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Abstract—Mobile social services utilize profile matching to help
users find friends with similar social attributes (e.g., interests,
location, background). However, privacy concerns often hinder
users from enabling this functionality. In this paper, we introduce
S-MATCH, a novel framework for privacy-preserving profile
matching based on property-preserving encryption (PPE). First,
we illustrate that PPE should not be considered secure when
directly used on social attribute data due to its key-sharing
problem and information leakage problem. Then, we address
the aforementioned problems of applying PPE to social network
data and develop an efficient and verifiable privacy-preserving
profile matching scheme. We implement both the client and
server portions of S-MATCH and evaluate its performance
under three real-world social network datasets. The results show
that S-MATCH can achieve at least one order of magnitude
better computational performance than the techniques that use
homomorphic encryption.

Keywords-profile matching; privacy; property-preserving en-
cryption; symmetric encryption;

I. INTRODUCTION

With the explosive growth of social networks and mobile

devices, mobile social service has become a popular method

among traditional online social network users to build social

relationships and to share interests. For instance, Groupon,

Yelp, Wechat are among the most popular mobile social

services in the market, through which users can share their lo-

cation information, share their interests, and chat with friends

nearby. To build social relationships and share interests, profile
matching is a fundamental and significant step for mobile
social services. During the profile matching process, users’

social profiles are compared in an outsourced server owned by

social network application providers to find other users with

similar social attributes (e.g., interests, location, background)

in the social networks. An effective profile matching process

benefits users and social network providers alike. Users enjoy

a more pleasant experience while social network providers see

increased user activities in their social networks.

However, social profile attributes used in the profile match-

ing process include sensitive information about users. For

instance, even though the ‘public’ attributes such as an Interest

(or ‘Like’) in Facebook are regarded as harmless, they can

reveal some basic ‘private’ social attributes (e.g., age, health

condition, or religion [1]). In mobile social services, the viola-

tion of the privacy of the users’ social profiles can pose serious

problems. Using social profile information, attackers can flood

users with unwanted advertisements [2] or easily crack weak

user passwords [3]. Hence, the privacy concerns must be

addressed when developing profile matching techniques for

mobile social networks [4], [5]. In addition to security, clients

of mobile social networks run on resource-constrained mobile

devices. Therefore, a privacy-preserving and power-efficient
profile matching scheme is needed for mobile social services.

To preserve the privacy of the profile matching computation,

homomorphic encryption [6], [7] has been widely used for

privacy-preserving profile matching [8]–[12]. In homomorphic

encryption, certain types of computations are allowed on

ciphertext and the computation results retain some relationship

among plaintexts. For instance, in homoPM [8], after users

encrypt plaintexts, which are blinded by a random number

δ, with homomorphic encryption and upload the ciphertexts
onto the server of the mobile social networks, the server

can conduct some computations (e.g., modular multiplication)

on the ciphertexts and obtain the comparison relationship

among plaintexts. However, while functional, homomorphic

encryption is not practical for mobile social services because
of the two following reasons: First, homomorphic encryption

is computationally intensive and slow. Second, the schemes

based only on homomorphic encryption faces the result veri-
fication problem that fake profile matching results can be sent
to the querying user from the server without being detected.

A better candidate for the privacy-preserving profile match-

ing process for mobile social services is property-preserving
encryption (PPE). A naive approach utilizing PPE [13] to

match the profile secretly is that each user encrypts their

social attributes with the PPE separately and sends all of the

encrypted attributes to the server. As the ciphtexts preserve

some information of the plaintexts such as relative distance and

order between the plaintexts in PPE, comparison operations on

the ciphertexts are possible. Therefore, the untrusted server

is able to process the profile matching algorithms based

on comparison operations without knowing the plaintexts.

However, as we analyze in Section IV, PPE can cause high

information leakage if it is directly used on low entropy social

attribute data, and the secret profile attribute values can be

deciphered. Also, to guarantee the property such as relative

distance and order among all the ciphertexts, the plaintexts

should be encrypted by the same key. However, it is not
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practical for all the users share the same secret key. Because

when a malicious user colludes with the untrusted server, all

the data face the threat of plaintext recovery.

In this paper, we propose S-MATCH, a privacy-preserving

profile matching technique for mobile social services in which

the privacy-preserving operations are achieved utilizing PPE.

The main contributions are summarized as follows:

• We show the challenges of using PPE directly on so-

cial attribute data for profile matching. Specifically, we

highlight the key-sharing problem and the information

leakage problem by analyzing the entropy of three real-

world datasets.

• We address the information leakage problem by providing

a technique to increase the entropy of the user profiles

so that PPE can be used in our privacy-preserving profile

matching scheme. Also, we present a key generation pro-

tocol for users, which addresses the key-sharing problem.

• We present a verification protocol for users to verify the

profile matching results, but learn nothing about other

users’ profile attributes.

• We show the provable security of S-MATCH, which indi-

cates that S-MATCH is protected from plaintext recovery

under ordered known plaintext attack and known key

attack (i.e., PR-OKPA and PR-KK).

• We demonstrate a prototype implementation of S-

MATCH with an application on an Android-based mobile

testbed and evaluate its performance using three real-

world datasets. Our results indicate the efficiency and

validity of our scheme.

This paper proceeds as follows. We discuss the related work

in Section II. In Section III, we describe the cryptographic

primitives in this work. We present the challenges of using

PPE for privacy-preserving profile matching in Section IV. In

Section V, we show the problem formulation. In Section VI,

our approach is described in detail. Section VII presents the

security analysis of S-MATCH. In Section IX, our scheme

is evaluated using real-world datasets and compared with

a representative scheme based on homomorphic encryption.

Finally, in Section X, the conclusion and future work are

presented.

II. RELATED WORK

Private Profile Matching. Profile matching is critical for
social networks. Recently, Zhang et al. [14] improved the

performance of the earlier profile matching schemes by in-

troducing the symmetric cryptosystem to conduct operations.

Also, the scheme they proposed is verifiable. However, the

scheme is designed in the two-party matching scenario, which

introduce large communication cost when extended to a

profile matching scheme in large scale. In [9], a privacy-

preserving personal profile matching scheme was proposed,

where minimal information about the users’ social attribute

is exchanged. In [10], Arb et al. proposed a mobile social

networking platform called VENETA to secretly detect friends

of friends. In [11], Wang et al. proposed a secure and privacy-

preserving social networks group matching scheme Gmatch.

In [15], Nagy et al. developed an efficient friend-finder ap-

plication. However, all of these schemes are attribute-level

profile matching based on Private Set Intersection [16], [17],
which means that they are not able to differentiate users with

different attribute values. Zhang et al. [8] proposed a fine-

grained profile matching protocol to differentiate users with

different attribute values. Li et al. [12] improved the scheme

in [8] by introducing a novel blind vector transformation

technique to protect the profile matching process against the

runaway attack. These profile matching schemes are conducted

through homomorphic encryption [6], [7] such as Paillier’s

cryptosystem [18]. However, the privacy-preserving profile

matching schemes only based on homomorphic encryption are

too computationally expensive for mobile devices and are not

verifiable. Table I shows the difference of our paper from the

previous works. The category of the schemes includes sym-

metric encryption (SE) and homomorphic encryption (HE).

Security of the schemes includes malicious model (M) and

honest-but-curious model (HBC). Verification means that the

profile matching results from the server are verifiable. Fine-

grained match means that the profile matching is processed on

the attribute-value-level, compared to the attribute-level. And

fuzzy match means that the profile matching results include not

only the perfect matching result but also the top-k matching

results. As illustrated by Table I, S-MATCH is the most full-

featured and efficient scheme.

Security of OPE. Motivated by the first OPE scheme

proposed by Agrawal et al. [19], Boldyreva [20] initiated the

cryptographic study of OPE and first present the security goal

of OPE, i.e., releasing nothing but order (indistinguishability

under ordered chosen plaintext attack (IND-OCPA)). In [20],

Boldyreva et al. indicated that IND-OCPA cannot be achieved.

They proved that the OPE scheme they proposed was POPF-

CCA secure (i.e., pseudorandom order-preserving function un-

der chosen-ciphertext attack), which means that the adversary

cannot distinguish the OPE scheme from the random order

TABLE I
A COMPARISON OF RELATED WORKS WITH OUR S-MATCH.

S-MATCH ZLL13 [14] ZZS12 [8] LCY11 [9] NCD13 [15] LGD12 [12]
Category SE SE HE HE HE HE
Security M/HBC M/HBC HBC HBC HBC HBC

Verification � � � � � �

Fine-grained Match � � � � � �

Fuzzy Match � � � � � �
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preserving function. mOPE proposed by Popa et al. [21] was

the first OPE scheme to achieve IND-OCPA. However, mOPE

is an interactive scheme, which is not suitable for the privacy-

preserving profile matching scenario in our work.

III. CRYPTOGRAPHIC PRIMITIVES

PPE. A deterministic property-preserving encryption (PPE)
is a tuple PPE = (Keygen,Enc,Dec). In PPE, the ci-
phertexts preserve the property P of a set of plaintexts M
such as distance or order. To encrypt a set of plaintexts

{mi : mi ∈M}, the user generates a PPE key K $← Keygen
and the ciphertexts {ci ← Enc(K,mi) : mi ∈ M}. The
property P which the ciphertexts preserve is formally defined

as follows:

Definition 1: PPE is an encryption scheme, which has

property P with parameters of fixed number k and a publicly
computable algorithm Test, such that

Test(c1, . . . , ck) = P (m1, . . . ,mk)

where ci is the ciphertext of the plaintext mi, i ∈ {1, . . . , k}.
Order-preserving symmetric encryption (OPE) [19]–[21] is

an example of a PPE with the property of order and k = 2.
OPE, which was first proposed by Agrawal et al. [19], pre-

serves the order of plaintexts and allows any comparison oper-

ations to be applied on ciphertexts. Given plaintexts mi,mj ,

corresponding ciphertexts ci, cj satisfy the relationship that
mi ≥ mj ⇒ ci ≥ cj . Distance-preserving encryption (DPE)
proposed by Ozsoyoglu et al. [22] is an another example

of a PPE scheme. DPE preserves the distance of the two

numeric data after encryption such that for any three values

mi,mj ,mk, |mi−mj | ≥ |mj−mk| ⇒ |ci−cj | ≥ |cj−ck| and
k = 3. PPE techniques are widely used in database indexes
over encrypted tables [19], identifying similarities on sensitive

data [23], and spam-email detection [24].

OPRF. An oblivious pseudo-random function scheme is a

tuple OPRF = (Keygen, F ). In OPRF, the user is able to
obtain a pseudo-random number r, but the random number

generator learns nothing about the user input m and the

pseudo-random number r. To generate the pseudo-random
number r, a public key and a secret key are generated

(pk, sk)
$← Keygen, where the random number generator

owns the secret key sk and the users utilize public key pk. An
OPRF is an interactive protocol, and a pseudo-random number

r ← F (sk,m) is generated on the user side after a round of
secure communication with the random number generator.

RSA-OPRF is an example of an OPRF. The key generation

function utilizes RSA key generation results ((N, e), (N, d)),
where ed ≡ 1 mod φ(N) and outputs (N, d) as the public-
secret key pair. A pseudo-random number r is generated by
first hashing the input m and encoding it as x = h(m) ·
se mod N , where s is a random number and h() is a

hash function. After interacting with the random number

generator and obtaining y = xd mod N , the user outputs
r = h′(y · s−1 mod N) as the pseudo-random number, where

h′() is another hash function.

IV. CHALLENGES OF USING PPE FOR PRIVATE PROFILE

MATCHING

In this section, we first present the key sharing problem and

the information leakage problem of PPE, which is exacerbated

when the message space is small. Then, we indicate that the

social networks data have low entropy and landmark attributes

by analyzing three real-world social networks datasets. Finally,

we conclude PPE cannot be directly used to encrypt social

networks data.

A. Key Sharing in PPE

Similar to the homomorphic encryption, the ciphertexts can

only preserve the property of the plaintexts if the plaintexts

are encrypted by the same property-preserving key in PPE.

Even though there is not an all-accessible public key like that

in homomorphic encryption, sharing of the same property-

preserving secret key among all users in PPE is still unaccept-

able and not practical. In the worst case, when an honest-but-

curious user colludes with the untrusted server, all the users’

data will be leaked. Hence, the key sharing problem should be

addressed, when PPE is utilized for privacy-preserving profile

matching.

B. Information Leakage of PPE

In PPE, ciphertexts leak the property information associated

with the plaintexts, which makes it vulnerable when the

number of the plaintexts is limited. For example, in OPE, an

attacker can learn the order of the plaintext from the cipher-

text, making a chosen-ciphertext attack significantly easier.

Furthermore, when the number of the plaintexts encrypted by

OPE is small, the vulnerability is exacerbated. Assume that

there is an untrusted server with n pairs of known plaintexts
and ciphertexts along with the set of ciphertexts it stored.

Given a plaintext pi, the untrusted server can recover ci from
the decryption D(ci, k) using the known plaintext-ciphertext
pairs and by analyzing the property, where D(ci, k) is the
decryption of the PPE with ciphertext ci and key k.

We illustrate this with a simple example shown in Figure 1

assuming that an OPE scheme is utilized. In our illustration,

an untrusted server tries to obtain the ciphertext of 5 using

the known ciphertext-plaintext (ci, pi) pairs of (30, 3) and
(70, 7). As the ciphertexts stored in the untrusted server are
derived from the OPE scheme, the order relationships among

the ciphertexts can be easily obtained by the server. Then, the

untrusted server is able to prune the search space to find the

ciphertext of 5 by analyzing the property of the ciphertext

values (e.g., order). With ciphertext-plaintext pairs ((30, 3)
and (70, 7), the server can infer that the ciphertext of 5 is
between 30 and 70. As a result, the size of the search space

is 3 (Figure 1(a)). However, the search space is larger, 39,

for a configuration with more entries as shown in Figure 1(b).

Hence, when the number of plaintexts is small, the time to

break the ciphertext and obtain the corresponding plaintexts is

shorter than that when the number of plaintext values is large.
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plaintext

Property
Analysis

Search space
N=3

Property
Analysis

Search space
N=39

ciphertext plaintext ciphertext plaintext

(a)

(b)

Fig. 1. A simple illustration of information leakage of OPE schemes, where
(30,3) and (70,7) are the known ciphertext-plaintext pairs. The untrusted server
tries to obtain the ciphertext of 5 (plaintext) analyzing the order property.

C. Low Entropy of Social Networks

In this sub-section, we show the low entropy associated with

social network datasets. For this, we analyze three real-world

datasets and present how the limited number of attribute values

and the existence of landmark attribute [1], [25] facilitate the
leakage of information.

The three real-world datasets that are analyzed are as

follows: (1) Infocom06 dataset [26] was from the attendees

of the IEEE Infocom 2006 Conference, who contributed their

mobility information ((x,y)-coordinate data) through their mo-

bile devices and social attributes from questionnaires. (2) Sig-
comm09 dataset [27] was collected by smartphones distributed
to a set of volunteers in the ACM Sigcomm 2009 Conference.

Each device was initialized with some basic (e.g., country,

affiliation) and extended social profile (e.g., interests from

Facebook profile). Also, the devices recorded the locations

of the volunteers during the conferences. (3) Weibo dataset
[28] was captured through the user profile API and keyword

extra API in Sina Weibo (Chinese twitter), which include some

basic and extended social attributes (i.e., 10 interests). The user

interest attribute is defined as the frequency of semantically

related keywords. Also, the ‘check-in’ information includes

location information based on Google map locations, which is

an interface provided by Weibo.

First, as discussed in Section IV-B, PPE will leak more

information due to the limited number of plaintexts. Now,

we utilize the entropy to evaluate the limited number of the

attribute values in social profile data so that we are able to

determine whether PPE can be directly used to encrypt the

social profile attributes. In order to show the entropy of a

given social attribute Al in a social network, we calculate

H(Al) = −
∑

i

Ti

U
log

Ti

U
(1)

where Ti is the number of users with the attribute value i,
U =

∑

i

Ti is the total number of users, and
Ti
U indicates the

probability of attribute Al having value i. H(Al), therefore,
represents the entropy of social attribute Al.

The properties of Infocom06, Sigcomm09, and Weibo

datasets are summarized in Table II. We note that attributes

with significantly small entropy exist in the real-world social

profile datasets. This situation aggravates the information

leakage of a PPE scheme.

Second, we show how the landmark attributes [1], [25] will

lead to information leakage. A landmark attribute is based

on the fact that human activities (e.g., geographic and social

constrains [29]) exhibit structured patterns. For example, some

geographic locations may have much more ‘check-ins’ than

others. In other words, landmark attributes are prevalent in

social attribute data. Since PPE is a symmetric encryption

and some users should share a key to encrypt the profile, the

ciphertexts of the landmark attributes are still noticeable. We

formally define the landmark attribute as follows:
Definition 2: Landmark attribute is an attribute with

value i whose probability Ti
U larger than threshold τ , where

Ti is the number of users with the attribute value i and U is

the total number of users, U =
∑

i

Ti.

As also discussed in [1] and [25], the existence of landmark

attributes in social profile data can undermine the anonymiza-

tion, which increases the social profile dataset’s propensity

for leakage. For example, when an untrusted server observes

a ciphertext appearing more often than others, the untrusted

server can regard this as ciphertext generated by the encryption

of a landmark attribute value. The existence of landmark

attributes associated with the three real-world datasets is

shown in Table II. As seen, for each dataset, at least one

or more landmark attribute exist, which can exacerbate the

usage of PPE schemes in social network settings. As Table II

TABLE II
THE PROPERTIES OF DATASETS

Dataset Node the Number of Attributes
Entropy Landmark Attribute

AVG MAX MIN τ = 0.6 τ = 0.8
Infocom06 78 6 3.10 5.34 0.82 2 1
Sigcomm09 76 6 3.40 5.62 0.86 3 1
Weibo 1 million 17 5.14 9.21 0.54 5 3
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indicates, real-world social profile datasets have low entropy

and landmark values, which leads to high information leakage

and the situation is aggravated when these datasets are used

with PPE.

In conclusion, as Table II indicates, real-world social profile

datasets have low entropy and landmark values, which leads to

high information leakage with PPE. Therefore, the user profile

attribute data used in a privacy-preserving profile matching

scheme should have high entropy. Accordingly, in Section

VI, we propose a technique to increase the entropy to enable

private profile matching based on PPE.

V. PROBLEM FORMULATION

In this section, the system model and assumptions are given.

Then, we outline the adversary model and design goals.

A. System Model and Assumptions

A privacy-preserving profile matching scheme involves

users with mobile devices running the same mobile social

services and an untrusted server to process profile matching

operations. Each user has a social profile, including some

social profile attributes such as gender, education, location, and

interests. Social attribute data can be generated through three

methods: user input in online social networks (e.g., birthday,

gender), device capture using sensors (e.g., location), and data

analysis based on the user behavior in online social networks

(e.g., interests). For instance, several methods have been

proposed to extract user interest information from Facebook’s

‘Like’ using semantic knowledge based techniques [1], [30],

[31].

We assume each user v updates her encrypted social profile

{c(v)i } on the untrusted server periodically. At another time
t, user v submits a query request for profile matching, Qq =

< q, t, IDv >, to an untrusted server, where q is the query
ID, t is the time-stamp and IDv is the identity of user v in
a mobile social service. Then, the untrusted server correctly

matches profiles using the encrypted user profiles, and returns

k nearest profiles matching results to the user. Finally, the user
verifies whether the profile matching results are correct.

Without loss of generality, we assume that each user has a

unique ID and share the same social profile format, where each

attribute value ai ∈ Zn . Also, each mobile device has similar

storage capacity and computing power (e.g., smartphones).

Each untrusted server is powerful and resourceful enough to

store social profile attribute data and process profile matching

operations (e.g., requests). As previous works [8], [9], [12],

[14], [15], we assume that social profile attribute data in

the mobile device are captured from trusted social network

interfaces such that users would not change their social profile

attribute data.

B. Adversary Model and Design Goals

In our threat model, we consider the following three types

of adversaries regarding the server and users:

• Honest-but-curious server where the server follows the
designated protocol specification honestly while it is

curious to analyze data in its storage so as to learn ad-

ditional information of the plaintext beyond the property

defined in the PPE. For example, it can execute a chosen-

ciphertext attack where it chooses a ciphertext and obtain

its corresponding plaintext. Then, it can enumerate all the

possible attribute values to determine the plaintext of the

attribute values for each users. Such a server can use this

type of data for targeted ad campaigns.

• Honest-but-curious user where the user acts in an ‘hon-
est’ fashion to obtain the correct profile matching results,

but ‘curious’ fashion to obtain other users’ exact profile

attribute data by eavesdropping the communications or

colluding with the untrusted server. Such a user can use

this type of data to impersonate other users at a later time.

• Malicious server where a compromised server does not
follow the designated protocol but returns fake profile

matching results to the user. Similar to the works in the

literature [8], [9], [12], [14], [15], the service provider

would not allow the user outside to access the dataset

or affect the computation results for security reasons and

public reputation reasons.

To address the adversary models above, a privacy-preserving

profile matching scheme for mobile social services is pro-

posed. Our scheme, S-MATCH, achieves security and perfor-

mance guarantees as follows:

• Privacy: The untrusted server does not learn additional
information of the users’ social profiles. Specifically, even

if the server knows that an intercepted ciphertext has

plaintext from a set of known plaintext range, a secure

scheme will prevent the attacker from extracting the

plaintext. Thus, the scheme is protected from plaintext

recovery attack. Also, each user cannot obtain other

users’ profiles.

• Verification: The profile matching result that indicates a
match is for users with similar social profiles. Fake profile

matching results from the server are detected.

• Performance: The above goals for privacy and verification
should be power efficient with low computation overhead

on resource-constrained mobile devices.

VI. S-MATCH: MATCHING PROFILES SECRETLY

In this section, we introduce the details of the proposed

privacy-preserving profile matching scheme after showing the

overview of the system.

A. System Overview

Our proposed scheme has three steps. First, users bootstrap

the privacy profile matching process by increasing the entropy

so that the privacy-preserving profile matching is processed

on the high-entropy attribute chains encrypted by the PPE

scheme. Then, each user commits her profile information

and user ID to the server with authentication information

ciphi. Second, after obtaining the profile matching request

291291291
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Step 1
Key Generation

Entropy Increase
Attribute Chaining

Make Authentication

User Community

Au1 Au2 AuN….
Step 3

Privacy-preserving
Profile Matching

Step 5
Verify Query Result

Step 2
Query request
( time stamp, 

query ID, user ID )

Step 4
Query result

( userID1 ciph1 
…,userIDi, ciphi  )

Untrusted Server

Query User

ciphi

Y/N

Fig. 2. Overview of the PPE-based privacy-preserving profile match-
ing scheme.

Qq =< q, t, IDv >, the untrusted server conducts the efficient
privacy-preserving profile matching process, then returns the

matching result Rq =< q, t, ID1, ciph1, . . . , IDk, ciphk > to

user v, where q is the query ID, t is the time-stamp, IDi is the

identity of matching user i in the mobile social service, and
ciphi is user i’s authentication information for the querying
user to verify the query results. Finally, with the authentication

information ciphi of user i, the querying user v can verify
whether the profile matching result, which states user i is a
match, is correct or not. The overview of S-MATCH is shown

as in Figure 2.

Key Generation. To address the key sharing problem while
guaranteeing correct profile matching using ciphertext, we

propose a fuzzy key generation scheme to generate the keys

for OPE. In our scheme, the users with similar profiles will

generate the same key. The fuzzy key generation solves the key

sharing problem and improves the efficiency of the privacy-

preserving scheme.

For this, we utilize a cyclic error-correcting decoding func-

tion (e.g., the Reed-Solomon decoding function [32]–[34]) to

generate a profile key, where the users with the Euclidean-

distance close profiles will generate the same profile key.

Specifically, the profile of user v is decoded by a Reed-

Solomon decoder (RSD) to obtain a fuzzy vector T (v), and

the profile key is generated by the fuzzy vector T (v), i.e.,

Kvp = H(T (v)), where H() is a one-way hash function. With
RSD, the Euclidean-distance close profiles (i.e., ‖ Au−Av ‖≤
θ, where θ is the threshold of the RS Decoder) will be

transformed to the same fuzzy vector and the users with the

close profiles will generate the same profile key. To protect

the key generation scheme from an offline brute-force attack,

the profile key Kvp is encoded as a pseudo-random number

by OPRF.

Definition 3: Given the ordered series of user u and user
v’s attribute values, denoted by Au and Av , the Euclidean

distance of the profiles between user u and user v is defined
as follows:

‖ Au −Av ‖= MAX{a(u)
i − a(v)i }, (2)

where i ∈ {1, 2 . . . d} and a(u)
i is the attribute value of user

u.

The Reed-Solomon cyclic error-correcting codes (RS code)
are constructed using Galois Fields and source symbols are

viewed as coefficients of a polynomial over the Galois Fields.

The RS code we are interested in are (n,d)-codes, where d
is the number of attribute values as the source symbols, and

n = 210 as Galois Field GF (10) is utilized.

Entropy Increase. To reduce the information leakage, the
mobile user increases the entropy of each attribute while

guaranteeing that the probability distributions of the profile

attributes are uniform. The idea behind this technique is to

construct a big-jump mapping of the attribute values with equal

probability, where one profile attribute value is mapped to N
values to increase the uncertainty. For the big-jump mapping

function f , there exists some big jumps f(i + 1) − f(i) ≥
f(i) − f(j), where 1 ≤ j < i − 1. To quantify the privacy
of the scheme, we use a k-bit-binary string to represent the
value of the attribute. In other words, the message space is 2k.

For the profile attribute Ai with ni possible values a
(i)
j and

the corresponding probability p
(i)
j , where j ∈ {1, 2 . . . ni},

each attribute value a
(i)
j is mapped to p

(i)
j Δ binary strings in

the range [ 2
k(j−1)
ni−1 , 2k(j−1)

ni−1 + R] , where Δ is a configurable

constant value and the range R < 2k

2ni−1 . And, users with

attribute value a
(i)
j choose any one of the p

(i)
j · Δ binary

strings with equal probability 1

p
(i)
j Δ

as their mapping attribute

value. Hence, after mapping, each attribute value is chosen

with equal probability of 1
Δ . The big-jump mapping has three

benefits: First, the entropy of the attribute Ai increases under

the one-to-N mapping. Second, different attributes are unified

to the same measurement of k bits. Third, even though the
same attribute values are mapped then encrypted with different

ciphertexts, the profile matching results will not change if the

profiles are the Euclidean-distance close. We will show the

correct matching rate under different Euclidean-distances in

Section IX .

As an example, assume that the education social attributes

of 100 users have equal weights, with four values (high school

with probability 0.3, B.S. with probability 0.4, M.S. with
probability 0.2, Ph.D. with probability 0.1). To increase the
entropy of the education attribute, the users with attribute value

‘high school’ randomly choose one of 0.3Δ 64-bit binary
strings from the range [1, 6 × 108], the users with attribute
value ‘B.S.’ randomly choose one of 0.4Δ 64-bit binary string
from the range [1.4× 109, 2× 109], and so on.

Attribute Chaining. A naive approach to communicate

attribute data to the server is to encrypt each user’s attribute

with the OPE after increasing their entropy and then send them

to the untrusted server. Since the encrypted attribute values

have the order relationships, the untrusted server can compare

the order relationships of each encrypted attribute value to

obtain the profile matching results (e.g., kNN matching [35],

MAX-distance matching [35]).
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However, although it is feasible to utilize the entropy-

increase technique above to increase the privacy of profile

matching, the ciphertexts still face the landmark node problem

as we mentioned in IV . After the big-jump mapping, the en-
coded attribute values will not have uniform distribution in the

message space, and accordingly, neither will the corresponding

ciphertexts. Thus, it makes easier for an untrusted server

to detect a landmark and to eventually obtain the plaintext.

Hence, after we increase the entropy of the attributes, they

are chained (i.e., combined) separately in random order. The

randomization is done to prevent an attacker from obtaining

the position of a specific attribute in the chain. Otherwise, the

attacker does not need to brute-force the entire attribute data

chain, but the specific string bits to obtain the attribute data

(which has smaller entropy than the entire data chain).

Note that we randomize the orders of profile attributes in

the chain and then the final chain is encrypted by OPE on the

mobile device before it is sent it to the server. The format of

the data message sent from user, U , to server, S, is as follows:

u→ S : IDu, h(Kup), EKup
(A′

1)|| . . . ||EKup
(A′

n) (3)

where Ekup is the OPE with the user’s profile key Kup,

A′
1, . . . ,A′

n is the entropy-increased attributes with random

order.

Profile Matching. In the profile matching step, the server
receives a profile matching query from user u and tries to
find the matching profiles for the interested user u. For this,
the server first filters the stored encrypted profiles based

on h(Kup), then measures the distance between the stored
encrypted profiles and the encrypted profile of the interested

user u.

Definition 4: The distance of user u and user v in the profile
matching process at the server is defined as follows:

d(u, v) =
d∑

i=1

O(A′(u)
i )−

d∑

i=1

O(A′(v)
i ) (4)

where O(A′(u)
i ) is the order of user u’s profile attributes A′(u)

i .

With the comparable attribute values, the untrusted server

can process profile matching using any matching algorith-

m (e.g., kNN matching and MAX-distance matching). For

instance, assume the users have two attributes: Gender and

Education. The message space is 60. Each user has a random-

order attribute chain. User A (Gender=0, Education=1) has

attribute chain 12|8, user B (Gender=0, Education=2) has

attribute chain 34|2, and user C (Gender=1, Education=3) has
attribute chain 50|48. Then, the order relationship in the server
among users is as follows: user A has order 20 in total, user

B has order 36 in total, and user C has order 98 in total. User

A’s profile is matched with that of user B.

Profile Verification. Assume that user u wishes to verify
whether user v’s identity and profile, which was matched
by the server, is similar to hers. In other words, the profile

is exactly matching under the same property-preserving key

and exactly from the user the query results shows. However,

user v does not want to reveal her profile attribute values.
The intuition behind our verification scheme is based on the

reversed fuzzy-commitment [36], where a commitment can be
opened using a set of witnesses, which is close to the original
encoded witness.

For profile verification, each user u owns a secret value su
generated by a random value generator. h : G → (0, 1)

∗
is

a one-way hash function and p is a generator of the cyclic
group G. To generate the authentication information ciphv ,

user v utilizes the profile key Kvp based on the profile Av to

encrypt the secret value, i.e., ciphv = EKvp
(psv ||h(psu·IDv )),

where E() is a symmetric encryption scheme (e.g., AES-256).
During the verification, user u, whose profile is close (i.e.,
‖ Au−Av ‖≤ θ, where θ is the threshold of the RS Decoder)
to that of user v, is able to decrypt user v’s authentication

information ciphv = ciph
(1)
v ||ciph(2)

v by her profile key Kup.

After obtaining the secret value psv , user v verifies whether

the equation h((ciph
(1)
v )IDv ) = ciph

(2)
v holds. If yes, the

profile matching result, which states that user v is a match, is
considered as trustworthy.

For instance, assume the users have four attributes: Gender,

Education, Interest 1 and Interest 2. User A has attribute chain

1|1|1|1, user B has attribute chain 2|2|2|3, and user C has

attribute chain 2|3|3|2. Let the threshold θ of the RS decoder
be 1, i.e., user B and user C with close Euclidean distance pro-

files will generate the same profile key kp1 while user A will

generate a different profile key kp2. When user B obtains the

authentication information ciphA and ciphC , she can decrypt

ciphC by her profile key kp1 and obtain t = psC ||h(psC ·IDC ).
User B checks (psC )IDC equal to the latter part of ciphC

after hashing. In that case, the authentication information of

user C is decrypted by user B, which will not be done in the

authentication information of user A, because psA ||h(psA·IDA)
is encrypted by a different profile key kp2 and cannot be

decrypted by user B’s profile key kp1 .

VII. SECURITY ANALYSIS AND PERFORMANCE

In this section, we first present the syntax of our scheme

S-MATCH. Then we show the secruity analysis of S-MATCH

by formally defining two attacks: the plaintext recovery under

ordered known plaintext attack and the plaintext recovery

under known key attack. Finally, cost analysis is given.

A. Syntax and Correctness

Definition 5: S-MATCH is a privacy-preserving

profile matching scheme for mobile social networks,

which consists of a tuple S − MATCH =
(Keygen, InitData,Enc,Match,Auth, V f).

• Key generation: Kup ← Keygen(Au). Keygen runs at
the client’s mobile device. The user’s profile data Au

is obtained from the profile interfaces of current social

networks providers.

• Initialize data: Mu ← InitData(Au). InitData runs on
the client’s mobile device, which takes the user’s raw
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Algorithm Keygen(Au)

1. T (u) ← RSD(Au, θ)

2. K′ ← H(T (u))
3. return Kup ← RSA−OPRF (K′)

Algorithm InitData(Au)
1. Initialize the social profile data by increase the entropy of
social profile dataset.
2. Chain the social profile data together with random order.
3. return Mu

Algorithm Enc(Mu)
1. return OPE.Enc(Kup,Mu)

Algorithm Match(v, C)
1. C′ ← EXTRA(h(Kvp), C)
2. C′ ← SORT (C′)
3. pos← FIND(v, C′)
4. return {pos− k

2
, pos− 1, ..., pos+ 1, pos+ k

2
}

Algorithm Auth(u)
1. return AES.Enc(Kup, p

su ||h(psu·IDu))

Algorithm V f(IDv, ciphv, u)
1. t← AES.Dec(Kup, ciphv)
2. parse t as two parts t1||t2
2. s′ ← h(tIDv

1 )
3. if(s′ == t2) then b← 1
4. else b← 0
5. return b

Fig. 3. The S-MATCH scheme.

profile data Au as input and outputs the newly computed

high entropy profile data.

• Encryption: Cu ← Enc(Mu). Enc runs OPE, the sym-
metric encryption scheme, on the client’s mobile device.

• Matching: R←Match(u,C). Match runs at the server
side to output k users with similar social profiles to

user u, with user u’s ID and the encrypted social profile
dataset as input.

• Authentication: ciphu ← Auth(u). Auth runs at the the
client’s mobile device which takes user u’s ID as input

and returns the authentication information ciphu.

• Verification: b ← V f(IDv, ciphv, u). Vf runs at the
the client’s mobile device which takes the authentication

information ciphv and user v’s ID as input and returns a
boolean b.

B. Security Analysis

Now, we formally define the plaintext recovery under or-

dered known plaintext attack (PR-OKPA) and the plaintext

recovery under known key attack (PR-KK) which become

more feasible given the information leakage problem and the

key sharing problem we mentioned in Section IV.

Definition 6: PR-OKPA security game. The security game

between a user u and an adversary S proceeds as follows:

(1) The user u chooses the key k ← K.

(2) The user u and the adversary S engage in a polynomial
number of rounds of interaction to recover plaintext M of the

ciphertext C. At round i,

• The adversary S obtains the plaintext-ciphertext pairs

(Mi, Ci).
• The adversary leads the interaction for the ordered search

in the server, with the adversary S observing all the states
of the server.

(3) The adversary S outputs M ′, its guess for the plaintext
of ciphertext C.

We say the adversary S wins the game if its guess is correct
(M ′ = M). Let AdvPR−OKPA

S−MATCH(S) be the value indicating the
success of the adversary in the above game.

Theorem 1: A profile matching scheme based on OPE is

PR-OKPA secure if for all adversaries S AdvPR−OCPA
S−MATCH(S) =

ln (2e−2)+0.577
2e−1(2e−1) ≤ 1

2κ , where κ is the security level parameter,
and e is the entropy of the plaintext.

Definition 7: PR-KK security game. The security game

between a user u and an adversary S proceeds as follows:

(1) The user u colludes with an adversary S by sharing his
profile key Kup.

(2) The user u and the adversary S engage in a polynomial
number of rounds of interaction to recover plaintext M of the

ciphertext C. At round i,

• The adversary S hashes the Kup as the index.

• The adversary leads the interaction for the ordered search

in the server, with the adversary S observing all the states
of the server.

• The server returns the ciphertexts {C}.
(3) The adversary S outputs {M ′}.
We say the adversary S wins the game if its guess is

correct ({M ′} = {M}). Let AdvPR−KK
S−MATCH(S) be the value

indicating the success of the adversary in the above game.

Theorem 2: A profile matching scheme based on OPE is

PR-KK secure if for all adversaries S AdvPR−KK
S−MATCH(S) =

m
N , where m is the number of users whose profiles are close

(i.e., ‖ Au − Av ‖≤ θ) to user u, N is the number of users

and m
 N .

For the honest-but-curious server and honest-but-curious

user (Section V-B), during the profile matching, only the order-

preserving encrypted profiles will be submitted to the server.

In other words, the server obtains nothing but the order of

the plaintexts. With the entropy of users’ profile attributes

increased to a configurable value based on the security level,

the scheme is PR-OKPA secure. For instance, to achieve the

security level of 80, the entropy can be configured to 64 bits.

Namely, even though the untrusted server obtains the order of

the plaintext encrypted with OPE, it cannot obtain the exact

values of users’ profile attributes. Hence, our profile matching

scheme is PR-OKPA secure against the honest-but-curious

server.

Also, an honest-but-curious user is not able to obtain the

profiles or network information of others because they do
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not communicate with each other directly. Additionally, the

communication messages between the user and the server are

protected from eavesdropping and modification by other users,

because of the secure communication channel. During the

results verification, the authentication information cannot be

cracked by the honest-but-curious server or honest-but-curious

user, because the verification scheme utilizes the user’s secret

value su and the profile keyKup to generate the authentication

information. Assuming that the secret value su is generated
randomly and uniformly, the complexity to obtain su from the
ciphu is as hard as the computational Diffie-Hellman problem,

which, as far as we know, cannot be solved in polynomial

time in the proper group (e.g., the subgroup of quadratic

residues). Consider the collusion between a user and the server,

S-MATCH is PR-KK secure, which indicates that the profile

leakage only happens among the users whose profiles are close

(i.e., ‖ Au −Av ‖≤ θ) to this honest-but-curious user.

For the malicious server, it is impossible for the server

to fake the profile matching results. This is because in the

verification technique we proposed, each user is required to

submit the authentication information ciphv for the profile

verification. If the server wants to alter ciphv to fake the profile

matching result, the server must obtain the user’s profile key,

which is impossible except for the collusion with the users.

Also, the hash function h() is assumed to be one-way and
collision resistant, so the malicious server cannot reverse it

to obtain the secret value. Therefore, our technique defends

against an honest but curious server, honest but curious user, as

well as a malicious server (that alters profile matching results).

C. Cost Analysis

(1) Computation cost: For the mobile user, it takes O(d)
operations to increase the entropy and chain the attributes,

O(MN) operations for OPE, where M is the plaintext length

and N is the ciphertext length. d + 2 hash operations and

2 modular exponentiations are for profile key generation. One
symmetric encryption operation and one symmetric decryption

operation are needed for the verification protocol with profile

key kup. For the server, it takes O(|V |log|V |) operations for
sorting the users profile information, and O(log|V |) operation
for searching, where |V | is the number of users under the same
profile key.

(2) Communication cost: Communication is only between
the server and the users. Users do not exchange information

among themselves. To bootstrap the profile matching, users

send their high-entropy profile information along with the

authentication information, i.e., lid + lh + lciph +d · nN
M , where

lid is the length of the user ID, lh is the length of the hashed
profile key as index, lciph is the length of the authentication

information, n is the plaintext size of the profile attribute and
d is the number of the profile attributes. After obtaining the
query request and conducting the profile matching, the server

return the k profile matching results with the corresponding
authentication information, i.e., k(lid + lciph), where k is

the number of the profile matching results, lid is the length

of the user ID and lciph is the length of the authentication

information.

VIII. IMPLEMENTATION

In this section, we present the implementation of S-MATCH

client on an Android phone and S-MATCH server on a PC.

Framework. The S-MATCH client was implemented as an
Android application on HTC Nexus One smartphone, and S-

MATCH server was implemented on a PC. The HTC Nexus

One smartphone has 1 GHz QSD8250 processors running

Android 2.1 platform. The PC had two 3.10 GHz Intel Core

i5-2400 processors running the Linux 3.5 kernel.

Communication. The HTC Nexus One communicates to the
PC over an 802.11n 53Mbps WiFi connection. The application

instances set up a communication channel via SSL socket

using JAVA libraries, and the packages are sent with the mode

Encrypt-then-MAC.

Key Generation. We implemented RS decoder proposed in
[32]. We used RSA in the javax.crypto package to implement

the RSA-OPRF scheme as an instance of the oblivious pseudo-

random function.

Encryption. The OPE, as the instance of the PPE, was
implemented in JAVA, based on the C++ code from [37]. As

the ciphertexts are outsouced in the server, the ciphertext range

in OPE is set as the same as the plaintext range. Based on the

controlled trial in [8], the Paillier homomorphic cryptosystem

is used as the instance of the homomorphic encryption,

Verification. In the verification scheme, AES in CTR mode
with random IV was utilized for symmetric encryption and

decryption. The generator p is generated from the BigInteger

class in JAVA. SHA2 was used as the hash function.

IX. PERFORMANCE EVALUATION

In this section, we present an evaluation of the validity and

efficiency of our scheme, S-MATCH, using three real-world

datasets (Infocom06 [26], Sigcomm09 [27], and Weibo [28])

under a real testbed. In particular, we answer the following

questions:

• (information leakage) How does our technique increase

entropy for various plaintext sizes? How close is our

technique to perfect entropy?

• (correctness) What is the true positive rate (correct

matching rate) of the profile matching as the RS Decoder

threshold varies?

• (computation cost) How do the client and the server com-
putation costs of S-MATCH compare to a representative

technique based on homomorphic encryption (homoPM

[8]) in a real testbed?

• (communication cost) How dose the communication cost
of S-MATCH compare to a representative technique

based on homomorphic encryption (homoPM [8]) in a

real testbed?
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Fig. 4. Entropy of the three datasets after applying our technique are indicated in Fig. 4(a). The true positive rate of the profile matching are indicated in
Fig. 4(b). The user computation cost under three datasets are shown in Fig. 4(c), 4(d) and 4(e).

A. Information Leakage

Figure 4(a) shows the entropy of the Infocom06, Sig-

comm09 and Weibo datasets after the entropy increase and

the attribute chaining, compared with that of the perfect

entropy (theoretical limit). Overall, the entropy of the original

data increases as the plaintext size k increases. With the

increase of the bit size for profile attributes, the entropy

increasing step generates more one-to-N mappings and log Δ
increases. Moreover, with the attribute chaining, the attribute

value distribution among the message space becomes more

uniform, which will also increase the entropy. Compared to

the Infocom06 and Sigcomm09 datasets, the Weibo dataset

has more profile attributes and users, which has larger original

entropy. Similar to the Infocom06 and Sigcomm09 datasets,

the increment of entropy after chaining becomes larger with

the increase of the plaintext size k. As with more users and
attributes, the increment of the entropy becomes slower when

the plaintext size is small. However, when the plaintext size

becomes larger, the rate of entropy increase grows faster.

Therefore, the attribute data processed after entropy increase

and attribute chaining is more suitable for PPE, which increas-

es the security of PPE to protect from PR-OKPA.

B. Correctness

To evaluate the correctness of the profile matching of S-

MATCH, we measured the true positive rate (TPR) of the

profile matching results under various RS Decoder thresholds

to generate the profile key. TPR indicates the proportion of

true cases that are correctly found. The formal definition of

TPR is as follows:

TPR =
True Positive

True Positive+ False Negative
. (5)

Figure 4(b) shows the TPR of the profile matching results
under different RS Decoder thresholds in Infocom06, Sig-

comm09 and Weibo datasets. The number of query results

is set to 5, and the plaintext size is set to 64. For θ = 8,
our profile matching scheme has a correctness of 97.2%,

95.8% and 93.0% in the Infocom06 dataset, Sigcomm09

and Weibo dataset respectively. We can see that the TPR

goes down as the RS Decoder threshold increases. This is

caused by the correction threshold when implementing the

RS decoding algorithm. For higher TPR, the Guruswami and

Sudan algorithm [34] can be utilized to implement the RS

decoding algorithm. Moreover, with the smaller RS Decoder

threshold, the difference of the profiles under the same profile

key is small, which helps the big-jump mapping in the entropy

increase part have better performance. Another important

observation is that the TPR of the profile matching decreases

slightly in the Weibo dataset, which is caused by the fact

that the Weibo dataset has more attributes which affect the

performance of the big-jump mapping in the entropy increase

part to distinguish the difference of the attributes.

C. Computation Cost Analysis

To evaluate the performance of our scheme, we measured

the computation cost of S-MATCH under the Infocom06,
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Fig. 5. The server computation cost under three datsets are shown in Fig. 5(a), Fig. 5(b) and Fig. 5(c). And Communication cost of S-MATCH under three
datasets are shown in Fig. 4(c), Fig. 4(d) and Fig. 4(e).

Sigcomm09 and Weibo datasets in our mobile device and

PC testbed. Figure 4(c), 4(d) and 4(e) present the client side

computation cost of our scheme (i.e., PM and PM+V) in

comparison to that of homoPM [8] under three real-world

datasets. As the size of plaintext increases, the encryption

time and data processing time of both schemes increase. In our

profile matching scheme with the verification technique, when

the plaintext size is small, the computation cost of the client

side mainly comes from the key generation, which is relatively

stable as the plaintext size increases. In the key generation, RS

Decoder algorithm and RSA-OPRF algorithm are run, which

take two modular exponentiations. As the plaintext size in-

creases, the computation cost of the privacy-preserving profile

matching scheme becomes larger, which is much less than

that of the profile matching scheme based on homomorphic

encryption. When the plaintext size is larger than 256 bits in

the three social network datasets, the computation cost of our

scheme is much less than that of those based on homomorphic

encryption. With the plaintext size increases, the advantage of

our scheme’s lower computation cost becomes more obvious.

Figure 5(a), 5(b) and 5(c) presents the server computation

cost of our scheme (i.e., PM) in comparison to that of homoPM

[8] under three real-world datasets. Different from the PPE

schemes, homomorphic encryption implemented by Paillier’s

cryptosystem [18] needs additional modular multiplication

operations in the server after encryption to make the ciphertext

comparable. In that case, the computation cost of homoPM

includes an offline computation cost (i.e., encryption, which

each user can process independently) and an online compu-

tation cost (i.e., a modular multiplication operation on the

ciphertext, which makes the computation cost increase by the

size of users and causes the latency in the query response).

With a large real-world social network dataset and plaintext

size, the profile matching based on PPE is more advantageous

than homomorphic encryption. This is mainly due to the

server computation cost of homomorphic encryption, where

the computation cost of the multiplication increases with the

increase of users and the attributes. Also, the attribute values

encrypted by the Euclidean-distance close profiles key will

further help to filter the dataset and reduce the search range,

which also increases the performance.

D. Communication Cost Analysis

To evaluate the performance of our scheme, we measured

the communication cost of S-MATCH under the Infocom06,

Sigcomm09 and Weibo datasets between the mobile device

and PC.

Figure 5(d), Figure 5(e) and Figure 5(f) present the commu-

nication cost of our scheme (i.e., PM and PM+V). To evaluate

the communication cost, the user ID length is defined as 32
bits, the number of the query results is 5, and N = M , where

M is the plaintext length and N is the ciphertext length. In

our scheme, the communication only happens between the

untrusted server and the users. In other words, the packages

to exchange the encrypted attribute values and the profile

matching results is the main communication between them.

The verification protocol introduces additional communication

cost of the authentication information between the users and
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the server. As Figure 5(d), Figure 5(e) and Figure 5(f) indicate,

the difference between the curve of PM and PM+V is the com-

munication cost of the authentication information. Moreover,

the communication cost under Weibo dataset is larger then

that of Infocom06 dataset and Sigcomm09 dataset because of

the larger number of the attributes. As the evaluation results

indicate, our scheme is feasible for the low-bandwidth case.

X. CONCLUSION AND FUTURE WORK

In this paper, we presented a privacy-preserving profile

matching scheme in large scale mobile social networks. Our

scheme is based on property-preserving encryption (PPE). We

proposed a key generation scheme for PPE to protect from

the key-sharing problem when the user and the untrusted

server collude. Also, we showed that entropy increase of

social attribute data is necessary in PPE to achieve the privacy

needed for the social profile matching process. For this, we

evaluated the security of PPE over three real-world datasets.

We analyzed the information leakage in the PPE schemes.

A verification protocol was also proposed for users to verify

the profile matching results, but learn nothing about other

users’ profile attributes. Finally, we showed that our scheme

provided privacy and verification guarantees while achieving

good performance in real-world social attribute datasets. The

evaluation results indicated the efficiency and validity of our

schemes. In our future work, we will further improve our

scheme by increasing the efficiency of OPE. We plan to design

our own OPE scheme which is able to choose the length of

keys adaptively based on the entropy of social attributes.
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