm 1 Smoothing
1: fq = []; q ← quantized data
2: for (i = 1→ len(q − 1 step 2) do
3: if (q(i) == q(i+ 1) then
4: fq.append(q(i))
5: end if
6: end for
7: return fq

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of Covert-DCF
on a real systems. We begin with a feasibility analysis of
Covert-DCF and move on to discuss methods to increase the
throughput of our technique. Finally, we introduce a generic
analytical expression incorporating various tunable parameters,
to help predict and tune the throughput of Covert-DCF.
A. Covert-DCF Test Setup

Figure 6 shows the network topology that was used to
test CovertDCF. The testbed comprises of a 802.3 backbone
router (NETGEAR FVS338), a wireless access point (AP)
(ZyXEL G-570S), covert sender and receiver laptops (Lenovo
C100) equipped with Cisco Aironet PCMCIA cards, running
Ubuntu 11.04 (kernel 2.6.38), and a data receiver. In this
setup, the covert sender and the receiver are connected to the
same wireless network and the sender’s application produces
a UDP stream addressed to the data receiver. It should be
noted that our tests were performed in the presence of other
uncontrolled wireless users in the background. The discussion

Globecom 2013 - Communication and Information System Security Symposium

725Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 19:16:38 UTC from IEEE Xplore. Restrictions apply.

5

(a) (b)

(c) (d)

Fig. 7. (a) Captured back-off values; (b) Quantized back-off values; (c) min()
over 2 consecutive packets; (d) min() over 6 consecutive packets

in Section VI-E explains why our technique would work even
when there is contention from other wireless stations.

B. Feasibility of Covert-DCF
As explained in Section V, the covert receiver goes through

monitoring and filtering operations to extract the symbols sent
by the covert sender. In this sub-section, we evaluate the
feasibility/performance of Covert-DCF by presenting results
obtained through real-time experimentations.

In our test, the code-book consists of decimal values from 0
to 15 and each symbol is represented by 4 bits. Each symbol
is associated with a back-off value (i.e., number of time slots).
The covert sender transmits all the code book values in a loop
with 15 time slots per symbol. The maximum number of slots
that can be assigned to DIFS back-off is 255. Hence, a total of
255 slots were split into 16 equal segments (each representing
one of the 16 symbols).

Figure 7(a) shows the captured back-off values and Fig-
ure 7(b) shows the quantized and decoded values. The x-
axis is the packet number in both the figures while the y-
axis represents back-off in Figure 7(a) and decoded symbol
in Figure 7(b). As can be observed in these figures, without
the quantization process, it is hard to extract the symbols.
After quantization, the symbols become clear, however, it
still contains many errors resulting from fluctuations in the
observed back-off. These errors can be reduced by taking the
min() over s size consecutive recorded back-off values. This
works reasonably well, because the timing fluctuations in the
observed back-off values are biased towards values that are
higher than the intended back-off (Figure 5(b)). Figure 7(c)
and 7(d) presents the decoded values for two different values
of s size 2 and 6. As can be seen, the errors in the decoded
values decreases as the size of s size is increased.

C. Practical Throughput Improvement
In this sub-section, we discuss how the performance of

Covert-DCF can be fine-tuned. Specifically, we are interested
in configuring Covert-DCF to achieve a higher throughput.

One potential way to increase the throughput is to increase
the number of bits per symbol. However, as we analyze in
this sub-section, decreasing the number of bits per symbol
has a positive impact in our configuration as opposed to what
would be expected.

In the configuration discussed in Section VI-B, 255 slots
were used in total to represent 16 different symbols with
4 bits per symbol configuration. Considering that all 16
symbols are equally likely, the average back-off required
to transmit one symbol will be 112.5 slots. This implies
28.125 slots per bit. If we reduce the bits per symbol to 2,
we would just split the 255 slots into 4 segments. This will
increase the buffer space between the symbols, but its impact
on reliability will not be significant because the magnitude
of timing fluctuations in the back-off values are too large
to be handled by any reasonable buffer size. Therefore, we
can consider a 2 bits per symbol configuration where we can
reduce the total number of back-off slots utilized to 50 and
fix 10 slot for each symbol. Since 4 symbols are possible (2
bits per symbol), this new configuration would occupy 40 out
of the 50 slots. The remaining 10 slots is used as a clearance
from the bottom so that we do not employ a low back-off
(possibly lesser than DIFS), which can trigger an alert. Given
this configuration, the average back-off per symbol would be
25 slots which implies a 12.5 slot time per bit.

In Figure 8(a), we compare a lower backoff-per-symbol
(0.6 ms) configuration with a higher backoff-per-symbol (1.45
ms) configuration. As seen in this figure, 50 packets with the
lower backoff-per-symbol configuration are sent faster than
the configuration with higher backoff-per-symbol. This shows
that, by decreasing the back-off associated with a symbol one
could increase the throughput of Covert-DCF. A more detailed
study on the throughput behavior of Covert-DCF is provided
in Section VI-F.
Figure 8(b) shows the back-off values that were observed

(a) (b)

(c) (d)

Fig. 8. (a) Variation in packet rate with value of back-off; (b) Plot of back-off
values for 2 bits per symbol configuration; (c) After applying Quantization to
back-off values; (d) After smoothing the back-off values (Algorithm 1)

Globecom 2013 - Communication and Information System Security Symposium

726Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 19:16:38 UTC from IEEE Xplore. Restrictions apply.

6

(a) Guard Band and bits/symbol (b) Redundancy and bits/symbol

Fig. 9. Variation in throughput with respect to various Parameters. Guard
Band(ω) = 0.1ms, Redundancy(γ) = 50, δ = 0.2ms

at the covert receiver, when we used the aforementioned 2
bits per symbol configuration. Due to the 2 slot clearance
that was provided at the sender, the back-off value of the
symbols start from 0.2 ms and increase by 0.1 ms per symbol.
The observed back-off values were then passed through the
grouping and quantization processes explained in Section V,
to get the decoded symbols. Although the decoding process
was able to recover the correct symbols as seen in Figure 8(c),
one can still observe small errors in the decoded symbols.
These errors are removed using the smoothening algorithm
(Algorithm 1), which results in perfect decoding, as shown in
Figure 8(d).

Identifying the throughput increase with the 2 bits per
symbol configuration, we continue to use the same configura-
tion for evaluating the performance of Covert-DCF. With this
configuration, the maximum throughput achieved by Covert-
DCF was 2.28Kbps. However, in order to create an effective
covert channel with proper reliability, redundancy (50 packets
per symbol) was introduced. Hence, the usable throughput
decreased to 46bps. On the other hand, in an earlier work [4],
the performance of which was only evaluated via simulations
in OPNET, reported a data rate of 5Kbps and 1.89Kbps for two
different configurations. So, the actual realization of Covert-
DCF in this paper shows that real experimentation with real
hardware achieves only half of the simulated throughput. And,
the usable is much less than the half. Therefore, practical
implementations in this work allowed us to better evaluate
the feasibility of our earlier proposed covert communication
channel. Our future work will include exploring different
methods to increase the achievable throughput.

D. Security Issues
Covert-DCF is secure against most of the security frame-

work that are in place to detect malicious activities over
legitimate channels. However, wireless intrusion detection and
prevention systems (WIDPS) such as Motorola AirDefence
Enterprise [16], or systems for detecting greedy behavior in
wifi networks, such as DOMINO [17] can counter our tech-
nique. For instance, consider Motorola AirDefense Enterprise
[16], which is a popular commercial WIDPS solution. This
system monitors the average back-off values of all the wireless
nodes and reports any irregularities such as jamming. In order
to address this concern, carefully chosen traffic fitting symbols
can be inserted in between consecutive data symbols similar to
[4]. In such an approach, the values of traffic fitting symbols
can be chosen such that the average value of back-off for the

covert sender matches closely with that of the overt senders.
By doing this, the covert sender can fully camouflage the
timing channel. However in order to do this, a covert sender
needs to constantly monitor the average back-off values of
overt nodes in its WLAN. We are planning to adapt this traffic
fitting approach in our future work.

E. Contention Issues
Since Covert-DCF is a timing channel, MAC layer con-

tention can be seen as a possible hindrance to its operation.
For example, if Covert-DCF used CW to manipulate back-off,
then the assigned value of back-off might not count down to
zero in a single stretch. This is because, the back-off timer
associated with CW freezes whenever the channel becomes
busy, and counts down only when the channel is sensed to be
free. This results in shorter ’observed’ back-off values than
what was intended. However, our implementation uses DIFS,
instead of CW, to manipulate the value of back-off. Unlike
CW, DIFS has to count down to zero in a single stretch, which
ensures that the observed value of back-off is always equal
to or greater than the intended value of back-off, even when
there is contention from other wireless stations in the network.
This can be processed to decode the message as explained in
Section V-C.
F. Throughput Formulation

In this sub-section, we generalize the performance of
Covert-DCF to aid in fine tuning the performance of our
technique. Specifically, we are interested in providing an
analytical expression for predicting the throughput of our
covert channel.

The throughput, ψ, of Covert-DCF can be expressed as
follows:

ψ =
β

{
∑2β−1

i=0 (ω
2β

∗ i+ δ)} ∗ γ
(1)

where
• β - Number of bits represented by a symbol.
• γ - Redundancy for simple reliability. It is the number of

times a symbol is re-transmitted over the covert channel.
• ω - Timing separation between consecutive symbols

(Guard Band).
• δ - Minimum back-off time over which the manipulated

back-off variations happen.
Without loss of generality, assuming a similar environment

for the covert sender and the covert receiver, we show in Fig-
ure 9 the throughput performance of Covert-DCF for variations
in a number of configurable parameters. The x-axis represents
β while y-axis is the maximum achievable throughput.

The general observation that can be made from Figure 9 is
that throughput decreases with increase in the guard band and
redundancy. However, one needs increased guard band and
redundancy for better reliability. Therefore, these parameters
need to be configured with care.

Moreover, the line representing a guard band of 0.1ms in
Figure 9(a) represents the parameters used in our implementa-
tion. It is interesting to observe that the throughput shown in

Globecom 2013 - Communication and Information System Security Symposium

727Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 19:16:38 UTC from IEEE Xplore. Restrictions apply.

7

Figure 9(a) at 2 bits/symbol and guard band of 0.1ms is higher
in comparison to what was achieved in our implementation
in this paper. This is due to the fact that Equation 1 does
not account for a) Data and ACK packet transmission times;
b) Processing time at the access point before it responds
with an ACK. However, these additional timing overheads are
encountered in a real-time scenario, which thereby results in
a reduced throughput.

Another important observation that can be made from
Figure 9(a) is that throughput peaks at different values of
bits/symbol for different values of guard band. Therefore, the
number of bits/symbol (for a given value of guard band) must
be properly chosen in order to achieve maximum throughput.
For the value of guard band chosen in our implementation
(which was 0.1ms), the peak rate is achieved at 2 and 3
bits/symbol, as shown in Figure 9(a). We chose 2 bits/symbol
(in lieu of 3) so that it would provide an easier way to split
bytes or characters into symbols. We also observe a drastic
increase in throughput when the redundancy is decreased.
Studying the variation in symbol error rate with variation
in guard band and redundancy factor will help in further
optimizing the throughput.

Finally, Figure 9(b) shows the negative impact of re-
dundancy on throughput. Clearly, it can be observed that
throughput decreases exponentially as redundancy increases.
This is one of the major factors which decreases the achiev-
able throughput. Therefore, a further investigation of guard
band’s and redundancy’s contribution to reliability is needed.
Moreover, the use of error correction codes in lieu of simple
redundancy is another avenue of further exploration.

VII. CONCLUSION AND FUTURE WORK

Covert communication channels can be utilized for both
malicious purposes by hackers to pass valuable information
(e.g., PIN, password) or for benign purposes by legitimate
users to transmit messages over hostile networks.

In this paper, as opposed to many works in the literature
focusing on theory and simulations, we actually realized a
covert timing channel for 802.11 networks, called Covert-
DCF, using off-the-shelf wireless cards available almost in all
laptops. To the best of our knowledge, Covert-DCF is the
first fully implemented covert timing channel for the 802.11
MAC protocol. We also provided an in-depth discussion of
the design and implementation details of Covert-DCF, with
clear explanations to important design/implementation deci-
sions that were made.

Moreover, we evaluated the feasibility and practicality of
Covert-DCF with commodity wifi chipsets available in almost
all laptops. Due to hardware fluctuations at the sender and
dropped packets at the receiver (at the kernel level), the actual
realization of Covert-DCF in this paper showed that real
experimentation with real laptops and real wireless cards could
only achieve the half of the simulated throughput. And, the
usable is much less than that. Hence, practical implementations
allowed us to better judge the feasibility of the earlier proposed
covert communication channel.

In future, we intend to a) explore different methods (e.g.
error correction codes) to increase the data rate; b) study
the impact of variation in parameters such as number of
surrounding wireless users (channel contention), sending rate,
etc, on the Bit Error Rate (BER); c) adopt the use of traffic
fitting symbols; d) study the performance in multiple-sender
single-receiver, and multiple-sender multiple-receiver scenar-
ios; g) implement a tool which provides a friendly interface
for operating our covert timing channel.

ACKNOWLEDGMENTS

This work was partly supported by NSF Grant No.
CAREER-CNS-0545667 844144.

REFERENCES

[1] B. W. Lampson, “A note on the confinement problem,” Commun. ACM,
vol. 16, no. 10, pp. 613–615, Oct. 1973.

[2] C. Girling, “Covert channels in LAN’s,” Software Engineering, IEEE
Transactions on, vol. SE-13, no. 2, pp. 292 – 296, feb. 1987.

[3] S. Zander, G. Armitage, and P. Branch, “A survey of covert channels
and countermeasures in computer network protocols,” Communications
Surveys Tutorials, IEEE, vol. 9, no. 3, pp. 44 –57, quarter 2007.

[4] R. Holloway and R. Beyah, “Covert DCF: A DCF-based covert timing
channel in 802.11 networks,” in 2011 IEEE 8th International Conference
on Mobile Adhoc and Sensor Systems (MASS), 2011, pp. 570–579.

[5] B. Ray and S. Mishra, “Secure and reliable covert channel,” in Cyber
Security and Information Intellidence Research Workshop, May 2008.

[6] A. Singh, A. L. M. Santos, O. Nordstrom, and C. Lu, “Stateless model
for the prevention of malicious tunnels,” in International Journal of
Computer and Applications, vol. 28, no. 3, 2006.

[7] M. A. Padlipsky, D. W. Snow, and P. A. Karger, “Limitations of end-
to-end encryption in secure computer networks,” Aug 1978, tech. Rep.
ESD-TR-78-158, Mitre Corporation.

[8] C. G. Girling, “Covert channels in LAN’s,” in IEEE Transaction on
Software Engineering, vol. SE-13, no. 2, Feb 1987, pp. 292–296.

[9] S. Cabuk, C. E. Brodley, and C. Shields, “IP covert timing channels:
Design and detection,” in 11th ACM Conference on Computer and
Communications Security (CCS), Oct 2004, pp. 178–187.

[10] G. Bianchi, A. Di Stefano, C. Giaconia, L. Scalia, G. Terrazzino,
and I. Tinnirello, “Experimental assessment of the backoff behavior
of commercial ieee 802.11b network cards,” in INFOCOM 2007. 26th
IEEE International Conference on Computer Communications. IEEE,
may 2007, pp. 1181 –1189.

[11] T. Handel and M. Sandford, “Hiding data in the OSI network model,”
in 1st International Workshop on Information Hiding, 1966, pp. 23–38.

[12] S. Li and A. Ephremides, “A covert channel in MAC protocols based
on splitting algorithms,” in Wireless Communications and Networking
Conference (WCNC), IEEE International Conference on, 2005, pp.
1168–1173.

[13] Z. Wang, J. Deng, and R. B. Lee, “Mutual anonumous communications:
A new covert channel based on splitting tree MAC,” in INFOCOM 2007,
26th IEEE International Conference on Computer Communication,
2007, pp. 2531–2535.

[14] “The prisoners’ problem and the subliminal channel.” in Advances in
Cryptology: Proceedings of CRYPTO ’83, 1983, pp. 51–67.

[15] T. Handel and M. Sandford, “Hiding data in the OSI network model,”
in Information Hiding, ser. Lecture Notes in Computer Science, R. An-
derson, Ed. Springer Berlin / Heidelberg, 1996, vol. 1174, pp. 23–38.

[16] “Motorola airdefence enterprise,” 2010, http://www.airdefence.net.
[17] M. Raya, J.-P. Hubaux, and I. Aad, “DOMINO: A system to detect

greedy behavior in IEEE 802.11 hotspots,” in 2nd International Con-
ference on Mobile Systems, Applications, and Services, jun 2004, pp.
84–97.

[18] Http://madwifi-project.org/svn/madwifi/trunk.
[19] M. Vipin and S. Srikanth, “Analysis of open source drivers for ieee

802.11 WLANs,” in Wireless Communication and Sensor Computing,
2010. ICWCSC 2010. International Conference on, jan. 2010, pp. 1 –5.

[20] Http://madwifi-project.org/wiki/ChipsetFeatures/SuperAG.

Globecom 2013 - Communication and Information System Security Symposium

728Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 19:16:38 UTC from IEEE Xplore. Restrictions apply.

