
Secure SOurce-BAsed Loose Synchronization
(SOBAS) for Wireless Sensor Networks

A. Selcuk Uluagac, Senior Member, IEEE, Raheem A. Beyah, Senior Member, IEEE, and

John A. Copeland, Fellow, IEEE

Abstract—We present the Secure SOurce-BAsed Loose Synchronization (SOBAS) protocol to securely synchronize the events in the

network, without the transmission of explicit synchronization control messages. In SOBAS, nodes use their local time values as a one-

time dynamic key to encrypt each message. In this way, SOBAS provides an effective dynamic en-route filtering mechanism, where

the malicious data is filtered from the network. With SOBAS, we are able to achieve our main goal of synchronizing events at the sink

as quickly, as accurately, and as surreptitiously as possible. With loose synchronization, SOBAS reduces the number of control

messages needed for a WSN to operate providing the key benefits of reduced energy consumption as well as reducing the opportunity

for malicious nodes to eavesdrop, intercept, or be made aware of the presence of the network. Albeit a loose synchronization per se,

SOBAS is also able to provide 7:24 �s clock precision given today’s sensor technology, which is much better than other comparable

schemes (schemes that do not employ GPS devices). Also, we show that by recognizing the need for and employing loose time

synchronization, necessary synchronization can be provided to the WSN application using half of the energy needed for traditional

schemes. Both analytical and simulation results are presented to verify the feasibility of SOBAS as well as the energy consumption of

the scheme under normal operation and attack from malicious nodes.

Index Terms—Secure loose synchronization, secure time synchronization for wireless sensor networks, SOBAS, wireless sensor

networks, sensor-based cyber-physical systems

Ç

1 INTRODUCTION

IN this paper, we address the secure synchronization
problem for WSNs. Current secure time synchronization

protocols for wireless sensor networks (WSNs) send
separate synchronization messages and utilize reference
points, global positioning systems (GPSs), and static
pairwise key-based cryptographic mechanisms to ensure
that the clocks of each sensor device are securely globally
synchronized (i.e., every device has the same clock value).
In addition to being costly in terms of energy consumption,
these control messages (albeit necessary for their schemes)
used in traditional protocols make them difficult to deploy
in situations where it is required that the radio frequency
(RF) footprint of the communicating devices be minimal
(e.g., military sensor networks). In fact, many wireless
sensor network applications are event-based and centrally
controlled (e.g., critical infrastructure monitoring, video-
surveillance, and patient-data collection), and do not
necessarily need to maintain perfect synchronization of all
the nodes in the network. Instead, it must be guaranteed
that the event reports generated by the nodes are ordered
properly prior to exiting the sensor network (i.e., loose

synchronization). Assume, for instance, the military sur-
veillance application in Fig. 1. The most valuable piece of
information to the headquarters is that the enemy unit
intruded the protected zone and is advancing South-West.
In this case, the proper ordering of events can be achieved
by synchronizing the sink with each source, and does not
require that each sensor’s clock be globally synchronized.
In fact, an accurate knowledge of event ordering may
generally suffice for many WSN applications, where the
centralized decision authority (not sensors) acts swiftly on
the information collected from the network. Second,
because the communication cost is the most dominant
factor in a sensor’s energy consumption [1], [2], if the
synchronization control messages in the network are
eliminated as opposed to current “chatty” schemes, some
of the energy savings from transmission cost can be utilized
for the computation of local security operations.

Therefore, motivated by the downside of current
schemes and considering the event-based characteristics of
WSN applications [3] and the resource-limited nature of
sensors [4], we propose the Secure SOurce-BAsed Loose
Synchronization protocol. Essentially, SOBAS is an energy-
efficient protocol for WSN applications that do not need
perfect synchronization. SOBAS presents an effective
technique to securely synchronize the data path in the
network, without the transmission of explicit synchroniza-
tion control messages. Instead of synchronizing each sensor
globally as opposed to approaches providing perfect
synchronization, we focus on ensuring that each source
node is synchronized with the sink and nodes along the data
delivery path such that event reports generated by the sink
are ordered properly.

With SOBAS, we are able to achieve our main goal of
synchronizing events loosely at the sink and at the data

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 4, APRIL 2013 803

. A.S. Uluagac and J.A. Copeland are with the Communications Systems
Center, School of Electrical and Computer Engineering, Georgia Institute
of Technology, 266 Ferst Drive, Atlanta, GA 30332-0765.
E-mail: selcuk@gatech.edu, john.copeland@ece.gatech.edu.

. R.A. Beyah is with the Communications Assurance and Performance
Group, School of Electrical and Computer Engineering, Georgia Institute of
Technology, Klaus Advanced Computing Building, 266 Ferst Drive,
Atlanta, GA 30332-0765. E-mail: rbeyah@ece.gatech.edu.

Manuscript received 12 May 2011; revised 18 Nov. 2011; accepted 26 May
2012; published online 6 June 2012.
Recommended for acceptance by S. Gupta.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2011-05-0301.
Digital Object Identifier no. 10.1109/TPDS.2012.170.

1045-9219/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society
Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:09:39 UTC from IEEE Xplore. Restrictions apply.

delivery path as quickly, as accurately, and as surrepti-
tiously as possible. SOBAS is perfectly suitable for WSN
applications that do not need perfect synchronization and it
is able to provide 7:24 �s clock precision on the data
delivery path given today’s sensor technology. Simulation
results show that SOBAS is an energy efficient scheme
under normal operation and attack from malicious nodes.
In addition to being suitable for the applications where the
centralized decision authority acts on the information
collected from the network, our novel approach to
synchronization with dynamic en-route filtering is also
well suited for both WSNs and sensor-based CPS applica-
tions where utmost silence is necessary (e.g., military
scenarios), as SOBAS is not “chatty.” For instance, radio
silence is very important for military operations as any
radio transmission may reveal troop positions; so, restric-
tive EMCON1 orders may be in effect [5], [6].

The paper proceeds as follows: an overview of SOBAS is
given in the following section. The protocol architecture is
presented in Section 2. Time uncertainty associated with
using local clocks is analyzed in Section 3. A performance
evaluation with simulations and a comparison with other
schemes is presented in Section 4 and in Section S1, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPDS.2012.
170, respectively. Related work is discussed in Section S2,
which is available in the online supplemental material.
Finally, Section 5 concludes the paper and gives the future
work. Note that a preliminary conference version of this
manuscript was presented at [7] and major differences from
it are discussed in Section S2, which is available in the
online supplemental material.

2 PROTOCOL ARCHITECTURE

There are three main components of the SOBAS protocol:
Time-Based Key Management (TKM), Crypto (CRYPT), and
Filtering-Forwarding-Synch (FFS) Modules. The relevant
modules are explained below in the order they function in
the SOBAS and the notations used are tabulated in Table 1,
which is available in the online supplemental material.

2.1 Threat Model and Assumptions

Source nodes are synchronized and loaded with a network-
wise initialization vector (IV) predeployment. The IV and
local time information will be used to generate the initial
and subsequent dynamic keys. Note that the sensor nodes
do not have perfect clocks and over time the sensors’ clocks
gradually diverge from the real clock value due to changes
in the environmental conditions such as temperature,
humidity, pressure, and vibration. In the worst case, they
can accumulate up to several seconds of error per day [8].
Thus, the dynamic keys generated in SOBAS will change as
a function of time and random drift. As such, the same
event reported by different sources located nearby or
separate events reported by different sources located
elsewhere in the deployment region use different keys. In
fact, this is an instrumental property, which we refer to as a
Spatio-Temporal Security Property for WSN applications.
Also, SOBAS does not incur a cost to discover which keys
are shared between any two neighboring node (shared-key
discovery phase [9]) via explicit messages because the
nodes use the local time information to create the dynamic
keys. Nonetheless, using real clocks requires designing both
a flexible and an error-cognizant scheme that would
compensate for drifting clocks. This issue is investigated
more in Section 3. Similar to [10], [11], [12], [13], [14], [15],
we mainly consider the false injection and eavesdropping of
messages from an outside malicious node; hence, the
insider attacks are outside the scope of this work
(i.e., compromise of nodes is not considered). The security
mechanisms against such attacks are referred to as dynamic
en-route filtering systems in the literature [16]. Our rationale
for considering this type of security mechanism is that they
are effective methods for resource-constrained devices like
wireless sensor networks as the malicious data is immedi-
ately filtered out from the network before propagating too
much in the network, hence also helping save in energy.
Moreover, we assume that attacks on clocks (e.g., pulse-
delay (replay)) are detected by the extra delay they will
introduce into the network as in [10], [17], [18].

The sink is the ultimate terminating point and decision
maker. Nodes are statically deployed with the same com-
munication ranges and more resources are available to the
sink. Finally, the report (packet) size exchanged between the
nodes is assumed to be fixed. The sink is perfectly
synchronized with the outside world (e.g., via GPS). Regular
sensors do not utilize GPS. Although, for some applications it
may be necessary to utilize a GPS receiver on-board the
sensor device, our rationale for not utilizing it is as follows:
first, mounting a GPS receiver on a regular sensor requires the
sensor to operate in two different frequencies: one is in the
ISM band (i.e., 2.4 GHz) for the regular sensor communica-
tion, the other is in the L band (i.e., 1575.42 MHz (L1)) for the
communication with MEO (Medium-Earth-Orbit) satellites
[19]. Regular periodic transmissions to satellites will increase
the cost of communication and, hence, the energy consump-
tion [20]. Second, one of our design goals is to minimize the
electronic emission footprint as much as possible to decrease
the likelihood of detection by an adversary. Last, there may be
environments (e.g., under water) where traditional radio-
based GPS receivers would not work [21], [22].

In SOBAS, our main goal is to loosely synchronize and
order events at the sink as energy-efficient, precise, and
surreptitious as possible to reduce the likelihood of

804 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 4, APRIL 2013

Fig. 1. An example military surveillance application.

1. EMCON: “The selective and controlled use of electromagnetic,
acoustic, or other emitters to optimize command and control capabilities
while minimizing, for operations security: 1) detection by enemy sensors;
2) mutual interference among friendly systems; and/or 3) enemy
interference with the ability to execute a military deception plan” [5].

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:09:39 UTC from IEEE Xplore. Restrictions apply.

interception by an adversary. However, unlike [10], [11],
[17], our goal is not to provide pairwise synchronization
among the nodes.

2.2 Time-Based Key Management Module

In SOBAS, keys are generated dynamically using local time.
This is addressed in the Time-Based Key Management
module. When a source node has data to send to the sink
due to either an external stimulation by the sink [23] or a
self-initiated periodic report, it uses its local clock value as
the key. However, the TKM module ensures that keys
generated in the module are as random as possible as
explained below. Specifically, the keys are a function of the
current local time value (tl) and either an initialization
vector (IV) or previous key, Kj�1 as

Kt
1 ¼ F ðtl; IV Þ; ð1Þ

Kt
j ¼ F ðtl;Kj�1Þ; ð2Þ

F ¼ GðDif; Re=hÞ; ð3Þ

where G is a function of Re=h and Dif . Re=h is the operation
of either encryption or hashing whileDif is the diffuser. The
purpose of Dif is to diffuse the bits of XORed tl and Kj�1

with s-bit left circular shift operation before Re=h as follows:

Dif ¼ ðKj�1 � tlÞ � s: ð4Þ

The amount of shift, s, is determined by

s ¼ l � nþ n; n ¼ 0; 1; . . . ; log2sizeðKÞ � 1; ð5Þ

where K and l denote the desired key size and the size of
the timer/counter in bits for the microcontroller (e.g.,
ATmega 1281 [24]) employed by the sensor node. In
essence, both Dif and Re=h in F are mainly utilized to
increase the randomness of bits in the key, K, generated via
(4) as subsequent readings from the timer may not change
enough bits or may exhibit predictable patterns for
malicious entities (e.g., differential cryptanalysis). The
details of the generic F function is depicted in Fig. 2. It is
possible to design Re=h using stream ciphers (e.g., RC4),
cryptographic hash functions (e.g., MD5), or message
digests using block ciphers [19], [25]. In SOBAS, the TKM
module internally adopts 128-bit RC4 [19], [26]. Note that
the purpose of F is to generate a key as random as possible
with available cryptographic algorithms by considering
their suggested precautions (e.g., at least 128 bits with RC4,

no clear exchange of IVs, etc [19], [26]) as of this writing
today. Notwithstanding, the effort of different class of
adversaries in brute-forcing the key is analyzed in Section 4.

In order to understand how the scheme works, consider
a simple scenario in Fig. 3 and the key-derivation operation
in Algorithm 1. In the figure, the source node is N1, and the
forwarder nodes N2, and N3 are on the path to the sink
that the report by N1 will traverse. Note that N1 inserts a
copy of its ID and a local counter value inside the packet
sent to the sink. The counter serves as a protection against
replay attacks. It is increased each time a packet is sent
from the source. The packet structure is illustrated in Fig. 4.
The ID is used to verify the integrity of the packet by
comparing the decrypted copy of it inside the packet (line
23 in Algorithm 1) with the clear value of it. As in Fig. 3, N1
uses its local clock value 18 to generate the key. This key is
used by the CRYPT module to perform the desired cryptic
operations depending on the security service (e.g., encryp-
tion, authentication, integrity) provided by the WSN
application. When N2 receives the report from N1, it tries
to find the value of the time at N1 using Algorithm 1. First,
N2 subtracts the approximate packet flight time
(� ¼ �þ � þ ’þ ") between itself and N1 from its local
time (lines 4-6 in Algorithm 1) to be closer to the local time
at N1, where � is the propagation time, � is the packet
transmission time, ’ is the packet processing time, and " is
the approximation of errors for variability in transmissions
due to fading, obstructions, and software errors, etc.2 Also,
in order for forwarder nodes to find the local clock value at
the source node easily, all nodes are associated with a
window of values, which we refer to as the tick window,
(Tw) and a tick value (�). Thus, N2 will try all values inside
its tick window beginning from its local clock value. Once
N2 finds the correct key value associated with the time at
N1 (line 24 in Algorithm 1), using the found key, it will be
able to compute the time offset from the sender. However,
to combat against counterfeit values and to ensure a
forwarder node does not futilely attempt to brute-force all
time-based keys, a threshold value (thresHold in Algo-
rithm 1) is associated with each node’s Tw. Note that proper
choice for the size of the Tw depends on, among other
parameters, � and it is explained more in the next section.
Moreover, two operational modes for the TKM module
are available in SOBAS for incoming packets. The first
mode, which we refer to as Stateless Mode, essentially
governs the procedures explained above. Alternatively, the
second mode, Stateful Mode, is able to provide further
savings from the computation with a small increased

SELCUK ULUAGAC ET AL.: SECURE SOURCE-BASED LOOSE SYNCHRONIZATION (SOBAS) FOR WIRELESS SENSOR NETWORKS 805

2. A realistic analysis of the uncertainty associated with errors is
presented in the next section.

Fig. 2. Key generation in F function and encryption.

Fig. 3. An example illustration of packet delivery path with ticks.

Fig. 4. SOBAS packet structure.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:09:39 UTC from IEEE Xplore. Restrictions apply.

storage cost. Specifically, in the stateful mode, a receiver
sensor can have a table for each sender sensor, where
individual offset values for each sender is recorded. The
next time the sensor receives a packet from the same
sender, it will have a tick window (Tw) centered around
the associated offset value for this sender. This makes the
effort of the receiver easier when it tries to find the correct
key for the sender. In the stateful mode, a sensor also
remembers a previously seen malicious node.

2.3 Crypto Module

The CRYPT module addresses the security part of SOBAS.
The CRYPT module obtains the dynamic key from the TKM
module and performs the necessary security service. This is
also the module where the key from the TKM is verified. If
the key value received from the TKM module is not correct
then a new key is obtained from the TKM module. This
process continues until the correct key is found or the
packet is marked as malicious to be discarded in the
filtering-forwarding-synch module when all attempts to
find the correct key are exhausted within the tick window,
(Tw) (line 9 in Algorithm 1. The CRYPT module incorporates
the RC4 algorithm into its body as the encryption mechan-
ism. The rationale for choosing RC4 is due to its proven
lightweight computational energy consumption on sensors
[27], [28]. The risk of differential cryptanalysis is eliminated
since a new key is used as input for each RC4 block [19].
Nonetheless, it may be still possible for an attacker to
discover the key based on the first few bytes of the
ciphertext (C in Fig. 2) [29]. Hence, to avoid that possibility,
768 bytes of the C, which is illustrated by Pdummy (known
only by legitimate sensors)3 and D in Fig. 2) are discarded
as suggested by Mironov [30]. However, an adversary can
always brute-force the keys and the effort of such an
adversary is analyzed in Section 4. Note that since the key is

generated in another module, any desired encryption
(e.g., AES, 3DES), authentication, or integrity mechanism
(e.g., HMAC, CMAC) can be implemented together or
separately depending on the security service desired from
the WSN application. After the correct value of the key used
by the sender is determined by the current node, the offset
value for the sender node is stored by the current node.

Three operational modes exist in the CRYPT module to
determine how to forward the incoming packet. In the first
mode, No-reEnc mode, the original incoming packet is
forwarded to the upstream node without any re-encryption
whereas in the second mode, Full-reEnc mode, the incoming
packet is forwarded to the upstream node after re-
encryption with the key associated with the local time at
the receiver node. For Full-reEnc mode, the forwarder node
uses its current local clock value and Kj�1 value to create a
new key when re-encrypting the incoming packet. Also in
this mode, a forwarder node synchronizes itself loosely
with the source as explained in the next module (FFS
Module). Note that the advantage of the No-reEnc mode is
one encryption computation, hence energy is saved by
forwarding the original packet. However, if the current
forwarding node is located too far away from the source
node, the forwarding node may classify a healthy incoming
packet as malicious. Specifically, this case occurs if the time
difference between the local times of the source and the far-
away node is bigger than the total time covered with Tw � �.
Nonetheless, this is not an issue for Full-reEnc mode because
the forwarder nodes refresh the key used to encrypt the
forwarded packet. Finally, the third mode is referred to as
Selective-reEnc (S-ReEnc) mode, where packets are selec-
tively re-encrypted over some nodes along the data delivery
path while these nodes are also loosely synchronized with
the source as in Full-reEnc. Note that this mode is
specifically introduced in SOBAS to solve the problem of
classifying a healthy incoming packet as malicious
(i.e., false-positive) that may occur in the No-reEnc mode.
Moreover, in Full-reEnc and Selective-reEnc modes, re-
encrypting the packets using new keys essentially refresh
the keys. Eventually, in all the modes when the sink
receives the report along the path, it also goes through the
same intelligent key-finding procedure as forwarder nodes.

2.4 Filtering-Forwarding-Synch Module

The FFS module filters the incoming packet out of the
network if it is classified as a bad packet by the CRYPT
module or otherwise forwards it to the upstream nodes. In
SOBAS, this module is also responsible for the synchroniza-
tion process of the forwarder node with the source node
along a data delivery path toward the sink with the Full-
reEnc or Selective-reEnc modes of operation. At this module,
the forwarder node gets the source’s local clock value from
the CRYPT module and updates its local clock value
accordingly. For instance, in Fig. 5, all nodes along the path
to the sink update their clock values. Therefore, a source-
centric synchronization path is established up to the sink.
The next time a packet from the same source travels over the
same path, the nodes can put less effort in finding the proper
time-based key. Note that in Full-reEnc all the nodes along
the path do the aforementioned operations whereas in
Selective-reEnc only a certain fraction of the nodes (e.g., every

806 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 4, APRIL 2013

3. In fact, any value in lieu of Pdummy that is common to nodes can be
used as long as suggestions in [30] are considered.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:09:39 UTC from IEEE Xplore. Restrictions apply.

third node) along the path do the operations. Hence, Full-

reEnc provides “full path synchronization” while Selective-

reEnc provides “partial path synchronization” and end-to-
end synchronization along a data delivery path. Eventually,
when the sink receives the report along the synchronization
path, it will be able to see how much a particular source has
diverged from the real clock value by extracting the key
associated with the time at the source. Note that for this, the
sink also goes through the same intelligent key-finding
procedure as forwarder nodes. Hence, the sink calculates
�i ¼ tr � ðti þ

P
h �Þ, with tr being the real clock and h

being the hop length while �i and ti denoting the time offset
from source i and local time at source i, respectively. Thus,
since nodes are synchronized prior to deployment, the sink
can correct the timing of the reports coming from a
particular source.

The synchronization described above synchronizes only
one path according to a source (one synch path). However,
in reality there are more synch paths because there may be
more than one source in the deployed region and they may
be reporting the same event to increase the accuracy of the
reports at the sink [3]. Moreover, any node can be a
forwarder and a source at the same time. We also note that
there may be more than one sink collecting data from the
sensors in the region. SOBAS handles the presence of
multiple synch paths natively. It simply adheres to the logic
of the synchronization of one path. In other words, when all
the forwarder nodes receive a report from a source, or from
another forwarder node, they simply forward the report
directly or first synchronize themselves with the sender and
then forward the report, depending on if they do the re-
encryption operation or not. The advantage of this approach
is that only one value is tracked. Since the sink(s) has more
resources available, it can have a database of clock values
for each sensor and their difference from the real clock. It
can properly order any report from any source in the
network using the � values associated with sources. The
events received by the sink are placed in their proper order
before leaving the sink for other networks. The case of
multiple synch paths is illustrated in Fig. 5.

2.5 Summary of Operational Modes

Six different combinations of the operational modes exist in
SOBAS depending on whether all (P-Synch) or some of the
nodes along the data delivery path or only the end-to-end
nodes (the source and sink) (E2E-Synch) are loosely
synchronized and whether the nodes utilize memory
(stateful) or not (stateless). These modes and tradeoffs
associated with each mode are summarized briefly and
illustrated in the kiviat diagram in Fig. 6.

3 TIME UNCERTAINTY

Uncontrolled environmental conditions such as changes of
temperature, humidity, pressure, and sudden vibrations in
the deployment area cause internal clocks to gradually
diverge from the real clock. Moreover, channel access time
(at the medium access control layer) and send-time (includ-
ing the time for preparing the packet at the application layer
and passing it to the lower layers), can be considered as
contributing to the unpredictable clocks [10]. In SOBAS, the
environmental factors are captured with the parameter �,
which is the daily value of the drift per sensor given a
deployment area, while the software-based factors are
captured with ". We adopt the values reported in [8], [10],
[17], and [18] for " and �. Deterministic factors, on the other
hand, depend on more predictable parameters. In SOBAS, as
in [10] and [18], these include the transmission time of one
packet (�), the propagation delay (�), the packet processing
time (’) (e.g., due to cryptographic operations), and the
average period of data from sensors (�). The SOBAS
uncertainty parameters used in coping with nondeterminis-
tic and deterministic factors are summarized in Fig. 7.

In SOBAS, the effect of all the factors are captured by the
tick window, Tw, and it is the most significant parameter in
dealing with the uncertainty in SOBAS. It provides a
window of time values. However, even though the SOBAS
protocol is designed with flexible Tw, a quantitative analysis
is still needed. Therefore, in this section, first an analytical
model is presented to investigate the relationship between
the size of Tw and the tick value (�). Then, a realistic Tw
value is derived considering the capabilities of today’s
wireless sensor devices. With its current treatment of the
uncertainty, the SOBAS protocol is conceived as a software-
based solution consorting with other approaches and
suggestions in the literature [17], [18], [31].

3.1 The Choice of Tick Window Tw
As briefly mentioned previously, the tick window Tw is
available for the receiver node to choose from to decrypt the
received packets. The window has upper and lower
boundary values. In SOBAS, the Tw value is basically a

SELCUK ULUAGAC ET AL.: SECURE SOURCE-BASED LOOSE SYNCHRONIZATION (SOBAS) FOR WIRELESS SENSOR NETWORKS 807

Fig. 5. Synchronization of nodes on more than one synch path in

SOBAS.

Fig. 6. Summary of operational modes in SOBAS: Hi-Comp: high

computation; Lo-Comp: low computation; E2E-Sync: end-to-end loose

synchronization; P-Sync: loose path synchronization.

Fig. 7. SOBAS uncertainty parameters.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:09:39 UTC from IEEE Xplore. Restrictions apply.

function of the tick value (�). Assuming that the sensor
application sends its data periodically (or on the average) at
certain time intervals to the sink [3], [23], Tw can be
computed as

Tw ¼
ð�þ �þ � þ ’þ "Þ � �

3600 � 24 � � ; ð6Þ

where � is the transmission time of one packet, � ¼ l
R with l

and R being packet length and rate of the WSN link,
respectively; � is the propagation delay, � ¼ �

c with � and c

being distance between the sensors and the speed of light in
the medium, respectively; � is the average period of data in
between sensed reports sent from a sensor; ’ is the packet
processing time, " is the physical transmission error; � is the
daily value of the drift per sensor given a deployment area;
and � is the desired tick value. Note that (6) governs all the
uncertainty factors into its body. Also, � is taken based on
the possible maximum distance to consider the worst case
scenarios although nodes may be located closer than the
maximum distance.

Moreover, the probability that kth trial out of Tw keys is
the first success is geometrically distributed with parameter
p, where p is 1

Tw
. Hence, the probability that Tw keys are tried

in a tick window is

PfK ¼ Twg ¼ ð1� pÞTw�1 � p; Tw ¼ 1; 2; 3; . . . : ð7Þ

Analytical results governing (6) and (7) with l ¼ 32 bytes,
R ¼ 250 Kbps, � ¼ 5 s, � ¼ 100 m, ’ ¼ 558 �s [27], " ¼ 10 �s
[17], [18], and � ¼ 2 s are shown in Fig. 8a for six different
configurations of the tick window. For each Tw value, its
corresponding � value is also shown in the plot. As shown
in Fig. 8a, the probability of success with a smaller value of
Tw is greater, and therefore, less computational effort is
required to guess the correct key of compared to when Tw is
larger. Hence, the efficacy of the SOBAS protocol depends
on the size of this window because the larger the size of Tw,
the more time it takes for a receiver to find the key. Since the
Tw value is basically a function of the tick value (�), the
smaller the value of the tick, the more keys could be tried by
each sensor, hence Tw is larger and the accuracy of the
scheme is increased. Several further observations are
possible with a close examination of (6). When sensors
send less frequently to the sink, hence � is larger, the value
of the Tw becomes larger. This obviously increases the

computational effort of the sensor to find the correct key. A
similar remark can be made for " as well. On the other
hand, when � is smaller (i.e., more frequent data), the Tw is
smaller. Hence, the scheme does not spend too much time
trying to find the correct key; and the computational effort
is smaller.

3.2 A Realistic Analysis of Tick Window (Tw) and
Tick (�) Value

A realistic value of the Tw considering the technical
capabilities of today’s wireless sensors is analyzed in this
section. We see in (6) that more precision of � comes with
the cost of an increased number of keys that a sensor would
try. SOBAS was designed to be energy efficient. If the
computational effort of trying to find a key on a sensor is
more than the communication cost of sending a separate
keying message, then it may be better to send a separate
keying message like other schemes in the literature. This
depends on whether the benefit of a silent protocol is still
desired at a cost of increased energy. Thus, in this part, we
question what value of Tw is a plausible choice. In other
words, we ask if we can derive a feasible Tw value given the
capabilities of sensors today.

Assuming that in the worst case, a sensor will find the
correct key at its last trial in the Tw window, the following
inequality governs this case,

Tw � 	 > ; ð8Þ

where 	 is the computational effort of finding a correct key,
and is the transmission cost of the separate keying
message. Thus, if the left side of the inequality is bigger
than the right side, then the energy advantage of the SOBAS
scheme (not the advantages of “having dynamic keys” and
“being surreptitious”) would become obsolete and one can
conclude that sending a separate keying message would be
better than using SOBAS. The transmission cost of the keying
message can be written as follows [32] (ignoring energy cost
of sensing the event and staying-alive for simplicity):

 ¼ ðItx þ IonÞ � � � V ; ð9Þ

	 ¼ Ion � � � V ; ð10Þ

where � is the execution time required to process the
desired encryption algorithm, � is the packet transmission
time, Itx and Ion are the current consumptions in mA for

808 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 4, APRIL 2013

Fig. 8. (a) CDF of finding a correct key. (b) Tw (Tick window) versus � (tick). (c) SOBAS simulation topology with GTSNetS.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:09:39 UTC from IEEE Xplore. Restrictions apply.

packet transmission and CPU processing, and V is the
supply voltage of a given sensor node. Hence, an upper
bound for Tw can be found as follows:

Tw �

	
: ð11Þ

Fig. 8b plots Tw (Tick window) versus � (precision) for
several values of � and �. Assuming a sensor node with a
microcontroller unit (MCU) of MSP430F16x [33] and a
transceiver of CC2420 [2], [25], [32], and also assuming RC4
[27] as the encryption scheme, with l ¼ 32 bytes, R ¼
250 Kbps, � ¼ 5 s, � ¼ 2 s, Tw can be found to be 16; hence,
the tick value, �, of 7:24 �s. It should be noted that from the
sender’s perspective, as the system becomes more precise
(i.e., the smaller the tick value), the chance of using a
different key per packet transmitted increases. As long as
the frequency of the events (packets) is larger than 1

� , the
system will use a different key per packet. Notwithstanding
the technical capabilities of sensors today, the value of Tw
computed in this section is instrumental in making SOBAS
a realistic protocol as much as possible and will be used in
the performance evaluation section.

4 PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of the SOBAS
protocol both via simulations and analysis. First, using the
realistic Tw value computed in the previous section,
simulation results are presented to examine the energy
efficiency of our scheme under normal operation and under
attack. Second, the impact of the selective-reEnc operation
in the network is studied. Third, different class of outsider
adversaries are analyzed. Finally, a comparative study
considering other similar synchronization and en-route
filtering schemes is given in Section S1, which is available
in the online supplemental material, which can be accessed
via the IEEE’s Computer Society Digital Library.

4.1 Security and Energy Consumption Analysis

In this section, we evaluate the performance of the SOBAS
protocol via simulations. We focus on the energy consump-
tion of the SOBAS protocol while under attack.

4.1.1 Assumptions, Threat Model, and Simulation

Parameters

We use the Georgia Tech Sensor Network Simulator
(GTSNetS) [34], which is an event-based sensor network
simulator with C++, to perform the analysis of the SOBAS
protocol. The topology and the parameters used are given
in Fig. 8c and in Table 1. Nodes were located randomly in
the deployment region and on average, source nodes were
25-35 hops away from the sink. The energy costs for
different operations in the table are computed based on the
values given in [32] and [33]. However, the costs for

encryption and decryption operations are computed based
on the reported values of the implementation of RC4 [27]
on real sensor devices. Etx, Erx, and Esens are the energy
consumption of sending, receiving a packet and sensing an
event, while Eenc, Edec, and Emac are the costs of
encryption, decryption, and the message authentication
code, respectively. We use 16 as the value of Tw as found in
Section 3. Due to the broadcast nature of the wireless
medium used in WSNs, attackers may try to eavesdrop,
intercept, or inject false messages. In this paper, we mainly
consider the false injection and eavesdropping of messages
from an outside malicious node; hence similar to [10], [11],
[12], [13], [14], [15], the insider attacks are outside the scope
of this paper. In our attack scenario, the total number of
healthy source nodes that collect the event information and
send it toward the sink is assumed to be fixed, whereas the
number of malicious nodes are increased over time. Letting
i be the number of healthy source nodes and j be the
number of malicious nodes, in our attack scenario, j � i,
where i ¼ n and n > 0. The malicious sensors are
randomly located inside the event collection region. We
use en-route filtering to remove the malicious data as in
[13], [14], [15]. Throughout this work, the following
additional assumptions are made: each node has its local
clock and its drift value from the real clock is generated
using a uniform distribution between �3 and þ3 �s similar
to [17]. The Directed Diffusion routing protocol [23] is
used, but others such as [35] can also be used. According to
specifics of Directed Diffusion, after the sink asks for data
via interest messages, a routing path is established from the
sources in the event region to the sink. Thus, we assume
that the path is fixed during the delivery of a particular
sensed event report. Sensors are assumed to have the same
communication range and may have different initial
battery supplies. Finally, the simulation results presented
in the figures are the average of 50 simulation runs for a
specific analyzed parameter.

4.1.2 Simulation Results for Security and Energy

Consumption

As mentioned in Section 2, there are three different modes
for the CRYPT and two operational modes for the TKM
modules. Modes for the CRYPT module are No-reEnc,
Selective-reEnc, and Full-reEnc modes, whereas for the TKM
module they are Stateless and Stateful. Figs. 9a, 9b, and 9c
show the results for the attack scenario considering four
different modes of operations except for the No-reEncode
mode.4 The x-axis represents the number of malicious nodes
inside the region and y-axis represents the energy consump-
tion in mJ. As seen from the figures, the computation cost

SELCUK ULUAGAC ET AL.: SECURE SOURCE-BASED LOOSE SYNCHRONIZATION (SOBAS) FOR WIRELESS SENSOR NETWORKS 809

TABLE 1
SOBAS Simulation Parameters

4. Note that this mode is specifically not included in the analysis because
a healthy packet may be classified as malicious depending on the time
difference between the local times of the source and the far-away node (see
Section 2.3).

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:09:39 UTC from IEEE Xplore. Restrictions apply.

(i.e., Eenc, Edec) for SOBAS-Selective-reEnc is less than that of
SOBAS-Full-reEnc when Stateless mode is used. This is the
direct result of the encrypting, decrypting, and re-encrypt-
ing of packets at every hop in the network for SOBAS-Full-
reEnc. The cost of one encryption computation is saved by
forwarding the original packet in SOBAS-Selective-reEnc
while selectively re-encrypting packets over some nodes
along the data delivery path. The Selective-reEnc mode of
operation in the CRYPT module may be suitable for further
limited networking deployments. Nonetheless, SOBAS-Full-
reEnc is more suited for networks with more networking
resources available. From the security stand-point, we
see that as the number of malicious nodes increases inside
the network, nodes spend more computation energy in the
Stateless mode. This happens because the number of nodes
who use all their key-trial attempts and ultimately classifies
a packet as malicious, increases with the increased malicious
traffic. Furthermore, as seen from Fig. 9a it is possible to save
a significant amount of energy if stateful mode of operation
is utilized. However, the stateful mode would depend on the
availability of more storage on sensors.

As for the transmission costs (i.e., Etx, Erx), all modes are
about the same because in all modes the same number of
packets are transmitted or received. Moreover, analyzing
the results for the total energy consumption, we see that the
total energy consumption in the network exhibits a similar
behavior as the computation costs. This is because the
overall energy consumption is greatly dominated by the
computation costs.

4.1.3 Simulation Results for Key-Trials

As explained earlier, when a sensor receives a packet from
another sensor, it tries to find the time-based key value
associated with this packet used by the sender when
encrypting the packet before sending. However, the total
trial attempts is limited by the value of synch window Tw,
not to exhaust the resources on-board the sensor. For this,
we have found and used in our simulations a feasible value
for Tw (16) given for today’s sensor technology (see
Section 3). In this part of the simulation results, we discuss
the average number of key-trial attempts by a sensor when
attempting to decrypt the packet with both stateful and
stateless operational modes. We observe that nodes do not
use all the attempts with both modes; for the stateless mode
of operation, the highest point for our attack scenario was
around 6.9 (Fig. 10a). In general, we see that nodes with
SOBAS-Selective-reEnc use more key-trials than SOBAS-

Full-reEnc in the stateless mode. This is mainly because
refreshing a packet with a new key based on the current
local time at a node decreases the effort of the next hop node.
On the other hand, comparing the stateful and stateless
operational modes, one can easily observe that the number
of key-trial attempts with stateful operation is significantly
smaller than that of stateless operation. This is the direct
result of sensor’s ability to remember individual offset
values for each sender sensor and malicious nodes. Keeping
state information makes the effort of the receiver sensor
easier when it tries to find the correct key for the sender. In
fact, one implication of these results for both operational
modes is that since nodes do not use all of their key trial
attempts, the remaining effort can be utilized to increase the
clock precision value. For instance, if on average half of
the Tw is used with a certain �, then 2 � � clock precision can
be achieved by increasing the effective size of the Tw.

4.2 Impact of Selective Re-Enc Mode

In this section, we analyze the impact of the Selective-reEnc
operation in the network by investigating the false-positive
rate in the system.

The impact of Selective-reEnc was studied by consider-
ing the re-encrypting operation at different hops along the
data delivery path to the sink. Specifically, three different
cases were analyzed: reEncrypting at every third, fifth,
and seventh nodes. Moreover, as discussed earlier (see
Section 3), given the technical capabilities of sensors today,
the value of Tw is 16. However, with near-term improve-
ments in technology, further Tws that can provide better
precision values are possible. Hence, we also include in our
analysis different values for Tws as 16, 20, and 32. For all
these different cases, further simulations were carried out
and plotted in Figs. 10b and 10c. For each individual plot,
the first number in parenthesis represents the Tw value
while the second represents the reEnc hop count value.
Also, in these figures, the x-axis represents the number of
malicious nodes inside the event region and y-axis
represents the false-positive-rate (FPR) in the system.

One general observation is that the more frequent the
packets are re-encrypted, the smaller the rate of the FPR is
in the network. This occurs because frequently refreshing a
packet with a new key makes it easier to find the key at the
next hop node. This situation also explains the superior
performance of Full-reEnc over other configurations. Also,
with near-term improvements in technology, it is possible
to achieve small FPR values, which are even close to values
in Full-reEnc mode of operation. Finally, overall, we

810 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 4, APRIL 2013

Fig. 9. Computation, transmission, and total energy consumption under an attack scenario.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:09:39 UTC from IEEE Xplore. Restrictions apply.

observe similar flat behaviors for both stateless and stateful
operations because the system is able filter malicious data
immediately from the network and the system is mostly
influenced by distributed impact of reEncryption opera-
tions at different hops across the network. However,
recalling energy consumption analysis (see Figs. 9a, 9b,
and 9c) from the previous section, it should be noted that
frequently refreshing a packet with a new key increases the
overall energy cost of the system. Hence, SOBAS should be
utilized depending on the needs of the network and
application. For instance, if security is of utmost concern
for the WSN application, then a SOBAS system that
provides a smaller FPR rate could be preferred. On the
other hand, if the lifetime of the network is more important,
then a SOBAS scheme with a small value of reEnc hop
count can be utilized. In this way, SOBAS is flexible and can
be tailored to the needs of the WSN application.

4.3 Analysis of Outsider Attackers

As discussed earlier, SOBAS was designed as a dynamic en-
route filtering system because it is an effective method for
resource-constrained devices like sensors as the bad data is
immediately filtered out from the network before propagat-
ing too much, helping save in energy. Hence, SOBAS mainly
considers the false injection and eavesdropping of messages
from an outside malicious node and the insider attacks are
outside the scope of this work as in [10], [11], [12], [13], [14],
[15]. In this section, we present the analysis of different class
of outsiders with different capabilities.

In SOBAS, in order for an outside malicious node to be
able to successfully inject a false packet, the malicious node
must forge the packet. For the packet length, l,

l ¼ ID k TY PE k EKj
ðID k DATA k CTRÞ; ð12Þ

where ID is the packet ID, TYPE is the packet type, the CTR
is the counter, and EKj

is the encryption of the fields with
jth key (see Fig. 4), the complexity of the packet is 2l. Hence,
the probability of a malicious node correctly forging the
packet is

Pforge ¼
1

2packetsize
¼ 1

2l
: ð13Þ

Then, the probability of an adversary incorrectly forging the
packet and therefore the packet being dropped (Pdrop) is

Pdrop ¼ 1� Pforge: ð14Þ

Since SOBAS authenticates at every hop, forged packets will
always be dropped at the first hop with a probability of
Pdrop. On the other hand, an adversary brute-forcing the
keys will have to put an overall effort of

� ¼

�
; ð15Þ

where
 is the average number of keys (e.g., 2l�1) and is �
the speed of decryption in key/second. Given the 128-bit
key size utilized in SOBAS, the overall effort, �, is tabulated
in Table 2 for different class of attackers with different
capabilities. Three attackers are assumed. 1) Sensor-class
attacker, which is able to perform as regular sensors;
2) middle-class attacker, which is equipped with more
powerful resources than a regular sensor (e.g., a netbook);
3) powerful attacker with the most resources (e.g., a laptop
with multicore CPUs) available. The value of the � for the
sensor-class is taken from [27], [28] while the values for the
second and third class attackers were computed with
openssl on Dell Latitude 2,120 Netbook and Sony Vaio i7
Laptop, respectively. Note that 128-bit keys are utilized
without exchanging any IVs as suggested by Forouzan [19]
and Barker and Roginsky [26]. Subsequent keys are the
function of the previous key Kj�1 and the local time. Hence,
a new key is used for each packet refreshing the stale key.
Moreover, two additional mechanisms exist in SOBAS
against outsider attackers. One is the combined operations
of the Diffuser and Re=h (e.g., encryption, hashing) in F (see
Fig. 2), which are mainly utilized to increase the random-
ness of bits in the key, K, as subsequent readings from the
local timer may not change enough bits or may exhibit
predictable patterns for malicious entities. The second one
is the dummy packet (Pdummy) concept, which is used to
thwart the possibility that an attacker can discover the keys
based on the first few bytes of the ciphertext, C, [29], by
discarding (D in Fig. 2) the several hundred bytes of the C
as suggested in [30]. Moreover, utilizing Full-reEnc and
Selective-reEnc operational modes refreshes the keys by re-
encrypting the packets with new keys in these modes.

SELCUK ULUAGAC ET AL.: SECURE SOURCE-BASED LOOSE SYNCHRONIZATION (SOBAS) FOR WIRELESS SENSOR NETWORKS 811

Fig. 10. Avg. key trials, stateless FPR analysis, and stateless FPR analysis under an attack scenario.

TABLE 2
Adversary Models

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:09:39 UTC from IEEE Xplore. Restrictions apply.

5 CONCLUSION AND FUTURE WORK

Current approaches that provide secure time synchroniza-

tion send separate synchronization messages and utilize

reference points, GPSs, or static pairwise key-based crypto-

graphic mechanisms in order to provide perfect synchroni-

zation. Considering the event-based characteristics of WSN

tasks and the resource-limited nature of sensors, and finally

focusing on the fact that the transmission cost is significant

in WSNs, in this work we relaxed the perfect synchroniza-

tion condition for WSNs and we tackled the secure time

synchronization problem from a completely different

perspective. As opposed to current “chatty” perfect syn-

chronization schemes, we focused on minimizing the

communication in the network so that some of the energy

savings from transmission cost could be utilized for the

computation of local security operations. Thus, in SOBAS,

instead of explicitly synchronizing sensors with synch

messages, events/reports are synchronized accurately along

the data delivery path as they occur. Moreover, In SOBAS,

nodes use their local time values as a one-time dynamic key

to encrypt each message. In this way, SOBAS provides an

effective dynamic en-route filtering mechanism, where the

malicious data is filtered from the network.
With SOBAS, we have been able to achieve our main goal

of synchronizing events at the sink as quickly, accurately,

and surreptitiously as possible. The protocol decreases the

number of opportunities for malicious entities to eavesdrop,

intercept packets, etc., by reducing the number of messages

exchanged. Thus, energy savings from the reduced trans-

mission is used for the local security computation. To the

best of our knowledge, earlier secure synchronization

studies for WSNs have not taken this approach. Both

extensive analytical and simulation results verified the

feasibility of the SOBAS scheme. SOBAS is able to provide

7:24 �s clock precision given today’s sensor technology,

which is much better than other comparable schemes (not

including ones with GPS devices), and is at least twice

better in energy efficiency than other schemes. Our novel

approach to synchronization with dynamic en-route filter-

ing is well-suited for the characteristics of many WSN

applications, where utmost silence is necessary (like in

military scenarios), as SOBAS is not “chatty.” Our future

work include studying further opportunities for increasing

the clock precision by investigating unused key-trial

attempts at a node, and addressing insider threats.

ACKNOWLEDGMENTS

This work was partly supported by US National Science

Foundation (NSF) Grant No. CAREER-CNS-0545667 844144

and DARPA Grant No. N10AP20022.

REFERENCES

[1] G.J. Pottie and W.J. Kaiser, “Wireless Integrated Network
Sensors,” Comm. ACM, vol. 43, no. 5, pp. 51-58, 2000.

[2] R. Roman, C. Alcaraz, and J. Lopez, “A Survey of Cryptographic
Primitives and Implementations for Hardware-Constrained Sen-
sor Network Nodes,” Mobile Networks and Applications, vol. 12,
no. 4, pp. 231-244, Aug. 2007.

[3] O. Akan and I. Akyildiz, “Event-to-Sink Reliable Transport in
Wireless Sensor Networks,” IEEE/ACM Trans. Networking, vol. 13,
no. 5, pp. 1003-1017, Oct. 2005.

[4] S. Uluagac, C. Lee, R. Beyah, and J. Copeland, “Designing Secure
Protocols for Wireless Sensor Networks,” Wireless Algorithms,
Systems, and Applications, vol. 5258, pp. 503-514, 2008.

[5] D. of Defense, Department of Defense Dictionary of Military and
Assoc. Terms, Joint Publication 1-02, 2001.

[6] B. Nguyen and R. Rom, “Communication Services under
EMCON,” Proc. ACM SIGCOMM, pp. 275-281. 1986,

[7] A.S. Uluagac, R.A. Beyah, and J.A. Copeland, “TIme-Based
Dynamic Keying and En-Route Filtering (TICK) for Wireless
Sensor Networks,” Proc. IEEE Global Comm. Conf. (Globecom), 2010.

[8] A. Boukerche and D. Turgut, “Secure Time Synchronization
Protocols for Wireless Sensor Networks,” IEEE Wireless Comm.,
vol. 14, no. 5, pp. 64-69, Oct. 2007.

[9] Y. Xiao, V.K. Rayi, B. Sun, X. Du, F. Hu, and M. Galloway,
“A Survey of Key Management Schemes in Wireless Sensor
Networks,” Computer Comm., vol. 30, nos. 11/12, pp. 2314-
2341, 2007.

[10] S. Ganeriwal, C. Pöpper, S. �Capkun, and M.B. Srivastava, “Secure
time Synchronization in Sensor Networks,” ACM Trans. Informa-
tion and System Security, vol. 11, no. 4, pp. 1-35, 2008.

[11] S. Ganeriwal, S. �Capkun, C.-C. Han, and M.B. Srivastava, “Secure
time Synchronization Service for Sensor Networks,” Proc. ACM
Workshop Wireless Security (WiSe), pp. 97-106, 2005,

[12] A. Perrig, R. Szewczyk, J.D. Tygar, V. Wen, and D.E. Culler,
“Spins: Security Protocols for Sensor Networks,” Wireles Networks,
vol. 8, no. 5, pp. 521-534, 2002.

[13] Z. Yu and Y. Guan, “A Dynamic En-Route Scheme for Filtering
False Data Injection in Wireless Sensor Networks,” Proc. IEEE
INFOCOM, pp. 1-12, Apr. 2006.

[14] F. Ye, H. Luo, S. Lu, and L. Zhang, “Statistical En-Route Filtering
of Injected False Data in Sensor Networks,” IEEE J. Selected Areas
Comm., vol. 23, no. 4, pp. 839-850, Apr. 2005.

[15] C. Kraub, M. Schneider, K. Bayarou, and C. Eckert, “Stef: A Secure
Ticket-Based En-Route Filtering Scheme for Wireless Sensor
Networks,” Proc. Second Int’l Conf. Availability, Reliability and
Security (ARES), pp. 310-317, Apr. 2007.

[16] A. Uluagac, R. Beyah, Y. Li, and J. Copeland, “Vebek: Virtual
Energy-Based Encryption and Keying for Wireless Sensor Net-
works,” IEEE Trans. Mobile Computing, vol. 9, no. 7, pp. 994-1007,
July 2010.

[17] K. Sun, P. Ning, and C. Wang, “Secure and Resilient Clock
Synchronization in Wireless Sensor Networks,” IEEE J. Selected
Areas Comm., vol. 24, no. 2, pp. 395-408, Feb. 2006.

[18] K. Sun, P. Ning, and C. Wang, “Tinysersync: Secure and Resilient
time Synchronization in Wireless Sensor Networks,” Proc. 13th
ACM Conf. Computer and Comm. Security (CCS ’06), pp. 264-277,
2006.

[19] B.A. Forouzan, Data Comm. and Networking, fourth ed. McGraw-
Hill, 2007.

[20] F. Ren, C. Lin, and F. Liu, “Self-Correcting Time Synchronization
Using Reference Broadcast in Wireless Sensor Network,” IEEE
Wireless Comm., vol. 15, no. 4, pp. 79-85, Aug. 2008.

[21] H. Yoshida and T. Mori, “Development of Precision Underwater
Positioning System,” Proc. Underwater Technology and Workshop
Scientific Use of Submarine Cables and Related Technologies Symp.,
pp. 217-222, Apr. 2007.

[22] J.W. Youngberg, Method for Extending GPS to Underwater Applica-
tions, US Patent 5119341, Washington, D.C.: Patent and Trademark
Office, 1992.

[23] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed
Diffusion: A Scalable and Robust Communication Paradigm for
Sensor Networks,” Proc. ACM MOBICOM, pp. 56-67, Aug. 2002.

[24] ATmega128/L Datasheet, Atmel Corp., www.atmel.com/atmel/
acrobat/doc2467.pdf, June 2008.

[25] CC2420DataSheet, 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF
Transceiver Rev. B, Chipcon Products from Texas Instruments,
focus.ti.com/lit/ds/symlink/cc2420.pdf, Nov. 2008.

[26] E. Barker and A. Roginsky, “Transitions: Recommendation for
Transitioning the Use of Cryptographic, Algorithms and Key
Lengths,” NIST Special Publication 800-131A, Jan. 2011.

[27] R.V. Venugopalan, “Encryption Overhead in Embedded Systems
and Sensor Network Nodes: Modeling and Analysis,” Proc. Int’l
Conf. Compilers, Architecture and Synthesis for Embedded Systems
(CASES ’03), pp. 188-197. 2003.

812 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 4, APRIL 2013

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:09:39 UTC from IEEE Xplore. Restrictions apply.

[28] M. Passing and F. Dressler, “Experimental Performance Evalua-
tion of Cryptographic Algorithms on Sensor Nodes,” Proc IEEE
Int’l Conf. Mobile Adhoc and Sensor Systems (MASS), pp. 882-887,
Oct. 2006.

[29] S.R. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the Key
Scheduling Algorithm of RC4,” Proc. Revised Papers from the Eighth
Ann. Int’l Workshop Selected Areas in Cryptography (SAC), pp. 1-24,
2001.

[30] I. Mironov, “(not so) Random Shuffles of RC4,” Cryptology Eprint
Archive, Report 2002/067, http://eprint.iacr.org/, 2002.

[31] S. Ganeriwal, R. Kumar, and M.B. Srivastava, “Timing-Sync
Protocol for Sensor Networks,” Proc. ACM First Int’l Conf.
Embedded Networked Sensor Systems (SenSys), pp. 138-149, 2003.

[32] Xbow, “Crossbow Technology,” http://www.xbow.com/, 2008.
[33] MSP430x1xx Family User’s Guide Rev. F, Texas Instruments,

http://www.ti.com/msp430, Nov. 2008.
[34] G.T.S.N. Simulator, “Gtsnets,” 2007.
[35] K. Akkaya and M. Younis, “A Survey on Routing Protocols for

Wireless Sensor Networks,” Ad Hoc Networks J., vol. 3, pp. 325-349,
May 2005.

A. Selcuk Uluagac received the MS degree in
information security from the School of Compu-
ter Science at Georgia Tech and the MS degree
in electrical and computer engineering from
Carnegie Mellon, in 2009 and 2002, respec-
tively, and the PhD degree with a concentration
in information security and networking from the
School of Electrical and Computer Engineering
at Georgia Tech in 2010. Prior to joining the
faculty at Georgia Tech, he was a senior

research engineer at Symantec. The focus of his research lies at the
intersection of the networking and security fields. Of particular, his
interests include designing secure and energy efficient communication
protocols and architectures. He is a member of the research faculty in
the School of Electrical and Computer Engineering at Georgia Tech and
is affiliated with both the Communications Systems Center (CSC) and
the Communications Assurance and Performance (CAP) Group. In
2007, he received the “Outstanding ECE Graduate Teaching Assistant
Award” from the School of Electrical and Computer Engineering at
Georgia Tech. He is a senior member of IEEE and a member of the
ACM and ASEE.

Raheem A. Beyah received the bachelor of
science degree in electrical engineering from
North Carolina A&T State University in 1998,
and the master’s and PhD degrees in electrical
and computer engineering from Georgia Tech,
in 1999 and 2003, respectively. He is an
associate professor in the School of Electrical
and Computer Engineering at Georgia Tech
where he leads the Georgia Tech Communica-
tions Assurance and Performance Group (CAP)

and is a member of the Georgia Tech Communications Systems Center
(CSC). Prior to returning to Georgia Tech, he was an assistant
professor in the Department of Computer Science at Georgia State
University, a research faculty member with the Georgia Tech CSC, and
a consultant in Andersen Consulting’s (now Accenture) Network
Solutions Group. He served as a guest editor for MONET. He is an
associate editor of several journals including the (Wiley) Wireless
Communications and Mobile Computing Journal. His research interests
include network security, wireless networks, network traffic character-
ization and performance, and security visualization. He received the
National Science Foundation CAREER award in 2009 and was selected
for DARPA’s Computer Science Study Panel in 2010. He is a member
of the NSBE, ASEE, and a senior member of ACM and IEEE.

John A. Copeland received the BS, MS, and
PhD degrees in physics from the Ga.Tech. He
holds the John H. Weitnauer, Jr., chair as a
professor in the School of ECE at the Georgia
Institute of Technology (Ga.Tech), and is a
Georgia Research Alliance Eminent Scholar.
He was VP Techn. at Hayes (1985-1993), and
VP Eng.Techn. at Sangamo Weston, Inc. (1982-
1985) and served at Bell Labs (1965-1982). He
founded Lancope, Inc. (2000), and invented the

StealthWatch network security monitoring system. He has been
awarded 48 patents and has published more than 100 technical articles.
In 1970, he received the IEEE’s Morris N. Liebmann Award. He is a
fellow of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SELCUK ULUAGAC ET AL.: SECURE SOURCE-BASED LOOSE SYNCHRONIZATION (SOBAS) FOR WIRELESS SENSOR NETWORKS 813

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:09:39 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

