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Abstract—Enterprise networks are becoming increasingly het-
erogeneous where enterprise devices and IoT devices coexist,
requiring tools for effective management and security. Software-
Defined Networking (SDN) has emerged in response to such needs
of modern networks. SDN lacks adequate security features and
Intrusion Detection and Protection Systems (IDPS) have been
used to protect SDN from attacks. However, they have limited
knowledge of zero day attacks. Machine Learning (ML) has
become a valuable tool against these limitations and improve
(SDN) network security. However, the solutions that solely rely on
ML can struggle to discriminate benign traffic from malicious,
and suffer from false negatives. To solve these problems and
improve security of SDN-based enterprise networks, we propose
S-Pot, an open-source smart honeypot framework. S-Pot uses
enterprise and IoT honeypots to attract attackers, learns from
attacks via ML classifiers, and dynamically configures the rules
of SDN. Since honeypots generally receive only malicious traffic,
S-Pot can learn from the received malicious traffic and minimize
the false positives of an SDN network. In addition, S-Pot can
detect the new attacks using ML classifiers, thus can help to
minimize the false negatives. Our performance evaluation of S-
Pot in detecting attacks using various ML classifiers show that
it can detect attacks with 97% accuracy using J48 algorithm.
In addition, we evaluated the effectiveness of S-Pot in improving
the security of an enterprise SDN testbed network. Our results
demonstrate that, compared to the without S-Pot case, S-Pot can
improve the security of the SDN networks by detecting attacks
with better performance, greater accuracy, effectively generating
rules, and dynamically configuring the network.

Index Terms—SDN, Honeypot, IDPS, IoT, Network Security

I. INTRODUCTION

The digital transformation has been converting all aspects
of life in recent years. The ever-growing number of Internet
of Things (IoT) devices has exacerbated demand on tradi-
tional networks, making it increasingly complex to manage
and scale. Enterprise networks in this regard are becoming in-
creasingly heterogeneous where enterprise devices/services and
IoT devices coexist. SDN emerged in response to these needs,
transforming networking infrastructure, moving the brain from
network devices to a centralized software controller [1]. SDN
has been playing a crucial role in providing high performance
networking around the globe during the Covid-19 pandemic [2].
More and more enterprise networks are moving to SDN [2],
and the market size of SDN is expected to reach $59 billion
by 2023 [3]. Simultaneously, cyber threats are evolving and
increasing in quantity and impact. The cost of cybercrime is
expected to reach $10.5 trillion in 2025 [4].
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Although SDN has its benefits to ease security operations
(e.g., isolation, segmentation, attack mitigation, etc.) in enter-
prise networks, it can also pose new threat vectors [2]. Intrusion
Detection and Protection Systems (IDPS) have been widely
used to protect SDN from attacks. However, IDPS solutions
have fundamentally limited signature rules, which can leave
SDN-powered enterprise networks vulnerable to new threats
(zero day attacks). While some IDPSs offer anomaly-based
detection, they can have false positives (FP) and false negatives
(FN). Machine Learning (ML) has become a valuable tool
to overcome these limitations. However, ML-based solutions
can also struggle to discriminate benign traffic from malicious
traffic, and suffer from FN. In addition, although ML models
can be retrained to cope with zero-day attacks, it may not
be possible for every enterprise to have the necessary hu-
man resources that have the technical know-how to perform
retraining. In parallel with IDPS and ML-based solutions,
honeypots have been widely used to understand evolving cyber
threats and develop effective defenses. Honeypots are mostly
used for research purposes and they aim to lure attackers.
In addition, they generally receive only malicious traffic [5],
[6]. Although there exist various studies on the use of IDPS,
ML, and honeypots with research purposes, including various
combinations of these tools implemented together in SDN [7]-
[14], to the best of our knowledge, no study considered to
benefit from honeypots for production purposes in improving
the security of an SDN-based network.

In this study, we propose S-Pot, an open-source smart hon-
eypot framework that integrates the use of IDPS and ML for
securing SDN-based enterprise networks through dynamic rules
configuration. S-Pot benefits from honeypots that can simulate
both enterprise services and IoT devices in gathering attack in-
formation. It employs an IDPS and ML classifiers to detect and
learn from the attacks in honeypots. Unlike research honeypots,
it utilizes the obtained attack information from the honeypots
for production purposes for the security of SDN networks,
dynamically creates new rules for the attacks, and shares them
with the SDN-based enterprise network. Since honeypots (hence
S-Pot) generally only receive malicious traffic, S-Pot can benefit
from the identified malicious traffic of honeypots and greatly
reduce FPs on the real network [5]. Moreover, it can also detect
new attacks that target the enterprise network by means of ML
classifiers, and thus improve FP performance of the defense
solutions in the enterprise network.
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We implemented S-Pot and evaluated its performance in
detecting attacks using various ML classifiers. Our evaluations
show that S-Pot can detect attacks with 97% accuracy with J48
algorithm. In addition, we did another analysis in evaluating
the performance of S-Pot in generating new attack signatures
and dynamically configuring the rules of a realistic enterprise
SDN testbed network. Our analysis demonstrates that, S-Pot can
efficiently generate new rules and dynamically configure rules
of the realistic testbed network to block attacks. Our evaluations
show that S-Pot can improve the security of an enterprise SDN
network compared to the case without S-Pot.

Contributions: The contributions of S-Pot are as follows:

o We propose a fully open-source smart honeypot frame-
work that benefits from enterprise and IoT honeypots to
dynamically generate new IDPS rules for securing SDN-
based hybrid enterprise networks.

o With S-Pot, we demonstrate how enterprises can benefit
from honeypots for production purposes to secure their
networks against both known and zero-day attacks.

Organization: This paper is organized as follows. Section II
identifies the related work. Section III provides background
information on honeypots, SDN, and IDPS. Section IV defines
the problem scope and the threat model. Section V describes
S-Pot. Section VI details the implementation of S-Pot, data
collection and processing, and evaluates the performance of it.
Finally, Section VII concludes the paper.

II. RELATED WORK

Several studies exist in the literature on securing SDN
networks with the use of honeypots, IDPS, or ML tools. The
use of SDN is presented by Wang and Wu [7] as a necessity for
improving honeynet topology. Sultana et al. [14] surveyed ML
methods using SDN and IDS. Valdovinos et al. [15] and Swami
et al. [16] focused on SDN vulnerabilities and DDoS attack
detection and mitigation for SDN, yet in this case, both ML and
honeypot tools are not included. [17], [18], and [19] focused on
research with ML and SDN. Du and Wang [8] aimed to be the
first study to focus on DDoS attacks on honeypots-based SDN,
particularly in Industrial IoT. Molina et al. [20] presented a high
interaction IoT honeynet using SDN to protect the devices from
DDoS botnet attacks. Kyung et al. [9] presented an SDN-based
honeynet architecture to improve detection of fingerprinting
attacks and avoid malware propagation with the application of
SDN controller. Azab et al. [10] introduced a smart gateway that
isolates the northbound and southbound interfaces, and works as
an IDS to protect the SDN controller from being compromised.
In addition to the mentioned studies, various studies exist that
use IDPSs in SDN. Sarica and Angin [11] introduced an SDN-
dataset for intrusion detection in IoT. Other studies focused on
attack detection in SDN using ML, such as Nanda et al. [12]
and Elsayed et al. [13], but do not use IDPS or provide dynamic
rules configuration.

Differences from the existing work: Despite the wealth of
research in SDN security, to the best of our knowledge, none
of the aforementioned studies have benefited from honeypots for

production purposes for the security of SDN-based enterprise
networks. Also, unlike prior work, S-Pot integrates the use
of honeypots, IDPS, and ML for securing an SDN network.
In addition, S-Pot can detect new attacks targeting SDN-
based networks, create new rules for the detected attacks, and
dynamically configure the SDN-based network.

III. BACKGROUND
A. Software-Defined Networking

SDN allows for creating a more reliable, secure, and flexible
network by adding the capacity of a centralized network con-
troller to program and manage the network [21]. SDN reduces
the traditional network’s limitations by separating the network
into three layers: application, control, and infrastructure layers.
These are also referred to as application, control, and data
planes. The application layer contains the network applications,
such as IDPS and firewalls. The SDN controller software is
the control layer, which handles the flow of all traffic in the
network and enforces policies that can be established by the
network administrators. The physical switches in the network
compose the infrastructure layer. Communication between the
layers is carried out through northbound and southbound Appli-
cation Programming Interfaces (APIs). Northbound APIs enable
communication between the application layer and control layer,
whereas Southbound APIs enable communication between the
control layer and the infrastructure layer. Although various
protocols can be used with SDN to communicate between the
controller and the network devices in the infrastructure layer,
Open Flow Protocol (OFP) is the most widely used [10]. SDN
provides capabilities such as traffic analysis, dynamic rules
updating, a global view of the network, and logically centralized
network control [18]. While SDN provides control over the
network that can be combined with other tools to implement
strong security mechanisms, on its own, SDN lacks adequate
security features making it vulnerable [22]. Varadharajan et
al. [23] categorize the threats in SDN, pointing to how the
controller and networking devices such as switches, can be
affected by multiple attacks, including denial-of-service (DoS)
and distributed DoS (DDoS) attacks.

B. Honeypots and Honeynets

A honeypot is a decoy that is used to lure attackers and
deceive them into thinking they have accessed a real system
and to observe and learn from their actions by gathering data
about their interaction with the honeypot [6]. The gathered data
can be used to develop countermeasures against attacks [24].
Honeypots can vary greatly in the level of interaction that
they allow the attacker, ranging from low interaction honeypots
that emulate particular services, to high interaction honeypots
that emulate entire operating systems (OS). They can be used
in a wide variety of applications, for research or production
purposes, and can be implemented with physical or virtual
resources. Two or more honeypots implemented on a system
form a honeynet [6]. Since there are generally no licit causes
for which to interact with a honeypot, any traffic is usually
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malicious, which allows honeypots to greatly reduce the amount
of FP in comparison with anomaly-based IDSs [5].

C. Intrusion Detection and Protection Systems

Intrusion Detection and Intrusion Protection Systems identify
potential threats in a network using signature-based and/or
anomaly-based methods. For signature-based detection, the
systems capture traffic in a network and compare the packets to
a database of known threats. For anomaly-based detection, the
systems identify deviations from normal traffic in the network.
An IDS detects and alerts of malicious traffic in a network but
does not take any action. On the other hand, an IPS not only
detects but also executes an action such as restricting access to
attackers based on a set of rules. Snort IDPS [25], maintained
by Cisco Systems, is one of the most widely used open-source
IDPS that can be used with diverse OSs.

IV. PROBLEM SCOPE AND THREAT MODEL
A. Problem Scope

We consider an SDN enterprise network containing both
enterprise systems and IoT devices for smart buildings. The
network has a signature-based IDPS that can detect the known
attacks but fail to detect new attacks. To detect new attacks, the
network can employ an ML-based anomaly detection system.
However, although it may improve the security, it can struggle
to discriminate benign traffic from the malicious, thus suffer
from FP. In addition, although retraining the ML model is
possible, not every enterprise may have the necessary human
resources that have the technical know-how to perform this task.
For these reasons, despite the security measures, the network
can be vulnerable to zero-day attacks that can go undetected,
and also suffer from the blocked benign traffic. To improve
security of the SDN enterprise network, in this work, we
propose S-Pot that benefits from enterprise and IoT honeypots,
IDPS, and ML classifiers in detecting attacks targeting the
network, and improves security of the network by generating
new attack rules and dynamically configuring the rules. S-Pot is
deployed in a demilitarized zone (DMZ) under the same domain
as the real network. It publicly exposes honeypots to the Internet
and aims to protect the real SDN network. S-Pot identifies key
features from the gathered attack data and creates a new rule
in the IDPS in the S-Pot framework that instructs the controller
of S-Pot to drop a packet if it exhibits the same features. This
rule is passed over to the IDPS on the real enterprise network,
which dynamically instructs the controller on the real network
to do the same. This improves the security of the real SDN
enterprise network by updating the controller rules to defend
against zero-day attacks. When an attacker attempts to send a
similar attack to a device in the real network, the controller
drops the packet, protecting the real SDN network from the
attack.

B. Threat Model

This work considers DoS, DDoS, scanning, trojan malware,
and zero-day attacks targeting SDN-based enterprise networks.
DoS, DDoS, and malware attacks have been identified amongst
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Fig. 1: Architecture of S-Pot.

the most common types of cyber attacks [26], while scanning
is used in the reconnaissance phase of the attacks. In addition,
the protocols targeted by these attacks are commonly used
in enterprise and IoT environments and have been identified
among the most targeted protocols for attacks in the dark
web [27].

Subnetwork |
Traffic

V. S-PoT FRAMEWORK
A. Overview

Figure 1 presents a general overview of the proposed S-Pot
framework. S-Pot consists of the following components: (1) The
SDN Network Management module that includes of a virtual
switch for connecting devices to the network and a controller
for centralized network monitoring, managing the flow of all
traffic in the network. 2) The Honeypot module is comprised
of virtual honeypots to lure attackers. (3) The IDPS module
captures and logs data, detects potential threats, and distributed
new rules. @ The ML Classifier module is where data prepro-
cessing, feature extraction, and classification are carried out.
It also feeds the output to the Dynamic Rules Configuration
module. (5) Finally, in the Dynamic Rules Configuration module
the new rules are created, distributed, and integrated into the S-
Pot network and the real SDN network. This is where the IDPS
and controller rules are dynamically changed with the acquired
knowledge from S-Pot. S-Pot utilizes SDN to better manage
its components. While S-Pot could be implemented without an
SDN platform, SDN provides greater features than the use of an
IDPS on its own, to be able to dynamically implement new rules
in a network based on the learned information. The modules of
S-Pot are explained in detail in the following subsection.

B. S-Pot Modules

1) SDN Network Management Module: The controller is the
brain of the network. The Open Daylight (ODL) controller Oxy-
gen version [28] was chosen for the proposed framework. The
ODL controller offers open-source flexibility, as well as open
protocols, centralized network monitoring, and programmable
control actions for S-Pot. At the application layer, ODL allows
REST API calls to the controller to push down rules to the
infrastructure layer. The Open vSwitch (OVS) [29] connects all
the devices to the network. S-Pot is able to mirror all honeypot
traffic to the IDPS using the OVS.
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2) Honeypots Module: The production honeypots are the
tools used to attract attackers to our network. S-Pot is composed
of virtual machines (VM) running on Virtual Box. This frame-
work allows for building high interaction virtual honeypots
that can simulate both enterprise services and IoT devices
with open-source and closed-source OSs and provides easy
scalability.

3) IDPS Module: All traffic goes through the IDPS module.
The IDPS captures the data packets, normalizes them, and
checks the packets against its ruleset database. The processed
information and results are sent to output plugins of the IDPS,
where options for output can be selected.

4) ML Classifier Module: The ML Classifier module obtains
the network traffic log of the IDPS module. The first step is
Data Cleaning. Here, the data is cleaned before proceeding
with feature selection. The next step is Feature Selection, where
selected features are combined to identify the type of attacks.
Finally, pre-trained multi-class ML classifiers examine the
unknown traffic and detect the attacks. For S-Pot, the following
classification algorithms were selected: Random Forest, SMO,
BayesNet, and J48. These algorithms were selected to include
a variety of approaches: BayesNet is probability based, J48 is
decision tree based, Random-Forest combines multiple decision
trees, and SMO is used in support vector machine (SVM)
implementation. We would like to highlight that although we
employ classical ML algorithms in this study, S-Pot does not
have any limitation to employ more advanced ML algorithms
such as deep learning. The ML Classifier outputs results to the
Dynamic Rules Configuration Module.

5) Dynamic Rules Configuration Module: This module gath-
ers the alert log data from the ML classifications from the S-Pot
framework, parses out the data such as source IP, destination
IP, Ethernet type, protocol, source and destination ports, type
of service, etc., and generates IDPS and SDN rules using these
features, which are passed to the SDN flow tables of both S-Pot
and the real SDN network. The new rules are also passed to the
IDPS on both the S-Pot network and the real SDN network. In
the case of new attacks classified as unknown by the classifier,
in addition to generating new rules accordingly, the module
sends a notification with the log data to security administrators,
so that they may review the logs. The security administrators
can use this information to develop new rules and manually
change the IDPS and SDN rules, which can be imperative for
defense against zero day attacks.

VI. PERFORMANCE EVALUATION

In this section, we explain the implementation and perfor-
mance evaluation of the S-Pot framework.

A. Implementation of S-Pot

SDN Network Management Module Implementation: Open
Daylight controller and Open vSwitch are selected for the SDN
Network Management module. The ODL controller manages
the flow tables in the OVS, if a packet matches a rule in the
OVS flow table, then the rule is applied (e.g. drop packets).
Otherwise, the OVS checks with the controller for new rules

drop tcp any any -> 192.168.100.4 80 (flags: S; msg:"Flood Attack
Detected.";flow:to_server, established; classtype: attempted-dos;
detection_filter: track by _dst, count 18 , seconds 1 ; sid:
10000007; rev:1;)

Fig. 2: An example Snort rule to block packets of SYN flood.

before forwarding the packets. The OVS interconnects all the
modules of our framework. All traffic associated with the
honeypots is compared against the OVS rules tables to check
if they comply with previously recorded rules and is also
forwarded to the IDPS module to be processed and logged.
If attack traffic is detected in the IDPS module, a request for a
new rule is sent to the Dynamic Rules Configuration module to
generate a new rule for the ODL controller via the RESTCONF
API, and the OVS flow table is updated to apply the new rule
(e.g. drop packets from source).

Honeypots Module Implementation: We employ two enter-
prise honeypots where each is implemented in a VM with differ-
ent OSs and services to attract a greater variety of attack types.
Debian 10 was selected due to its common use in enterprise
servers, and Windows 10 was selected due to their wide use as
clients in enterprise environments. Two IoT honeypots are also
implemented. IoT Candyjar [30] and Thingpot [31] open-source
honeypots were selected because they were both created for IoT,
provide full-device emulation, and are scalable. Furthermore,
ThingPot was created specifically for DDoS attacks for IoT,
and IoT Candyjar applies machine learning to automatically
learn the behaviors of IoT devices from the Internet. Telnet,
Domain Name System (DNS), Dynamic Host Configuration
Protocol (DHCP), SSH, HTTP(S), FTP, and SMB protocols
were selected because they are commonly used in enterprise
and IoT environments and have been identified among the most
targeted protocols for attacks in the darkweb [27].

IDPS Module Implementation: For the IDPS module, we
selected Snort [25] because it is one of the most widely used
open-source IDPSs. We used ODL controller and the OVS to
connect the honeypots and forward all the traffic to the Snort
IDPS. Figure 2 demonstrates an example of a Snort IDPS rule.
This rule blocks packets from any IP address using any port
that is targeting the same destination (e.g., 192.168.100.4) with
more than 18 SYN packets within a second. This rule could
vary based on the ML outputs.

ML Classifier Module Implementation: We utilized
Weka [32] for use in our ML-Classifier module. Weka is an
open-source tool for ML applications that provides various
algorithms. Details with the data collection and training are
given in Section VI-B.

Dynamic Rules Configuration Module Implementation: For
this module, we used a script to generate the IDPS and SDN
rules and to pass newly created rules from it. The script gathers
the alert log data from the ML Classifier module, parses out
data from the alert (source and destination IPs, Ethernet type,
protocol, source and destination ports, type of service, etc.), and
generates rules using these features, which are added to Snort
and the SDN flow tables of both the S-Pot framework and the
emulated SDN network. The controller is queried by the OVS
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every 30 seconds for new registered rules on both networks as
well. One advantage when generating new dynamic rules for the
SDN controller is that the filter values are similar to the ones
used for Snort. This facilitates creating filters for the rule. It is
also possible to combine multiple conditions. Rules are pushed
to the SDN controller in XML or JSON format. Listing 1
demonstrates an example SDN rule generated by S-Pot to be
passed to the SDN controller to drop packets that match the
source IP address of x.x.x.x/30 and port 22222, destination
IP address of y.y.y.y/24 and port 8080, Ethernet source and
destination addresses.

Listing 1: A sample SDN rule generated by S-Pot for the
enterprise SDN controller to drop packets from x.x.x.x/30 to

y.y.y.y/24

{"flow2": [
{ midn: mow
"table_id": 2,
"flow-name":"flow2",

"strict": 2,
"match": {
"ipvd-source": "x.x.x.x/30",

"ipv4-destination": "y.y.y.y/24",
"ip-match™: {
"ip-dscp": 2,
"ip-protocol": 6,
"ip-ecn™": 2},
"in-port": "0",
"tcp-source-port": 22222,
"tcp-destination-port": 8080,
"ethernet-match™: {
"ethernet-type": {
"type": 2048},
"ethernet-source": {
"address": "00:02:b2:£2:c3:05"},
"ethernet-destination™: {
"address": "00:02:c4:a6:b1:03"}}},
"cookie": 3,
"instructions": {
"instruction": [

{ "order™: 0,
"apply-actions": {
"action": [
{ "order": 0

"dIOp*dC’thﬂ"I {} H}HN}ID

B. Data Collection and Processing

To test the performance of S-Pot in classifying attacks, we
prepared a dataset with TCP SYN Flood DoS, PUSH and
ACK Flood DoS, UDP Flood DDoS, scanning, trojan malware,
and unknown attacks. In this study, unknown attacks represent
zero day attacks and are all the logged packages which did
not fit into the other attack classifications that the classifier
came across during the training. These were generated using
pcaps. Next, we used libpcap [33] to capture network traffic for
eight consecutive hours and performed variations of the selected
attacks. For this, we used hping3, LOIC, Nmap, and pcaps,
respectively. We stored the captured network traffic into JSON
files and converted them into CSV format for use in Weka. We
chose the following features based on the values of each feature,
the statistical relationship, and the redundancy of the features to
produce a more accurate model [34]: inter-arrival time (IAT),
packet direction (dir), destination address and port (dst_ap),
destination MAC address of Ethernet (eth_dst), source MAC
address of Ethernet (eth_src), packet length (pkt_len), protocol
type (proto), source address and port (src_ap), capture time
(timestamp), transmission control protocol flags (tcp_flags),

Unknown 1
DDos 0.8
Dos 0.6
Trojan 0.4
Dosz 0.2
Scanning [i]

|
Scanning DoS2 Trojan DoS DDoS  Unknown

Fig. 3: Confusion Matrix generated from the result of the
classification of different types of attacks using J48 algorithm.
transmission control protocol window (tcp_win), and time to
live (1tl).

TABLE I: Performance evaluation results of S-Pot.

Model TPR FPR Prec. | Recall | F1 Egg Class
0.02 0.965 | 0.971 0.968

0.971 0.995 | Scanning
0.945 | 0.016 | 0.925 | 0.945 0.935 | 0.975 | DoS2
0.947 | 0.001 | 0.973 | 0.947 0.96 0.976 | Trojan
RF 0.95 0.011 | 0.963 | 0.95 0.957 | 0.996 | DDoS
0.996 | 0.004 | 0.979 | 0.996 0.987 | 0.998 | DoS
0.881 | 0.003 | 0.95 0.881 0.914 | 0.986 | Unknown
0.958 | 0.013 | 0.959 | 0.958 0.958 | 0.991 | Avg.
0.988 | 0.014 | 0.975 | 0.988 0.981 | 0.986 | Scanning
0.931 | 0.007 | 0.968 | 0.931 0.949 | 0.965 | DoS2
0951 | 0 1 0.951 0.975 | 0.965 | Trojan
J48 0.969 | 0.012 | 0.961 | 0.969 0.965 | 0.987 | DDoS
0.991 | 0.005 | 0.97 0.991 0.981 | 0.994 | DoS
0.936 | 0.003 | 0.962 | 0.936 0.949 | 0.987 | Unknown
0.97 0.01 0.97 0.97 0.969 | 0.983 | Avg.
0.942 | 0.011 | 0979 | 0.942 0.96 0.994 | Scanning
0.927 | 0.017 | 0.921 | 0.927 0.924 | 0.986 | DoS2
0.976 | 0.004 | 0.87 0.976 0.92 0.976 | Trojan
BayesNet | 0.935 | 0.018 | 0.94 0.935 0.937 | 0.99 DDoS
0.996 | 0.004 | 0.974 | 0.996 0.985 | 0.997 | DoS
0.927 | 0.013 | 0.835 | 0.927 0.878 | 0.992 | Unknown
0.945 | 0.013 | 0.947 | 0.945 0.945 | 0991 | Avg.
0.968 | 0.022 | 0.961 | 0.968 0.964 | 0.985 | Scanning
0.934 | 0.017 | 0922 | 0.934 0.928 | 0.96 DoS2
0953 | 0 1 0.953 0.976 | 0.979 | Trojan
SMO 0.943 | 0.013 | 0.958 | 0.943 0.95 0.978 | DDoS
0.996 | 0.004 | 0.974 | 0.996 0.985 | 0.996 | DoS
0.899 | 0.004 | 0.942 | 0.899 0.92 0.995 | Unknown
0.955 | 0.015 | 0.955 | 0.955 0.955 | 0.981 | Avg.

In the Data Cleaning step, the collected data was cleaned by
extracting only the selected features and forming the feature
vectors. We eliminated the features that are not relevant to
the classification of the attacks (e.g., rule revision, generator
id, eth_type, or where columns have missing information (e.g.,
class, service). In the Feature Selection step, we combined the
selected features such as seconds, the source IP address, and
the packet length or seconds and packet number to identify the
type of attack. Seconds, which represent the inter-arrival time
between each continuous packet, have been determined to be
helpful to identify different types of attacks in networks [35].
We began by labeling the known network traffic generated
each as a different class. Class categories are presented as
DoS, DoS2, DDoS, scanning, trojan malware, and unknown,
where DoS represents TCP SYN Flood DoS attacks, DoS2
represents PUSH and ACK Flood DoS attacks, and DDoS
represents UDP Flood DDoS attacks. DoS attacks were from
a real static IP address flooding the target, while DoS2 was a
spoofed IP address to simulate a trusted source. To identify
these attacks, the selected features were used in Classifiers
component of the ML Classifier module to build ML models
using Random Forest, SMO, BayesNet, and J48 algorithms.
Feature combinations were selected for the identification of
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each attack type. DoS, DoS2, and DDoS attacks were identified
through feature combinations of identical IAT, src_ap, dir, and
packet length, consecutive values of timestamp, pktnum, and
src_ap, and identical values of pktlen, and tcp_win. When the
traffic is benign, it was observed that these features change
uniformly. Also, while maintaining the same dest_ap, the src_ap
port number increases by one when it is under DoS attacks. For
the scanning class, dst_ap, TTL, eth_src, and tcp_flags were
considered to detect active scanning. For the Trojan malware,
Snort detected the packets as malicious based on direction
flowing to the server, dest_ap, pkt_len repeated in groups of
three, and proto targeting HTTP. Finally, Classifier was trained
using a multi-class classification of labeled signatures from
known attack types by applying a supervised approach.

C. S-Pot Classification Accuracy

In this section, we evaluate the accuracy of S-Pot in detecting
the attacks. Table I presents the results considering several
accuracy metrics such as True Positive Rate (TPR), False
Positive Rate (FPR), Precision, Recall, F1, and ROC Area. The
BayesNet model showed the best performance for identifying
scanning, achieving 97.9% precision. For identifying trojan
malware attacks J48 and SMO showed the best performance
with 100% precision. The metrics proved the most accurate in
regards to DoS attacks, with RF achieving 97.9% precision.
In regards to DDoS attacks, RF demonstrated the best perfor-
mance with 96.3% precision, whereas J48 proved to have the
highest precision in regards to DoS2 attacks with 96.8% as
well as unknown attacks with 96.2%. J48 provided the best
performance overall, with the highest average true-positive rate
of 97%, lowest average false-positive rate of 1%, and highest
average precision of 97%. The obtained results show that the
J48 model is the most suitable classifier to be used in the ML
Classifier module of S-Pot. Figure 3 displays the confusion
matrix obtained as a result of the classification of different
attack types and the J48 algorithm.

D. Performance Evaluation of the SDN Enterprise Network
with S-Pot vs. without S-Pot

To compare the security of an enterprise network with and
without S-Pot, we built an enterprise SDN testbed network
that includes the components tabulated in Table II. In this
evaluation, we simulated TCP SYN Flood DoS, PUSH and
ACK Flood DoS, UDP Flood DDoS, scanning, and trojan
malware attacks using the aforementioned tools and applied
each type of attack 10 times.

We began by identifying the number of attacks that were
effectively blocked by the use of Snort IDPS alone in the SDN
network, without S-Pot. Our analysis showed that the Snort
IDPS detected and blocked the trojan malware, and flagged the
TCP SYN Flood DoS, PUSH and ACK Flood DoS attacks.
However, it did not block the TCP SYN Flood, and PUSH and
ACK Flood attacks. A rule is required to be added to Snort to
block these attacks. On the other hand, Snort did not detect the
UDP Flood DDoS or the scanning attacks.

TABLE II: Components of the SDN testbed network.

Enterprise Honeypot 1 | Debian 10 SSH, HTTP/HTTPS, DNS
Enterprise Honeypot 2 | Windows 10 SMB, FTP, SSH, DHCP
IoT Honeypot 1 Full device emulation | SSH, Telnet

IoT Honeypot 2 Full device emulation | SSH, Telnet

Snort IDPS Ubuntu 20 IDPS

ODL Ubuntu 18 Controller

OVS Ubuntu 18 Virtual Switch

As the second step of our evaluation, we applied the same
attacks (i.e., UDP Flood DDoS, TCP SYN Flood DoS, PUSH
and ACK Flood DoS, and scanning) which were not detected
by the IDPS of the testbed network on different honeypots
of S-Pot, which in turn were analyzed by the IDPS module
of S-Pot. Once again, the IDPS module of S-Pot was able
to detect and block only the trojan malware. The TCP SYN
Flood DoS and PUSH and ACK Flood DoS attacks were
only detected but not blocked, and the UDP Flood DDoS and
scanning attacks were not detected. For the attacks that were
not detected by the IDPS module, the ML Classifier module of
S-Pot obtained the traffic logs from the IDPS, and detected the
attacks with 100% accuracy. Following the detection process,
new signatures for the detected attacks were generated by the
Dynamic Rules Configuration module and fed to the IDPS
of S-Pot successfully. In addition, the new rules were sent to
the IDPS of the SDN testbed network. Once this process was
completed, as the last step of the evaluation, we applied the
same attacks against the hosts on the testbed network again.
At this point, the IDPS of the network was able to detect all
of the attacks, and the packets were dropped. Our evaluation
with simulated attack instances shows that S-Pot can detect
new attacks and generate new rules to block attacks with 40%
improvement over legacy systems without S-Pot, based on the
applied attacks, thus effectively improving the security of an
SDN network. It is important to note that while our analysis
only focused on S-Pot effectiveness against these five types of
attacks, this is expandable to all kinds of attacks as new attack
data is captured by the honeypot module and the ML Classifier
module is also extendable.

VII. CONCLUSION

In this paper, we proposed S-Pot, a novel smart honeypot
framework that aims to improve security of SDN networks. S-
Pot benefits from honeypots that can simulate both enterprise
services and IoT devices in gathering attack information and
employs an IDPS and ML classifiers to detect and learn
from the attacks in honeypots. Unlike research honeypots, it
utilizes the obtained attack information from the honeypots for
production purposes for the security of SDN-based networks,
dynamically creates new rules in real-time for the attacks, and
shares them with the SDN-based network. We implemented S-
Pot and evaluated the attack detection performance of it with
respect to various ML algorithms. Our results showed that
J48 algorithm provides the best accuracy for S-Pot, with 97%
precision. We also created a realistic enterprise SDN testbed
network and tested the security of it with and without S-
Pot. Our evaluations demonstrated that S-Pot can improve the
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security of the SDN network and can effectively add a newly
created rule to the flow tables on both the S-Pot and the realistic
enterprise testbed network. These new rules can effectively
block attacks based on the acquired knowledge from our S-Pot
framework, improving network security.
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