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Abstract—One-time login process in conventional authentication systems does not guarantee that the identified user is the actual user

throughout the session. However, it is necessary to re-verify the user identity periodically throughout a login session, which is lacking in

existing one-time login systems. Continuous authentication, which re-verifies the user identity without breaking the continuity of the

session, can address this issue. However, existing methods for Continuous Authentication are either not reliable or not usable. In this

paper, we introduce a usable and reliableWearable-Assisted Continuous Authentication (WACA), which relies on the sensor-based

keystroke dynamics and the authentication data is acquired through the built-in sensors of a wearable (e.g., smartwatch) while the user

is typing. The acquired data is periodically and transparently compared with the registered profile of the initially logged-in user with one-

way classifiers. With this, WACA continuously ensures that the current user is the user who logged-in initially. We implemented the

WACA framework and evaluated its performance extensively on real devices with real users. The empirical evaluation of WACA

reveals that WACA is feasible, and its error rate is as low as 1 percent with 30 seconds of processing time and 2-3 percent for 20

seconds. The computational overhead is minimal. Furthermore, WACA is capable of identifying insider threats with very high accuracy

(99.2 percent) and also robust against powerful adversaries such as imitation and statistical attackers. We believe that this work has

practical and far-reaching implications for the future of the usable authentication field.

Index Terms—Continuous authentication, wearables, biometrics, keystroke dynamics, typing

Ç

1 INTRODUCTION

THE majority of the current user authentication methods
rely on password authentication. However, password

authentication methods are subject to many security draw-
backs [1], [2], [3]. Many practical attacks have been demon-
strated that the passwords can be either stolen or
bypassed [4], [5]. To mitigate these threats, Multi-Factor
Authentication (MFA) methods were proposed [6], [7], [8].
In MFA, the user credentials are checked from two or more
independent sources, and even if the attacker steals one fac-
tor, it would still have to overcome the burden of other fac-
tors. Though, whether it is one-factor or MFA [8], a one-time
login process does not guarantee that the identified user is
the real user throughout the login session. Even if it is a legit-
imate insider who has been authorized once, a forever access
is provided inmost cases not to interrupt the current user.

An authentication mechanism, which re-verifies the user
periodically without breaking the continuity of the session,
is vital [9]. For example, users may share their passwords
with family members, friends, colleagues [3], or an already-
authenticated user may walk away without locking his/her

computing platform (e.g., laptop) for a short time or may
intentionally hand it to a non-authenticated co-worker trust-
ing that s/hewill not perpetrate anything nonsensical ormali-
cious or a malicious former employee or disgruntled worker
may want to use his/her former privileges. In all these cases,
as long as the original login session is actively used, there is
no mechanism to verify that the initial authenticated user is
still the user in control of the computing environment.

Continuous Authentication (CA).1 is a goodmechanism to re-
verify a user identity periodically throughout a login session.
However, existing methods are either not reliable or not
usable. For instance, currently, the most common method
used to verify the user periodically depends on session time-
outs. In session time-outs, if the timewindow is kept too short,
the user’s convenience will be reduced due to frequent inter-
ruptions of the session for authentication. On the other hand,
if the time window is set too long, in the case of a breach, the
attackerwould havemore time on the victim’s system.

In the literature, a number of studies have been proposed
for the use of biometrics in continuous user authentica-
tion [11], [12], [13]. However, one of the desired features in
continuous authentication is non-intrusiveness [14]. Physio-
logical characteristics like iris pattern or fingerprint are not
applicable in this manner since they can not be extracted
seamlessly. More plausible approaches for CA would be
behavioral characteristics [15], [16], [17] like typing rhythm,
gait as they can be collected without interrupting the user.
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1. CA is also sometimes called Active or Implicit Authentication in
the literature [10].
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Although, behavioral biometrics may suffer from high error
rates due to their variability [18]. For example, the behav-
ioral biometrics may have higher false rejections than the
physiological biometrics in general. However, they have the
advantage of being seamlessly collectible as they can be
integrated with the other authentication factors seamlessly.
Therefore, they are ideal candidates to increase the security
of the current systems as an additional authentication factor
rather than a standalone authentication system. For exam-
ple, the US government has recently launched an initiative
to explore the deployment of continuous multi-factor
authentication in the office environment [19], where differ-
ent behavioral biometrics like voice or gait should be uti-
lized to increase assured identity of users.

Among all behavioral biometrics, the most promising
results are proposed using keystroke dynamics [20], [21],
[22]. However, in a recent work [23], the reliability of classi-
cal keystroke dynamics is analyzed, and an interface was
designed to help an attacker so that the attacker can mimic
the typing rhythm of a legitimate user by using the feedback
provided by the interface. Indeed the usability and reliabil-
ity of CA systems can be increased by exploiting off-the-
shelf wearable devices. The sensors of these devices could
play a key role to increase the usability in such a security
context as well [24]. Indeed, the need for a better authentica-
tion mechanism and the emerging widespread availability
of wearable devices promise a unique opportunity to utilize
the wearable devices to achieve a genuinely usable and
practical CA system. The closest work to our approach is
proposed in [25] called ZEBRA. In ZEBRA, users are classi-
fied according to the sequence of interactions (e.g., typing,
scrolling), where the user wears a bracelet with motion sen-
sors and radio. Serious design flaws have been detected in
ZEBRA [26]. Our design differs from ZEBRA in many ways
to tackle those flaws and strengthen our design. First and
most importantly, instead of a sequence of interactions, we
use a variant of keystroke dynamics as an authentication
factor, which was extensively well-studied in the research
literature and shown as a unique behavioral biometric for
each person (see [27] for a very recent survey). WACA also
has some other design details, which makes it secure against
advanced attackers as shown in Section 6.2.

In this work, we introduce a novel Wearable-Assisted Con-
tinuous Authentication framework called WACA, where a
wearable device (e.g., smartwatch) is used to authenticate a
computer user continuously utilizing the motion sensors of
the smartwatch. Specifically, WACA uses sensor-based key-
stroke dynamics, where the typing rhythm of the user is cap-
tured by the motion sensors of the smartwatch worn by the
user. In essence, keystroke dynamics is one of the behav-
ioral biometrics that characterizes the users according to
their typing pattern. Note that most conventional key-
stroke-based authentication schemes in the literature [28]
have used dwell-time and flight-time as unique features of the
users. These features are directly obtained by logging the
timing between successive keystrokes. However, in WACA,
the feature set is richer and more flexible since 6-axis motion
sensor data can provide not only timing information, but
also the key-pressing pressure, hand rotation, and hand dis-
placement, etc. Our feature set consists of 14 different sen-
sory features from both time and frequency domains. These

features are applied to 6-axis motion sensor data, obtaining
84 features in total, jointly considering the 6-axis data.
Finally, different distance measures are used to compare the
registered and the unknown profile of the user as it was
shown that they performed well in similar contexts [29],
[30]. Also, in another work [25], users are classified accord-
ing to the sequence of interactions (e.g., typing, scrolling),
where the user wears a bracelet with motion sensors and
radio. However, that work [25] has been shown as insecure
in another work [26]. As explained, our work differs from
other works in several ways to tackle those flaws and
strengthen our design.

We tested the performance, efficiency, and security of
WACA with more than thirty real users and data collected
from them. We specifically evaluated WACA in terms of
three metrics: (i) How accurately can it authenticate the genuine
users and lock out the and impostor users? (ii) How fast can it
detect an impostor? (iii) How accurately can it identify an impos-
tor from its typing pattern? Moreover, we also evaluated the
robustness of our proposed method against powerful
attacks, including, imitation [23], [26], statistical [31], [32],
and insider attacks.

Contributions. The main contributions of this work are
summarized as follows:

� We propose a novel sensor-based wearable-assisted
continuous authentication framework for computing
platforms, terminals (e.g., laptops, computers) with
a smartwatch.

� We propose a new variant of keystroke dynamics,
called sensor-based keystroke dynamics. We show that
sensor-based keystroke dynamics can be uniquely uti-
lized to authenticate and identify the users with
extensive evaluation.

� We also tested WACA against powerful attacks,
including imitation, statistical attacks, and insider
attackers. For this purpose, we designed a scenario for
the imitation attacks with real participants. On the
other hand, we developed three generic attacking sce-
narios for the statistical attacks that can also be utilized
by other future continuous authentication studies.

Organization. The remainder of this paper is structured as
follows: Section 2 presents the related work. In Section 3, we
explain the foundation for the overall idea. Then, we introduce
our systemmodel in Section 4. Then, the overall architecture of
WACA is detailed in Section 5. Section 6 presents the perfor-
mance, efficiency, and robustness evaluation of the WACA
framework. Section 8 reports the discussion of the challenges
that can be faced in WACA and ways to overcome those chal-
lenges. Finally, in Section 9, we conclude the paper.

2 RELATED WORK

In the literature, a number ofworks have been proposed for the
use of biometrics in continuous user authentication [11], [12],
[13], [33], [34], [35]. However, one of the desired features in the
continuous authentication is transparency. Hard biometrics like
iris pattern or DNA are not applicable since they can not be
extracted transparently. In another work [36], a special mouse
with a fingerprint sensor is proposed. In addition to requiring
a custom mouse, its reliability is also an issue. The ease of
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counterfeiting fingerprints was shown, and the fingerprint-
based biometrics was easily bypassed [37], [38]. Facial recogni-
tion methods may seem a good candidate; however, the liveli-
ness detection is still an issue to be addressed, and several
attacks are possible under practical conditions [39], [40]. In
addition, several other biometrics like pulse-response [41] or
eye movements [42] are also proposed. However, since these
approaches require special equipment, deployment costs are
increasing significantly.

Recent Suspicions on Keystroke Dynamics. Among all the
biometrics, the most promising results are proposed using
keystroke dynamics and mouse movements [20], [21], [22].
However, in a recent work [23], the reliability of classical
keystroke dynamics are analyzed and an interface, called
Mimesis, was designed so that a user can mimic the typing
rhythm of another user by using the feedback provided by
Mimesis. In another study [31], the statistical attacks with
bots generating synthetic typing patterns are examined for
the conventional keystrokes biometrics. In our work, we
test WACA against both these imitation and statistical
attacks using similar configurations presented in these
papers. We show that WACA is secure against the powerful
imitation and statistical attacks. The detailed analysis of
these attacks are given in Section 6.2.

Inference Attacks Using Smartwatch Sensors. Another direc-
tion on sensor-based keystroke research is using the motion
sensors of wearables as a side channel attack to infer some
valuable assets like passwords. The main motivation behind
this attack is similar to WACA. Motion sensors will move in
the same way with keystrokes while typing and the wrist
rotations and displacement will cause to leak the key-
strokes. This attack is deployed first on smartphones [43],
[44], [45], [46], [47], and recently on smartwatches [48], [49].
Restricting access to motion sensors is not a realistic sugges-
tion to defend against this attack. In our work, we propose a
pairing and synchronization session before using the smart-
watch with its paired computer. In this way, an encryption-
supported secure channel can be used to communicate
between smartwatch and computer.

3 DESIGN RATIONALE: WHY SHOULD IT WORK?

In this section, we study how motion sensors of a smart-
watch are impacted when typing on a keyboard and see if
the data can be used to identify users. Particularly, we ana-
lyze a case that a user wears a smartwatch and types on a

qwerty-type built-in keyboard of a computer. Our goal is to
collect keystroke information from the built-in motion sen-
sors (i.e., accelerometer and gyroscope) of the smartwatch
during the typing activity. To collect smartwatch sensor
data, we developed an Android Wear app that records the
raw sensor readings from the motion sensors.

In our experiments, we used linear acceleration compos-
ite sensor data, which combines the data of accelerometer
and gyroscope to exclude the effect of gravity.2 Note that
the accelerometer and gyroscope sensors provide three-
dimensional sensor data, where the reference coordinate
system associated with the sensors are illustrated in Fig. 1a.
As z-axis of the accelerometer sensor is directly affected by
the key up-down movements of a user while typing, the
most significant changes are observed in the z-axis. There-
fore, the z-axis of the data provides the best information for
keystroke features such as holding time, pressing pressure,
etc. Moreover, another observation is that even if the device
is placed flat on a desk, the sensors generate a certain level
of noise, which needs to be removed by filtering, as
explained later.

Sample data in Fig. 1b was acquired from the z-axis of the
accelerometer while typing the word “smartwatch”. It can be
seen how the value of the accelerometer makes peak points.
As the acceleration through the gravity corresponds to
the going down of the accelerometer, the peak points in the
figure correspond to the keystrokes in the typing activity.
While the amplitude of the peak is related to how strong the
key press is, the width of the peaks is associated with how
long the key is pressed. These are simple statistics that can be
used to identify users. These and other featureswill be further
analyzed in detail in Section 5.

Moreover, we conducted two more simple experiments
using the accelerometer and gyroscope data on the smart-
watch, and we made the following two observations:

� Observation 1: Different users exhibit different patterns
even if they type the same text.

In this experiment, we compared the data collected from
two different users while typing the same text. Fig. 2
presents the sensor data of the two users’ accelerometer and
gyroscope data for a given time interval. The distribution of
the accelerometer data in Fig. 2a shows clear differences
such as the magnitude of peaks, inter-arrival time of peak
points, the width of peaks, etc. On the other hand, the gyro-
scope sensor measures the rotation of the watch. As seen in
Fig. 2b, the number of peaks or the magnitude of the peaks

Fig. 1. (a) The reference coordinate system for accelerometer and gyro-
scope sensors. (b) A sample raw data collected from the accelerometer
of the smartwatch and keystrokes detected by using peak detection
methods while typing the word ”smartwatch”.

Fig. 2. Comparison of two different users’ (a) accelerometer (b) gyro-
scope readings while typing the same text.

2. For brevity, we use acceleration to refer to the linear acceleration.

2142 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 6, JUNE 2021

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 15:53:33 UTC from IEEE Xplore.  Restrictions apply. 



are different for different users; so these features are viable
candidates to recognize different users.

� Observation 2: Same user follows similar patterns over
different time intervals even while typing different texts.

In the second experiment, the data was collected from the
same user over two different time intervals corresponding to
the different texts, and the plots are given in Fig. 3. As seen in
Fig. 3a, the amplitudes and widths of the peaks are similar in
magnitude, but with a phase shift, meaning leading or lag-
ging. On the other hand, the same leading or lagging of simi-
lar shapes can also be seen in the gyroscope data in Fig. 3b.

These two observations justify the rationale that key-
stroke dynamics obtained from smartwatch accelerometer
and gyroscope sensors can differentiate different users as
classical keystroke dynamics and the same users can be
detected over different times even while typing different
texts. Although these are just preliminary observations, our
framework will be further tested and evaluated with exten-
sive experiments using real user data in Section 6.

4 SYSTEM MODEL

In this section, we explain design goals, our assumptions,
and the adversary model.

Design Goals. In WACA, our design goals is similar to the
ones given in [50]: Our system should be universal (i.e., the
biometric features exist for everyone), unique (the features
are specific for everyone), permanent (the biometric features
always exist), transparent (the system works without inter-
rupting the user), continuous (the system should provide
continuous user data), and accurate (the system works with
low error rate). WACA achieves the first five goals by its
design and the accuracy is tested in Section 6.

Assumptions. For WACA, the following assumptions are
considered:

� We assume that the user wears a smartwatch, which is
equipped with motion sensors and either Bluetooth or
WiFi.We also assume that an app to collect the motion
data is already installed on the smartwatch, and it is
paired with the computer that will be authenticated.
For our work, we built a customAndroidWear app to
collect and process the sensor data.

� We assume that by pairing devices, a secure communi-
cation channel is already established between the com-
puter and smartwatch aswell as between the computer
and the remote or local authentication server. This
secure communication channel should keep the sensor
data secure in both transitions and at rest.

� The WACA framework acts as a complementary
second-factor, and it has the flexibility to work any
first-factor authentication system, and it is assumed
that the system has already a first authentication
factor. The first factor could be one of the pass-
word-, token-, or biometric-based systems. Note
that the first factor of authentication is beyond the
scope of this work.

Adversary Model. In this paper, the primarily considered
adversary model is an attacker who somehow bypassed the
first factor (e.g., password, token) of the authentication sys-
tem and it has physical access to the computing terminal.
The attacker is likely to be an insider or co-worker, but it
can also be an outsider, just passing by the victim’s com-
puter. Attacker’s goals can include, but not limited to, trying
to get some important information from the victim’s com-
puter, taking action on behalf of the victim, or trying to get
access to the assets that s/he does not have permission (i.e.,
privilege abuse). More specifically, we consider the follow-
ing attack scenarios by considering WACA is deployed in a
real-world system:

� Attack Scenario 1: The victim is one of the employers
and forgets to lock his computer and an outsider (e.g.,
a mail courier) who is just passing through the office
tries to get access to the victim’s computer. In this
scenario, if the attacker is not aware of WACA, s/he
will attempt to use the victim’s computer. If the
attacker is aware of WACA, s/he will first look for
the victim’s smartwatch and then try to keep the sys-
tem logged in.

� Attack Scenario 2: We consider the attacker can also
be a malicious insider and thereby the attacker also
has a registered smartwatch, but its typing profile is
registered together with its username. This type of
attacker tries to get access to the system’s assets that
s/he does not have permission (i.e., privilege abuse).
In this scenario, the attacker watches its victim (e.g.,
supervisor) for a proper timing that its victim leaves
the computer unlocked for some time to go to lunch
or to get coffee, etc. (aka lunchtime attack [42]). The
attacker can either try to bypass the system via pro-
viding data from his smartwatch or can try to use
the victim’s smartwatch somehow obtained (e.g., can
steal it or victim can leave it behind).

� More Powerful Adversaries: Furthermore, a powerful
adversary can be aware of WACA and try to defeat
it using special tools and skills by imitating legitimate
users [23], [26] or launching statistical attacks [31],
[32]. This powerful adversary (insider or outsider)
can be a human or a trained bot. In imitation attacks,
the attacker wears the victim’s smartwatch either via
after stealing it, or the victim can leave it behind for
a while and the attacker can try to impersonate the
victim. On the other hand, the statistical attack is
more complex and requires special tools and skills.
Hence, WACA also considers these powerful attack
scenarios in its adversary model.

The security evaluation of these attack scenarios and how
WACA is robust against insiders, imitators, and statistical
attackers are explained more in Sections 6.1 and 6.2.

Fig. 3. Comparison of the same user’s sensor data over two different
time intervals with (a) accelerometer, (b) gyroscope.
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5 WACA ARCHITECTURE

In this section, we present the details of the WACA. WACA
is a typing-based continuous authentication system using
the accelerometer and gyroscope sensors of a smartwatch.
WACA framework is complementary to the first-factor
authentication mechanisms, and it is flexible to work with
any first factor.

5.1 Overview

WACA consists of four main stages: Preprocessing, Feature
Extraction, User Profiling, and Decision Module. These stages,
which are shown in Fig. 4, work as follows:

� First, the raw sensor data is acquired from a smart-
watch (1) through an app installed on thewatch. Then,
the raw data is transmitted to the computer through a
secure wireless channel, and the rest of the stages are
performedon the computer except thatAuthentication
Server (AS) is located in a trusted place.

� As the collected data includes a certain level of noise,
in the preprocessing stage, the raw data is cleaned
up by filtering (2) and transformed into a proper for-
mat for the next stages.

� Then, incoming data is used to extract a set of features
(3). This set of features, namely feature vector, repre-
sents the characteristics of the current user profile.

� In the enrollment phase (9), the created feature vec-
tor is stored in the AS.

� In the verification phase (4), the queried user profile is
dispatched from theAS to the decisionmodule (10, 11).

� The decision module computes a similarity score
between the returned profile and the provided profile
for the current user to make a binary authentication
decision (match/no match). If the decision is a no
match (5), then the user’s access to computing terminal
will be suspended, and the user will be required to re-
authenticate using the primary authentication method
(e.g., password).

� However, when the decision is a match (6) then
the user’s access will be maintained. The profile of
the current user in the AS will be updated after the

correct match of the user profile (7). In WACA, this
update frequency is a system parameter and can be
set by the admin in the security policy. An optimum
value of this parameter can be set after experiment-
ing with different values in a real-world implemen-
tation. In this way, the user profile will be kept up-
to-date over time.

� Whenever a typing activity is initiated on the key-
board of the computer, the smartwatch will be noti-
fied (8) again by the terminal to start over the
authentication process continuously.

In the following subsections, we explain the details of
WACA and its key stages.

5.2 Data Collection

In WACA, data collection refers to capturing sensor readings
from the user’s smartwatch through a secure wireless com-
munication channel (i.e., via WiFi or Bluetooth). An app is
installed on the smartwatch to listen to the physical sensors.
Then, the raw sensor data is transmitted to the computer
through a secure communication channel.

Each row of the collected raw data of accelerometer is
represented in the format of ~acc ¼< ta; xa; ya; za > and
gyroscope is represented as ~gyro ¼< tg; xg; yg; zg > , where
t stands for timestamps and x; y; z represent the different
axis values of the accelerometer and gyroscope sensors.
Each of t; x; y, and z is stored as a different vector. The
length of the vectors directly depends on the sampling rate
of the sensors and the time interval of the data collection. In
WACA, the parameter sample size refers to the length of
these vectors, and it is set as a configurable parameter while
the parameter sample rate is a constant system parameter
that is characterized by the wearable device and app.

5.3 Preprocessing

In WACA, preprocessing stage refers to the preparation of raw
sensor readings for the next stages. It consists of cleaning and
transformation of the raw data. In the cleaning part, the noise
is removed. To remove the effect of the noise from data, we
apply M-point Moving Average Filter (MAF), which is a sim-
ple low-pass filter and it operates by taking the average of M

Fig. 4. WACA framework architecture and key components.
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neighbor points and generates a single output. M-point filter-
ing in equation form can be expressed as follows:

_y½i� ¼ 1

M

XM�1

j¼0

_x½iþ j�; (1)

where _x is the raw sensor data, _y is the new filtered data,
and i indicates the current sample that is averaged. The fil-
tered data becomes smoother than the raw data without
altering the value at that point.

After filtering the noise, the data is transformed into
appropriate forms for the next stage. Particularly, different
types of sensor data are separated according to an assigned
ID number during the sensor registration and then x, y, and
z axes of the sensor values are recorded as different vectors
e.g., ~xa ¼< xa

1; . . . ; xa
n > and ~xg ¼< xg

1; . . . ; xg
n > for a

profile of n samples.

5.4 Feature Extraction & User Profiling

In WACA, Feature Extraction (FE) refers to the transforma-
tion of the time series raw data into a number of features. In
order to create the feature vector, each feature is computed
using the data vectors. As an example, the first feature is cal-
culated from a function f , i.e., f1 ¼ fðxa; ya; za; xg; yg; zgÞ and
the second feature is calculated from another function g, i.e.,
f2 ¼ gðxa; ya; za; xg; yg; zgÞ etc. Then, the final feature vector
~f ¼< f1; f2; . . . ; fn > is generated using all the calculated
features.

As each element of the feature vector has different ranges,
some of the features can be dominant in the distancemeasure-
ment. To prevent this and create a scale-invariant feature vec-
tor, we apply normalization to the feature vector to map the
interval [xmin; xmax] into the unit scale [0, 1]. We formulate
this linear normalization process inWACA as follows:

xnew ¼ x� xmin

xmax � xmin
; (2)

where xmin and xmax are the minimum, and maximum value
of the features of the user’s enrolled templates.

After generating the final feature vector ~f , in the user
profiling stage, a user profile ~p is generated by adding the
user ID and start and end timestamps of the data sample,
i.e., ~p ¼< userID; tstart; tend; ~f > . If the user is in the enroll-
ment phase, this profile is transmitted to the AS to be stored
in a database. Finally, if the user is unknown, and a typing
activity notification comes from the computer, the profile is
passed to the Decision Module.

The feature set used in our framework is presented in
Table 1. These features were chosen as they performed well
in similar contexts [29], [30].

5.5 Decision Module

The last stage in WACA is the decision module. The task of
this stage is classifying the user as authorized or unautho-
rized for given credentials entered during the initial login.
For authentication, we use distance measures. The distance
measure methods simply calculate the distance between
two vectors or data points in a coordinate plane. It is
directly related to the similarity of compared time-series
data sets. The most widely used distance measure is

euclidean Distance. It is actually just the distance between
two points in vector space and is the particular case of Min-
kowski Distance, which is expressed as follows:

distanceð~x;~yÞ ¼
Xn
i¼1

ðxi � yiÞp
 !1

p

; (3)

where ~x ¼ ðx1; x2; . . . ; xnÞ and ~y ¼ ðy1; y2; . . . ; ynÞ are the set
of sensor observations to be compared. If p ¼ 2, it is euclid-
ean distance and has been extensively used in the key-
stroke-based authentication methods. WACA calculates the
distance and returns the result by comparing it with a con-
figurable predetermined threshold value (i.e., genuine if
distance < threshold, impostor if distance � threshold), the
impact of which is analyzed in Section 6.1. Indeed, this
threshold measures the confidence of the decision for a
given user.

In addition to euclidean and Minkowski Distances, there
are several distance measurement methods utilized in bio-
metric authentication systems which may perform differ-
ently depending on the context. Therefore, we also tested
different distance metrics in our experiments to see, which
shows the best for WACA. Other distance metrics that we
tested in our experiments are Cosine Distance, Correlation
Distance, Manhattan (Cityblock) Distance, and Minkowski with
p = 5. The performance of each one is given in Section 6.1.

6 PERFORMANCE EVALUATION

We tested the performance, efficiency, and security of
WACA with more than thirty real users and data collected
from them. We specifically evaluated WACA in terms of
three metrics: (i) How accurately can it differentiate between
genuine and impostor users? (ii) How fast can it detect an impos-
tor? (iii)How accurately can it identify an impostor? In for these
purposes, we first conduct authentication experiments. In
these, we measure how WACA performs when users type a
different or the same text. We also analyze how the sample
size and the detection technique impact WACA’s perfor-
mance. The effect of the sample size allowed to evaluate the
quickness of WACA. Finally, we also conducted an experi-
ment to show how successful WACA would be in identify-
ing insider threats.

Data and Collection Methodology. In our experiments,
we collected data from 343 human subjects.4 During the

TABLE 1
Feature Set Extracted From Sensor Data in WACA

Domain Feature Length

Time

Mean, Median, Variance, Average Absolute
Difference of Peaks, Range, Mode, Covariance,
Mewan Absolute Deviation (MAD), Inter-
quartile Range (IQR), correlation between axes
(xy, yz, xz), Skewness, Kurtosis

12*6
= 72

Frequency Entropy, Spectral energy 2*6 =
12

Total # 84

3. Not all of them participated in all experiments.
4. Our research study with the human subjects was conducted with

the appropriate Institutional Review Board (IRB) approvals.
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collection of data, an Android Wear smartwatch with an
installed data collection app was distributed to the partici-
pants, and the participants were asked to type a text. The
participants were free to choose the hand (left/right) on
which they wore the smartwatch. The choice of the hand
that the participants wore the smartwatch was left to the
participants. Moreover, they were also given the freedom to
adjust the sitting position and the keyboard and screen posi-
tion according to their comfort levels. It is also worth noting
that sitting and wrist position (i.e., if it is resting on the table
or maintained in the air) may affect the performance. There-
fore, a real-world implementation may require further cali-
bration before enrolling the users to the system.

Throughout these experiments, we utilized a standalone
qwerty keyboard to have generic results. Before typing each
text, the participants were also given enough time to read
the texts to make them familiar with the text as typing a
familiar text is a more common activity.

The participants were involved in two typing tasks con-
ducted in two different sessions. They were asked to type
with their normal typing style without noticing that their
data was recorded. The two data sets were compiled as
follows:

� Typing Task-1: 20 participants are involved in this
task, and the participants were asked to type a story
from a set of short and simple stories from the Amer-
ican Literature5 for four minutes. The story was cho-
sen randomly by the participants. On average, four
minutes of data corresponds to 25,000 samples for
each participant (Total: 850,000 samples).

� Typing Task-2: 20 participants are involved in this
task and for this data set, all the participants were
asked to type the same text6 for four minutes. For
each participant, almost the same amount of data is
collected as Typing Task-1. This dataset is essential
to be able to measure the quality of the features.

� Typing Task-3: 34 participants are involved in this
task, and the participants were instructed to imitate
someone else’ typing pattern by watching the prere-
corded video of the other person. For these experi-
ments, one of the participants was recorded on
video while typing a short and simple sentence for
15 seconds from a perspective that the hand motions,
smartwatch, keyboard, and the screen could be seen.
Although it was not required, the perspective
allowed to infer what the victimwas typing bywatch-
ing. This dataset was primarily used to analyze the
attacking scenarios.

Note that in all the experiments, the dataset obtained
from all these tasks were always used by dividing them into
equal size chunks. Therefore, even if all the participants in
Typing Task-2 typed the same text, the compared samples
always corresponded to different texts for a participant.

Moreover, in our experiments, we split the collected data
sets into equal size chunks, called sample size. It is the num-
ber of samples (i.e., row) in a chunk. Each chunk consists of
8 columns of data, two of which are timestamp, and the

others are 6-dimensional sensor data. The sample size is the
main system design parameter in our experiments as it has
a direct impact on the time required to collect data. Particu-
larly, the time t required to collect data with the sample size
can be represented as t ¼ sample size=100 in seconds as the
sampling rate in our experiments was 100 Hz.

Performance Metrics. In the authentication experiments,
we used Equal Error Rate (EER) as it is a commonly accepted
metric to assess the accuracy of WACA. EER is calculated
using two metrics: False Acceptance Rate (FAR) and False
Reject Rate (FRR). FAR is the rate of incorrectly accepted
unauthorized users among all the unauthorized attempts:
The increase in FAR is a direct threat to the system’s secu-
rity level (i.e., confidence level on the decision). For more
valuable assets, increasing the threshold will decrease FAR.
On the other hand, FRR is the rate of incorrectly rejected
authorized users among all the legitimate authentication
attempts. Contrary to FAR, FRR can be decreased by
decreasing the value of the threshold. Indeed, the threshold
value effectively measures the confidence of the decision for
a given user. Finally, EER is the point that gives the closest
FAR and FRR point for a given threshold (ideal EER is the
intersection point of FAR and FRR) and the lower the EER,
the better is an authentication system.

6.1 Results

In this section,we present and discuss the evaluation results.
Impact of the Text Dependency. In this experiment, our goal

is to analyze how EER changes among the participants. We
try to answer: How does WACA perform with the typed text?
This is also a more advanced analysis of the framework and
the fundamental idea than that of in Section 2.

Specifically, for this experiment, we used Typing Tasks 1
(any text) and Typing Task 2 (the same text) dataset and we
fixed the sample size to 1,000 and used Manhattan (City-
block) as a representative distance measure to compare the
samples. Note that as later shown and analyzed in Figs. 7
and 8, this distance metric was chosen as it performed the
best among the different distance measurement techniques.
This is because Manhattan is rectilinear distance, consider-
ing the absolute differences and is more suitable for natural
settings [51], [52], [53]. For each sample of a particular user,
we computed the differences from other users’ samples. For
this purpose, we computed the N �N dissimilarity matrix,
where N is the total number of samples for all the partici-
pants. The dissimilarity matrix was calculated by measuring
the similarity of each sample to all the other samples using
leave-one-out cross-validation7 method [54].

Then, for a given threshold and participant, the ratio of
the rejected and accepted samples was computed to obtain
FRR and FAR, respectively. This process was repeated by
incrementing the threshold by 0.01 in each step for all the
samples of all the participants. This gave us a set of EER for
each participant. Note that in a real system, FAR/FRR rate
can be tuned according to the system preferences, but here
our purpose is to find an acceptable performance metric for

5. https://americanliterature.com/100-great-short-stories
6. https://en.wikipedia.org/wiki/The_Adventures_of_Tom_Sawyer

7. Even though to show the feasibility of our method, we tested our
method with leave-one-out cross-validation, collecting and storing
more than one samples from each user at the enrollment phase may
impact the accuracy in real-life implementations.
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WACA. The results are plotted in Fig. 5 for Typing Task-1
and Fig. 6 for Typing Task-2. Average EER for the Typing
Task-1 experiment was 0.0513. Fig. 6 compares the EER of
participants for the Typing Task-2 experiment. Average
EER for this experiment was 0.0647.

If we compare the ERR of each participant in both the
experiments, we see that they are also close to each other,
where a few of the participants perform very distinctive
behaviors (e.g., participant 15). However, the overall distri-
bution of EER over the participants is similar in both the
experiments. Recall that in Typing Task-1, all the partici-
pants typed different texts, while they typed the same text
in Typing Task-2.

Overall, in this analysis we report the average EERs of both the
experiments are close (around %1), which supports the usabil-
ity of WACA regardless of the typed text for the continuous
authentication session.

Impact of the Sample Size and the Distance Measuring Tech-
nique. In these experiments, our goal was to assess how different
sample sizes and the distance measuring techniques used in
WACA impact the performance. For this, we varied the sample
size from 300 to 3,000 and utilized five different distance
measuring techniques, euclidean (p = 2), Cosine, Correla-
tion, Cityblock, and Minkowski (p = 5). Again, two types of
participant dataset, Typing Task-1 (any text) and Typing
Task-2 (the same text), were used. Fig. 7 (Typing Task-1)
and Fig. 8 (Typing Task-2) present the main results when
the sample size increases.

As can be seen in Fig. 7 when the participants typed dif-
ferent texts, the EERs are generally decreasing with the
increase of sample sizes as expected. The EERs go under
0.05 after the sample size of 1,500 for all the distance metrics
utilized except for Minkowski (p = 5). Then, the EER is con-
verging to the value of 0.01-0.02 through the sample size of
3,000. In the best case, EER 0.007 is achieved with the

sample size of 2,750 for the Manhattan (i.e., Cityblock) dis-
tance measurement technique.

Fig. 8 presents the results of the same-text experiment
(Typing Task-2). As in Fig. 7, the general behavior is that
the EERs are decreasing with the increase of the samples.
The lowest EER of 0.01 is achieved using the Cityblock dis-
tance measuring technique at 3,000. We also see the conver-
gence of EER in Fig. 8 as Fig. 7. Plots are starting to
converge around sample sizes 1,500-2,000 and converging
to 0.01 for Cityblock and Correlation distance measuring
techniques. We also see that at 3,000, 0.02 EER is obtained
for Cosine and Correlation techniques. However, if shorter
data collection time is of interest, a sample size of 2,000,
which needs 20 seconds for data collection, gives 0.03-0.04
EER. However, if we increase the sample size, both the
accuracy and the data collection time are increasing. This
means the time needed to catch an adversary or more gener-
ally, the re-verification period would also increase. There-
fore, an optimal sample size should be adjusted according
to the preferences in a real application based on the usage
needs or security policies.

To conclude, the features in WACA can successfully differenti-
ate the users from their typing rhythm with a minimal error rate
(1 percent) independent of the typed text. There is an inherent
trade-off between the EER and data collection time, which should
be configured according to the security needs of an organization.

The Accuracy of Insider Threat Identification. As noted ear-
lier, the insider threat detection is important in continuous
authentication systems as a potential attacker is likely to be
an insider. To effectively locate such an insider attacker
within an organization where WACA is employed, an

Fig. 7. Average EER according to different sample sizes using different
distance metrics while users are performing Typing Task-1.

Fig. 8. Average EER according to different sample sizes using different
distance metrics while users are performing Typing Task-2.

Fig. 6. EER for each participant with a sample size=1000 using Manhat-
tan (Cityblock) distance metric during Typing Task-2. Average EER is
0.0647.

Fig. 5. EER for each participant with a sample size of 1000 using Man-
hattan (Cityblock) distance metric during Typing Task-1. Average EER
is 0.0513.
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identification mechanism is needed. Depending on the secu-
rity policy of the organization, the management may want
to do an investigation to find the insider attacker. In this
case, we will have many unknown samples of the attacker
to find the owner of the samples, and we will need a one-
to-many classification task to exactly detect an insider
attacker. For this purpose, we fix the sample size to 1,500
and the number of training sample to five. With those
parameters, we tested different machine learning algo-
rithms and results are presented in Table 2. Here, we
assume that the insider’s data is also stored in the authenti-
cation server’s database (training set) as a legitimate user.

According to the results given in Table 2, the most accu-
rate results are obtained with the Multilayer Perceptron
(MLP) algorithm. This happens because of two reasons.
First, MLP is a neural network model, which maps a set of
input data into a set of outputs through the interconnected
processing elements (neurons). The main advantage of MLP
is that it approximates highly nonlinear functions between
input and output [55]. Second, when we look at literature,
MLP is giving very high accuracy with the features obtained
from noisy sensor data collected from devices like smart-
phone or smartwatch. We present these works as well as all
the technical details of MLP used in our work in Table 7 in
Appendix B, available in the online supplemental material.

We also analyzed the impact of the sample size and the size
of the training data on the accuracy. For this, we focused on
two test scenarios that would be relevant in real investigations
and tested the efficacy of 7 different machine learning algo-
rithms. As seen in Table 2, MLP performed the best and
accordingly we picked MLP as a representative algorithm to
be used in these scenarios: Scenario 1:8 In the first scenario, we
built our testmodel using the same text and tested again using
the same text with the 5-fold cross-validation technique.
For this scenario, we utilized Typing Task-2 Dataset for both
the training and testing. This type of scenario can be useful as
all the users are asked to type a provided text, and during the
investigation, all users are requested again to type the same
text. The results are presented in Table 3. Scenario 2: In the sec-
ond scenario, the test model was trained with the same text
dataset, which is the same for all the participants and tested
using random-text experiments, where each user typed a ran-
domly chosen text. For this scenario, we utilized Typing Task-

2, Typing Task-1 Datasets for training and testing, respec-
tively. This scenario is suitable for cases where all the users
are enrolled using the same text, but a user is verified while
typing a random text. The results for this test scenario are pre-
sented in Table 3.

As can be seen in Table 3, in the best case, 99.2 percent
identification rate of an insider threat can be achieved with
the sample size of 1,500 while the model is trained with five
samples. Even with two samples of the insider, 93.7 percent
accuracy rate can be achieved with the sample size of 1,500.

Scenario 2 aims to answer the question of “Can an insider
be identified while typing a random text even if s/he is enrolled
while typing a given text ?” Table 3 presents the result of this
question for Scenario 2. As can be seen fromTable 3, similar to
Scenario 1, the accuracy rates increase as the sample sizes and
training set increase, and the time to build model and time
required to catch the attacker is also increasing. Three training
samples and the sample size is 1,500 or four training samples
with the sample size of 1,000 may be the two most optimal
choices for real cases.

Overall, WACA can achieve 0.01 error rate with almost 30 sec-
onds of the data collection (see Figs. 7 and 8) in the best case. If a
shorter time is of interest, 0.02 error rate is achieved with 20 sec-
onds of the data collection. Moreover, if five training samples with
1500 sample sizes are obtained from a potential insider threat,
WACA could identify the insider with 99.2 percent accuracy rate
while typing the provided text (see Table 3) or with 91.8 percent
accuracy rate while typing a random text (see Table 3).

6.2 Advanced Attacks on WACA With More
Powerful Adversaries

In this subsection, we evaluate the performance of WACA
against two powerful attacks: imitation [23], [26] and statis-
tical [31], [32] attacks. In these attacks, the attacker is aware
of WACA and can try to defeat WACA using special tools
and skills.

Numerous attacks against classical keystroke dynamics
that exist in the literature can also be used to attack WACA.
The attacker can be a human or a trained bot. A human-
type attacker can perform zero-effort attacks9 [56] or imitation

TABLE 2
Evaluation of the Insider Threat Identification Results With

Seven Different Machine Learning Algorithms

Classifier Typing Task-1 Typing Task-2

SVM 98.7 98.1
Random Forest 98.9 97.8
Naive Bayes 93.6 87.3
Decision Tree 62.1 62.1
MLP 99.0 99.2
kNN 96.4 96.8
Logistic Regression 90.5 93.7

MLP yields the best result and the training/validation graphs of the MLP algo-
rithm are given inAppendix B.2, which can be found on the Computer SocietyDig-
ital Library at http://doi.ieeecomputersociety.org/10.1109/TMC.2020.2974941.

TABLE 3
The Accuracy Results Insider Threat Identification Experiments

for Different Sample Sizes in Scenario 1 and 2

Scenario 1: Accuracy (%)

Sample size
Training Set

1 2 3 4 5

1500 77.8 93.7 97.2 98.4 99.2
1000 62.8 87.6 93.8 95.3 97.1
500 37.5 63.7 75.9 83.1 89.6
250 28.5 43 53.1 61.8 62.1

Scenario 2: Accuracy (%)

1500 55.8 80.1 88.7 89.8 91.8
1000 51.7 82.7 83.2 86.1 86.8
500 29.9 51.3 66.7 73.8 76.5
250 22.1 33.6 41.9 49.8 54.1

8. Please note that this is different the Typing Task-1 in Fig. 2. 9. Also called zero-information attack.
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attacks [23] to defeat the WACA’s authentication system. In
zero-effort attacks, the attacker tries to defeat the authentica-
tion system without any effort or prior knowledge. Zero-
effort attacks will not be successful due to the low EER
values in WACA as analyzed in the previous sub-sections.
However, the effectiveness of the imitation attacks per-
formed by a human should be investigated as noted in
some recent studies [23], [26].

In addition to these attacks, another recent attack against
the behavioral biometrics [31], [32] has emerged, which is
called statistical attacks. In this attack, a bot is first trained
using typical user data from a large population. Then, the
bot generates random permutations of the features to mimic
a legitimate user. In addition to human and robot attacks, a
replay attack using a key-logger [57] is noted in the literature,
which can also be performed against the keystroke dynam-
ics. However, a key-logger installed on the computer can
obtain only the timing of the keystrokes, which is solely not
enough to use it in a replay attack against WACA as there is
not a way that a key-logger can obtain the three-dimen-
sional sensor data collected by the smartwatch.

In the next sub-sections, we consider these two powerful
attacks (imitation and statistical) and investigate the effec-
tiveness of WACA against them. In these cases, the attacker
would have somehow obtained the victim’s smartwatch or
manipulates his smartwatch. We use the zero-effort attacks
as a baseline to evaluate the success of the imitation and sta-
tistical attacks. In imitation attacks, the attacker either can
steal the victim’s smartwatch or the victim can leave it
behind for a while, then the attacker wears the victim’s
smartwatch and can try to impersonate him while attacking.
On the other hand, the statistical attack is more complex and
requires special tools and skills. In this type of attack, we
assume the attacker can provide its input data to the system.
It manipulates its username and profile data to get access to
the computer that he does not have permission.

6.2.1 Imitation Attacks

In this subsection, we evaluate the performance of an imitat-
ing adversary, who knows that WACA is already installed
on the current system. The adversary is assumed to be
watching his victim by standing nearby or trying to imitate
the victim’s typing style by looking at the previously
recorded video of the victim while typing. S/he is also
assumed to be opportunistically waiting for the right time
to mimic the victim.

To replicate this imitation attack scenario, we recorded a
15 seconds video of a legitimate user and presented this
video to an attacker (i.e., another participant in our experi-
ments). The video showed the user as s/he was typing and
thus the hand, fingers, watch and keyboard were all visible.
By watching the video (multiple times allowed in experi-
ments), the attacker tried to imitate the legitimate user. Note
that this scenario would increase the chances of a successful
attack when compared to a real-life case where the attacker
would possibly only have limited opportunity towatch a vic-
tim.We also collected the victim’s typing data to evaluate the
performance of the attackers. We computed EER for this
attack scenario and compared it with the case when there
was a zero-effort for the attack. In the zero-effort attack, we

used the data set obtained in Typing Task-1 Dataset. We
applied the leave-one-out method [54] by leaving the vic-
tim’s data out as in the other authentication experiments
While calculating EER (i.e., the intersection of FAR and FRR)
of the victim. In the imitation attack, since we only had the
impostor attempts, EER would be equal to the attacker’s
acceptance rate. We also note thatWACAwas directly tested
without any change. The results are presented in Fig. 9.

As presented in Fig. 9, the attackers have different success
rates (attacker accept rate) for different sample sizes. The
highest success rate was achieved when the sample size is
equal to 500, but the success rates are decreasing to the much
lower rates as the sample sizes increase. A sample size of 500
corresponds to almost 2-3 keystrokes for the sampling rate
used, which is not enough to measure and settle down for
some of the features. So, this is not practical from the
attacker’s perspective. Beyond 1,500, which corresponds to
15 seconds of sensor readings, the probability of an attacker
to imitate a user is significantly decreasing (i.e., 0.04). These
results indicate that even though an attacker is aware of WACA in
a targeted system, s/he still has a meager chance to be successful.

6.2.2 Statistical Attacks

In this subsection, we evaluate WACA against statistical
attacks. In this attack scenario, it is assumed that the attacker
has a database obtained from AS consisting of the user pro-
files. Similar to the imitation attack, it is also assumed that
the attacker can provide its input to the system. As men-
tioned earlier, this can occur either by obtaining the victim’s
smartwatch or if the attacker is an insider, it can manipulate
its input data to deceive WACA. It is also worth mentioning
that we assume the attacker has only a limited amount of
time to attack; therefore, it only tries the data that has the
highest chance to get in, which we refer to as topBins in the
attack algorithm that will be utilized and noted below.

Note that statistical attacks are very powerful attacks and
it is successfully implemented to bypass the conventional
keystroke-based systems [31]. It is based on the generation of
fake (synthetic) inputs using common features of a given pop-
ulation. The idea behind this attack is using the random combi-
nation of themost common features of the population to defeat
the authentication system. We designed the following attack
scenario to testWACAagainst the statistical attacks.

Fig. 9. Attacker accept rates for different sample sizes. The results show
that an imitation attacker has no more advantage than a zero-effort
attacker.

ACAR ET AL.: USABLE AND ROBUST CONTINUOUS AUTHENTICATION FRAMEWORK USING WEARABLES 2149

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 15:53:33 UTC from IEEE Xplore.  Restrictions apply. 



In our attack, we used both Typing Task-1 and Typing
Task-2 dataset as input. Each participant was chosen as a
victim iteratively, and the other participants’ samples were
used to generate forged data samples. Then, the forged sam-
ples were used to attack the victim. For this, a histogram
was created for each feature of all the participants in the
dataset except the victim. The forged samples were gener-
ated as in Algorithm 1 in Appendix A, available in the
online supplemental material. Overall, we created three dif-
ferent statistical attackers with three different capabilities
(bin sizes in the histogram). Statistical Attacker-1, Statistical
Attacker-2, and Statistical Attacker-3. Before running the
algorithm for attacking WACA, we first calculated the EER
for each user without adding any forged data. Similar to the
imitation attacks, the attacker acceptance rate in zero-effort
attack corresponds to the average EER. We conducted
experiments without attack under varying sample and bin
sizes. The results are shown in Fig. 10.

In Fig. 10, we can see that bin number 50 has the most
successful result on attacking victims. This is because if we
increase the bin number and keep the bins with the highest
number of occurrences constant, the width of the bins will
narrow; so, the range of the forged data will be confined to
a very small range. On the other hand, if we decrease the
bin number significantly, the less frequently occurred bins
will also be included in the sample generation range, which
will reduce the success rate of the attacks. Finally, we note
that in the attack scenario, we choose each user in our data-
set as a victim in an iterative way. These results show that
despite the small increase compared to zero-effort, the attacker
does not have a chance to defeat WACA using the systematically
generated fake data due to its high dimensional feature vector in
WACA’s design.

As a summary, neither the imitation nor statistical attacks put
WACA in danger as their success rates are very close to zero-effort
attacks.

6.3 Resource Consumption

In WACA, a smartwatch, a computer, and an authentication
server work together. In this subsection, we only analyze the
resource consumption of relatively constrained smartwatches.
It is worth noting that we monitored the consumption of our

application while it was running continuously; however, in
WACA, the data collection app does not have to be running
continuously. It can happen periodically or on-demand
because the data collection runs only when the smartwatch is
notified by the computer that the user is typing on.We analyze
the performance of both LG G Watch R and Samsung Gear
Live smartwatches used in the experiments. Both smart-
watches have Cortex-A7 at 1.2 GHz and 512 MB RAM, but
Samsung uses 300 mAh battery, while LG is using 410 mAh
battery. The results are presented in Table 4.

In all the experiments, we both monitored the memory
and CPU resource utilization of the smartwatches in the
default mode (i.e., not actively running any app - no
WACA) and while the app was running (w/WACA). In the
default mode, both smartwatches used almost 4.5 MB mem-
ory and 4.5 percent CPU their consumption while the app
was running, as shown in Table 4. As compared to the
default memory usage (no WACA), the memory consump-
tion in the smartwatch in WACA is increasing, but it is still
at an acceptable rate.

In addition to memory and CPU consumption, we also
analyzed the power consumption and data size while run-
ning our app for 10 minutes. We excluded the power con-
sumption of the screen as the screen can be turned off or the
smartwatch can be in the ambient mode during the data col-
lection of WACA.We see that the power consumption of the
app scales by the sampling frequency. However, when we
decrease the sampling rate, the time needed to collect a cer-
tain amount of data will also increase. Hence, the optimum
sampling rate should be tuned according to the desired
security policy.

7 COMPARATIVE EVALUATION

In the literature, there is not a widely accepted standard
framework to compare device authenticators. However,
Usability-Deployability-Security (UDS) framework pro-
posed in [58] is a highly accepted framework for web authen-
tication schemes. To compare our work with its alternatives,
we remove some of the irrelevant and non-applicable bene-
fits and use only the relevant ones of the UDS framework.
The complete list of benefits can be found in [58]. After also

Fig. 10. 3 different statistical attacks against WACA with different sample
sizes.

TABLE 4
Resource Consumption of the Smartwatches Used in the

Experiments: LGWatch R and Samsung Gear Live

LG G Samsung
Watch R Gear Live

CPU (no WACA) 4.5% 4.5%

CPU (w/WACA) 7.5% 16.8%

Memory (no WACA) 4.5 MB 4.5 MB

Memory (w/WACA) 15.2 MB 13.8 MB

Battery
10 Hz 1.1% 1.2%
30 Hz 1.6% 0.3%
100 Hz 2.1% 2.4%

Data Size
10 Hz 0.3 MB 0.3 MB
30 Hz 0.6 MB 0.9 MB
100 Hz 4.1 MB 6.5 MB
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adding three new benefits, we end up with 18 benefits in
total. Table 5 rates WACA using these 18 benefits. For space,
we cannot compare WACA to all continuous authentication
methods proposed in the literature. Therefore, we choose
representatives for each continuous authenticationmethod.

WACAcaptures the sensor readings through a smartwatch
without interrupting the user, i.e., unobtrusively. However,
unlike time-out or classical keystroke dynamics, it requires an
extra channel to collect data, but obviously a smartwatch is a
not a customized hardware, i.e., it is an off-the-shelf device, so
we say it partially supports the benefit ofNothing-to-Carry and
since its error is deficient, it also offers the advantage of Infre-
quent-Errors. On the other hand, WACA outperforms all other
methods in terms of security benefits. In addition to WACA,
eye-movement based authentication method also seems as
secure asWACA.However,WACA’s performance for usabil-
ity and deployability is better. For example, WACA offers
much lower error rates, and eye-movement based methods
require a specialized eye or gaze-trackers and the user should
be in a certain distance and in front of the eye tracker which
obstructs the usability of the eye-movement based methods.
They are more convenient for challenge-response type
authentication methods [62] even though they have the capa-
bility to provide data continuously and transparently. In brief,
our conclusion from this comparative evaluation shows that
WACA offers better security benefits while keeping the
usability at the same level as other notablemethods.

8 DISCUSSION

Security Policy Implementation Considerations. WACA works by
checking if the current user’s profile matched the profile of the
logged-in user. When an unauthorized access attempt is
detected, the reaction depends on the previously decided secu-
rity policy. Depending on the security policy, when an attacker
is detected, the screen can be locked, and the user can be chal-
lenged to re-login; the management and security teams can be
alerted in real-time, or a notification e-mail can be sent to the

registered e-mail of the logged-in user, and so on. Moreover,
we showed that WACA could differentiate an insider from an
outsider accurately. In suspicious cases, the administrator can
do further investigation to detect the insider, and as we noted
earlier, the insider detection is possible in WACA. We also
note that even if WACA catches an insider attacker, WACA
can not know if the attacker has the full key, which is out of
scope this work. Therefore, even if the system is logged-out, an
insider can log-in again if it has the full key. Therefore, reset-
ting the initial authentication factor should be considered in
the security policy in this case. Finally, the server can also log
the failed attempts to prevent attacks aiming to drain the
smartwatch’s battery.

Moreover, if WACA is deployed in an environment
where typing is not required much, the actions that will be
performed when the user is not typing should be defined in
the security policy. A straightforward solution to this prob-
lem can be reducing the system to default security, i.e., lock-
ing out the user if there is inactivity for a certain duration.

WACA captures the typing patterns of the user only
from one wrist. If the wrist wearable is on the left hand, for
example, the typing pattern for the words “and” and “aod”
would be the same. This can be perhaps exploited by the
attacker by using the letters on the right. However, this
would be a remote possibility. In WACA, we wanted to test
our proposed method in a more realistic scenario assuming
a user will wear a wearable on both hands might be an unre-
alistic assumption. However, in highly extreme cases, i.e.,
highly critical environments, two smartwatches can be uti-
lized to collect data from two hands of the users. This will
prevent against this type of attack. This should be consid-
ered while deploying WACA in a real-world application.

Privacy. InWACA, the computer and the wearable are the
devices that belong to the user or belong to the same authen-
tication realm and thus are trusted. The only device that may
threaten privacy is the AS. As for the security of the data at
rest at the server, the existing industry standards such as
AES, RSA, ECC, RC4, can be employed to establish the secu-
rity of the data in these cases. In WACA, after collecting the
raw sensor data from the smartwatch, either the raw sensor
data can be transmitted to the AS, or the features can be com-
puted on the smartwatch and the feature vector can be trans-
mitted.No data is stored on the watch and as noted in the
Assumptions Section (Section 4), this channel is securedwith
existing methods. If the raw sensor data is sent to the AS, the
AS may try to infer the user’s typed characters from the raw
sensor data. The more secure way would be to compute the
features on the smartwatch and to keep the feature vectors of
the profiles of the users in the AS. In that case, the transmit-
ted feature vector has only the mean of the values of the
multi-dimensional sensor data and thus inferring the typed
characters would not be possible at the AS.

9 CONCLUSION

Wearables such as smartwatches and fitness trackers have
grown exponentially in a short period of time. It is estimated
that one in four smartphone owners will also be using a
wearable device such as a smartwatch. This ubiquity
of wearable devices makes them a perfect candidate to utilize
in continuous authentication settings. The continuous

TABLE 5
Comparative Evaluation of WACA Using the UDS

Framework [58] With Continuous Authentication Alternatives

� ¼ offers the benefit;�º ¼ almost offers the benefit; no circle ¼ does not offer
the benefit.
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authentication allows users to be re-verified periodically
throughout the login sessionwithout breaking the continuity
of the session. In this paper, we introduced a novel Wear-
able-Assisted Continuous Authentication (WACA) utilizing
the sensory data from the built-in motion sensors available
on smartwatches. WACA is a practical and usable wearable-
assisted continuous authentication system that combines the
functionality of wearables and usability of continuous
authentication. Particularly, WACA decreases the vulnera-
ble time window of a continuous authentication system to as
low as 20 seconds, prevents the privilege abuse and insider
attacks and also allows the insider threat identification. We
evaluated the efficacy and robustness of WACA with real
data from real experiments. The results showed that WACA
could achieve 1 percent EER for 30 seconds or 2-3 percent
EER for 20 seconds of data collection time and error rates are
as low as 1 percent with almost a perfect (99.2 percent)
insider threat identification rate.

ACKNOWLEDGMENTS

This work was partially supported by US National Science
Foundation (NSF) under the grant numbers NSF-CNS-
1718116 and NSF-CAREER-CNS-1453647. The statements
made herein are solely the responsibility of the authors.

REFERENCES

[1] J. Bonneau, C.Herley, P. C. vanOorschot, and F. Stajano, “Passwords
and the evolution of imperfect authentication,” Commun. ACM,
vol. 58, no. 7, pp. 78–87, 2015.

[2] E.Grosse andM.Upadhyay, “Authentication at scale,” IEEE Security
Privacy, vol. 11, no. 1, pp. 15–22, Jan./Feb. 2013.

[3] Kaspersky, “Consumer security risks survey 2016,” 2016.
[Online]. Available: https://dl.acronis.com/u/pdf/Kaspersky_
B2C_survey_2016_report.pdf

[4] B. Dickson, “The many ways your password can be stolen or
bypassed,” Feb. 2016. [Online]. Available: https://bdtechtalks.
com/2016/02/12/

[5] M. Theofanos, S. Garfinkel, and Y.-Y. Choong, “Secure and usable
enterprise authentication: Lessons from the field,” IEEE Security
Privacy, vol. 14, no. 5, pp. 14–21, Sep./Oct. 2016.

[6] S. Dispensa, “Enhanced multi factor authentication,” U.S. Patent
9,762,576, Sep. 12, 2017.

[7] M. Sajjad et al., “Cnn-based anti-spoofing two-tier multi-factor
authentication system,” Pattern Recognit. Lett., vol. 126, pp. 123–131,
2019.

[8] A.Acar,W. Liu, R. Bayeh, K.Akkaya, andA. S. Uluagac, “Aprivacy-
preserving multifactor authentication system,” Secur. Privacy, vol. 2,
no. 5, 2019, Art. no. e88.

[9] Google, “Google eyes behavioural solution for continuous
authentication,” May 2016. [Online]. Available: http://www.
planetbiometrics.com/article-details/i/4512/

[10] Active authentication, 2013. [Online]. Available: http://www.
darpa.mil/program/active-authentication

[11] V. M. Patel, R. Chellappa, D. Chandra, and B. Barbello,
“Continuous user authentication on mobile devices: Recent prog-
ress and remaining challenges,” IEEE Signal Process. Mag., vol. 33,
no. 4, pp. 49–61, Jul. 2016.

[12] Z. Sitova et al., “HMOG: New behavioral biometric features for
continuous authentication of smartphone users,” IEEE Trans. Inf.
Forensics Security, vol. 11, no. 5, pp. 877–892, May 2016.

[13] H. Feng, K. Fawaz, and K. G. Shin, “Continuous authentication for
voice assistants,” in Proc. 23rd Annu. Int. Conf. Mobile Comput.
Netw., 2017, pp. 343–355.

[14] D. Dasgupta, A. Roy, and A. Nag, Advances in User Authentication.
Berlin, Germany: Springer, 2017.

[15] I. C. Stylios et al., “A review of continuous authentication using
behavioral biometrics,” in Proc. SouthEast Eur. Des. Autom.
Comput. Eng. Comput. Netw. Soc. Media Conf., 2016, pp. 72–79.

[16] S. Eberz, K. B. Rasmussen, V. Lenders, and I. Martinovic,
“Evaluating behavioral biometrics for continuous authentication:
Challenges and metrics,” in Proc. ACM Asia Conf. Comput. Com-
mun. Secur., 2017, pp. 386–399.

[17] G. Wu, J. Wang, Y. Zhang, and S. Jiang, “A continuous identity
authentication scheme based on physiological and behavioral
characteristics,” Sensors, vol. 18, no. 1, 2018, Art. no. 179.

[18] A. K. Jain, A. Ross, and S. Prabhakar, “An introduction to biomet-
ric recognition,” IEEE Trans. Circuits Syst. Video Technol., vol. 14,
no. 1, pp. 4–20, Jan. 2004.

[19] Disa makes strides toward next generation of authentication, 2018.
[Online]. Available: https://www.disa.mil/NewsandEvents/2018/
DISA-Common-Access-Card-replacement

[20] M. Antal, L. Z. Szab�o, and I. L�aszl�o, “Keystroke dynamics on
Android platform,” Procedia Technol., vol. 19, pp. 820–826, 2015.

[21] C. Wu et al., “Keystroke dynamics enabled authentication and
identification using triboelectric nanogenerator array,” Materials
Today, vol. 21, no. 3, pp. 216–222, 2018.

[22] J. Chen et al., “Personalized keystroke dynamics for self-powered
human–machine interfacing,” ACS Nano, vol. 9, no. 1, pp. 105–116,
2015.

[23] C. M. Tey, P. Gupta, and D. Gao, “I can be you: Questioning the
use of keystroke dynamics as biometrics,” in Proc. 20th Annu.
Netw. Distrib. Syst. Secur. Symp., 2013, pp. 1–17.

[24] A. K. Sikder, H. Aksu, and A. S. Uluagac, “6thSense: A context-
aware sensor-based attack detector for smart devices,” in Proc.
26th USENIX Conf. Secur. Symp., 2017, pp. 397–414.

[25] S. Mare, A. M. Markham, C. Cornelius, R. Peterson, and D. Kotz,
“ZEBRA: Zero-effort bilateral recurring authentication,” in Proc.
IEEE Symp. Security Privacy, 2014, pp. 705–720.

[26] O. Huhta, P. Shrestha, S. Udar, M. Juuti, N. Saxena, and N. Asokan,
“Pitfalls in designing zero-effort deauthentication: Opportunistic
human observation attacks,” in Proc. Netw. Distrib. Syst. Secur.
Symp., 2016, pp. 1–14.

[27] M. L. Ali, J. V. Monaco, C. C. Tappert, and M. Qiu, “Keystroke bio-
metric systems for user authentication,” J. Signal Process. Syst., vol. 86,
pp. 175–190, 2017.

[28] P. S. Teh, A. B. J. Teoh, and S. Yue, “A survey of keystroke dynam-
ics biometrics,” The Sci. World J., vol. 2013, 2013, Art. no. 408280.

[29] K. S. Killourhy and R. A. Maxion, “Comparing anomaly-detection
algorithms for keystroke dynamics,” in Proc. IEEE/IFIP Int. Conf.
Dependable Syst. Netw., pp. 125–134.

[30] A. Serwadda, V. V. Phoha, and Z. Wang, “Which verifiers work?:
A benchmark evaluation of touch-based authentication algo-
rithms,” in Proc. IEEE 6th Int. Conf. Biometrics: Theory Appl. Syst.,
2013, pp. 1–8.

[31] A. Serwadda and V. V. Phoha, “Examining a large keystroke bio-
metrics dataset for statistical-attack openings,” ACM Trans. Inf.
Syst. Secur., vol. 16, no. 2, 2013, Art. no. 8.

[32] V.-D. Stanciu, R. Spolaor, M. Conti, and C. Giuffrida, “On the
effectiveness of sensor-enhanced keystroke dynamics against sta-
tistical attacks,” in Proc. 6th ACM Conf. Data Appl. Secur. Privacy,
2016, pp. 105–112.

[33] C. M. Carrillo, “Continuous biometric authentication for autho-
rized aircraft personnel: A proposed design,” Master’s thesis,
Naval Postgraduate School Monterey, CA, Jun. 2003.

[34] H.-B. Kang and M.-H. Ju, “Multi-modal feature integration for
secure authentication,” in Proc. Int. Conf. Intell. Comput., 2006,
pp. 1191–1200.

[35] A. Azzini, S. Marrara, R. Sassi, and F. Scotti, “A fuzzy approach to
multimodal biometric continuous authentication,” Fuzzy Optim.
Decis. Making, vol. 7, no. 3, pp. 243–256, 2008.

[36] G. Kwang, R. H. Yap, T. Sim, and R. Ramnath, “An usability study
of continuous biometrics authentication,” in Proc. Int. Conf. Bio-
metrics, 2009, pp. 828–837.

[37] Chaos computer club, fingerprint recognition at the supermarket
as insecure as biometrics in passports, 2007. [Online]. Available:
https://ccc.de/en/updates/2007/umsonst-im-supermarkt

[38] Chaos computer club breaks apple touchid, 2013. [Online]. Available:
http://www.ccc.de/en/updates/2013/ccc-breaks-apple-touchid/

[39] N. M. Duc and B. Q. Minh, “Your face is not your password face
authentication bypassing Lenovo–Asus–Toshiba,” Black Hat Brief-
ings, 2009. [Online]. Available: https://blackhat.com/
presentations/bh-dc-09/Nguyen/BlackHat-DC-09-Nguyen-Face-
not-your-password.pdf

[40] A. Boehm et al., “SAFE: Secure authentication with face and eyes,”
in Proc. Int. Conf. Privacy Secur. Mobile Syst., 2013, pp. 1–8.

2152 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 6, JUNE 2021

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 15:53:33 UTC from IEEE Xplore.  Restrictions apply. 

https://dl.acronis.com/u/pdf/Kaspersky_B2C_survey_2016_report.pdf
https://dl.acronis.com/u/pdf/Kaspersky_B2C_survey_2016_report.pdf
https://bdtechtalks.com/2016/02/12/
https://bdtechtalks.com/2016/02/12/
http://www.planetbiometrics.com/article-details/i/4512/
http://www.planetbiometrics.com/article-details/i/4512/
http://www.darpa.mil/program/active-authentication
http://www.darpa.mil/program/active-authentication
https://www.disa.mil/NewsandEvents/2018/DISA-Common-Access-Card-replacement
https://www.disa.mil/NewsandEvents/2018/DISA-Common-Access-Card-replacement
https://ccc.de/en/updates/2007/umsonst-im-supermarkt
http://www.ccc.de/en/updates/2013/ccc-breaks-apple-touchid/
https://blackhat.com/presentations/bh-dc-09/Nguyen/BlackHat-DC-09-Nguyen-Face-not-your-password.pdf
https://blackhat.com/presentations/bh-dc-09/Nguyen/BlackHat-DC-09-Nguyen-Face-not-your-password.pdf
https://blackhat.com/presentations/bh-dc-09/Nguyen/BlackHat-DC-09-Nguyen-Face-not-your-password.pdf


[41] K. B. Rasmussen, M. Roeschlin, I. Martinovic, and G. Tsudik,
“Authentication using pulse-response biometrics,” in Proc. Annu.
Netw. Distrib. Syst. Secur., 2014, pp. 1–14.

[42] S. Eberz, K. B. Rasmussen, V. Lenders, and I. Martinovic, “Preventing
lunchtime attacks: Fighting insider threats with eye movement bio-
metrics,” inProc. Netw.Distrib. Syst. Secur. Symp., 2015, pp. 1–13.

[43] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R. Choudhury,
“Tapprints: your finger taps have fingerprints,” in Proc. 10th Int.
Conf. Mobile Syst. Appl. Services, 2012, pp. 323–336.

[44] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “ACCessory:
Keystroke inference using accelerometers on smartphones,” Proc.
12th Workshop Mobile Comput. Syst. Appl., 2012, Art. no. 9.

[45] L. Cai and H. Chen, “TouchLogger: Inferring keystrokes on touch
screen from smartphone motion,” in Proc. 6th USENIX Conf. Hot
Topics Secur., 2011, vol. 11, p. 9.

[46] A. J. Aviv, B. Sapp, M. Blaze, and J. M. Smith, “Practicality of
accelerometer side channels on smartphones,” in Proc. 28th Annu.
Comput. Secur. Appl. Conf., 2012, pp. 41–50.

[47] Z. Xu, K. Bai, and S. Zhu, “TapLogger: Inferring user inputs on
smartphone touchscreens using on-board motion sensors,” in Proc.
5th ACMConf. Secur. PrivacyWirelessMobile Netw., 2012, pp. 113–124.

[48] H. Wang, T. T.-T. Lai, and R. Roy Choudhury, “MoLe: Motion
leaks through smartwatch sensors,” in Proc. 21st Annu. Int. Conf.
Mobile Comput. Netw., 2015, pp. 155–166.

[49] C. X. Lu et al., “Snoopy: Sniffing your smartwatch passwords via
deep sequence learning,” Proc. ACM Interactive Mobile Wearable
Ubiquitous Technol., vol. 1, no. 4, 2018, Art. no. 152.

[50] A. Jain, R. Bolle, and S. Pankanti, Biometrics: Personal Identification
in Networked Society. Berlin, Germany: Springer, 2006.

[51] M. Kokare, B. Chatterji, and P. Biswas, “Comparison of similarity
metrics for texture image retrieval,” in Proc. Conf. Convergent Tech-
nol. Asia-Pacific Region, 2003, vol. 2, pp. 571–575.

[52] N. D. Phung, M. M. Gaber, and U. Rohm, “Resource-aware online
data mining in wireless sensor networks,” in Proc. IEEE Symp.
Comput. Intell. Data Mining, 2007, pp. 139–146.

[53] Q. Bao and P. Guo, “Comparative studies on similarity measures
for remote sensing image retrieval,” in Proc. IEEE Int. Conf. Syst.,
Man Cybern., 2004, vol. 1, pp. 1112–1116.

[54] J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical
Learning, vol. 1. Berlin, Germany: Springer, 2001.

[55] M. W. Gardner and S. Dorling, “Artificial neural networks (the mul-
tilayer perceptron)–A review of applications in the atmospheric
sciences,”Atmospheric Environ., vol. 32, no. 14, pp. 2627–2636, 1998.

[56] A. Rattani and N. Poh, “Biometric system design under zero and
non-zero effort attacks,” in Proc. Int. Conf. Biometrics, 2013, pp. 1–8.

[57] C. Giuffrida, S. Ortolani, and B. Crispo, “Memoirs of a browser: A
cross-browser detectionmodel for privacy-breaching extensions,” in
Proc. 7thACMSymp. Inf. Comput. Commun. Secur., 2012, pp. 10–11.

[58] J. Bonneau, C. Herley, P. C. Van Oorschot, and F. Stajano, “The
quest to replace passwords: A framework for comparative evalua-
tion of web authentication schemes,” in Proc. IEEE Symp. Secur.
Privacy, 2012, pp. 553–567.

[59] M. D. Corner and B. D. Noble, “Zero-interaction authentication,”
in Proc. 8th Annu. Int. Conf. Mobile Comput. Netw., 2002, pp. 1–11.

[60] K. M. Beunder, “Design of continuous authentication using face
recognition,” in Proc. 20th Twente Student Conf. IT, 2014, pp. 1–8.

[61] F.Monrose andA. Rubin, “Authentication via keystroke dynamics,”
in Proc. 4th ACMConf. Comput. Commun. Secur., 1997, pp. 48–56.

[62] I. Sluganovic, M. Roeschlin, K. B. Rasmussen, and I. Martinovic,
“Using reflexive eye movements for fast challenge-response
authentication,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2016, pp. 1056–1067.

Abbas Acar received the BS degree in computer
engineering fromMiddle East Technical University,
Ankara, Turkey, in 2015, and the MS degree in
electrical engineering from the Department of Elec-
trical and Computer Engineering, Florida Interna-
tional University, Miami, Florida, in 2019. He is
currently working toward the PhD degree from the
Department of Electrical and Computer Engineer-
ing, Florida International University, Miami, Florida.
He is currently a graduate research assistant with
the Department of Electrical and Computer Engi-

neering, Florida International University, Miami, Florida. His research inter-
ests include continuous authentication, and IoT security/privacy, and
homomorphic encryption. For more information, please visit http://web.
eng.fiu.edu/aacar001/.

Hidayet Aksu received the PhD degree from the
Department of Computer Engineering, Bilkent Uni-
versity, Ankara, Turkey, in 2014. He is now at Goo-
gle, prior to that he worked at Amazon. He
conducted research as postdoctoral associate at
Florida International University (FIU), Miami, Flor-
ida, in 2015–2018 and as visiting scholar at IBM T.
J. Watson Research Center, Ossining, New York,
in 2012–2013. He also worked as an adjunct faculty
with theComputer EngineeringDepartment, Bilkent
University, Ankara, Turkey and at Scientific and

Technological Research Council of Turkey (TUBITAK). His research inter-
ests include security for cyber-physical systems, Internet of Things, security
for critical infrastructure networks, IoT security, security analytics, social
networks, big data analytics, distributed computing, wireless networks,
wireless ad hoc and sensor networks, localization, and P2P networks.

A. Selcuk Uluagac (Member, IEEE) received the
MSc degree in Electrical and Computer Engineer-
ing (ECE) from Carnegie Mellon University,
Pittsburgh, Pennsylvania, the MSc degree in infor-
mation security from the School of Computer
Science, Georgia Tech, Atlanta, Georgia, in 2002
and 2009, respectively, and the PhD degree with a
concentration in information security and network-
ing from the School of Electrical and Computer
Engineering (ECE), Georgia Tech, Atlanta,
Georgia, in 2010. He is currently an associate pro-

fessor with theDepartment of Electrical andComputer Engineering, Florida
International University (FIU), Miami, Florida. Before joining FIU, he was a
senior research engineer with the School of Electrical and Computer Engi-
neering (ECE), Georgia Institute of Technology, Atlanta, Georgia. Prior to
Georgia Tech and senior research engineer at Symantec. The focus of his
research is on cybersecurity topics with an emphasis on its practical and
applied aspects. He is interested in and currently working on problems per-
tinent to the security of cyber-physical systems and Internet of Things. In
2015, he received a Faculty Early Career Development (CAREER) Award
from the USNational Science Foundation (NSF). In 2015, he was awarded
the US Air Force Office of Sponsored Research (AFOSR)’s 2015 Summer
Faculty Fellowship. He is also an active member ACM, and ASEE and a
regular contributor to national panels and leading journals and conferences
in the field. He has served on the program committees of top-tier security
conferences such as IEEE S&P Oakland, NDSS, ACM ASIACCS, inter
alia. He was the general chair of ACM Conference on Security and Privacy
in Wireless and Mobile Networks (ACM WiSec), in 2019. Currently, he is
the area editor of the Elsevier Computer Networks Journal and serves on
the editorial board of the IEEE Communication Surveys and Tutorials. For
more information, please visit http://web.eng.fiu.edu/selcuk.

Kemal Akkaya (Senior Member, IEEE) received
the PhD degree in computer science from the Uni-
versity of Maryland Baltimore County, Baltimore,
Maryland, in 2005 and joined the Department of
Computer Science, Southern Illinois University
(SIU), Carbondale, Illinois as an assistant profes-
sor. He is a full professor with the Department of
Electrical and Computer Engineering, Florida Inter-
national University, Miami, Florida. He was an
associate professor at SIU from 2011 to 2014.
He was also a visiting professor at The George

Washington University, Washington, D.C. in Fall 2013. He leads the
AdvancedWireless and Security Lab (ADWISE) in the Electrical and Com-
puter Engineering (ECE) Department. His current research interests
include security and privacy, security and privacy, Internet-of-Things, and
cyber-physical systems. He is the area editor of the Elsevier Ad Hoc Net-
work Journal and serves on the editorial board of the IEEE Communication
Surveys and Tutorials. He was the general chair of IEEE LCN 2018 and
TPC chair for the IEEE ICC Smart Grid Communications. He has served as
the guest editor for many journals and in the OC/TPC of many leading net-
work/security conferences including IEEE ICC, Globecom, INFOCOM,
LCNandWCNC, andACMWiSec. He has publishedmore than180 papers
in peer-reviewed journal and conferences. He has received “Top Cited”
Article Award fromElsevier, in 2010.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ACAR ET AL.: USABLE AND ROBUST CONTINUOUS AUTHENTICATION FRAMEWORK USING WEARABLES 2153

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 15:53:33 UTC from IEEE Xplore.  Restrictions apply. 

http://web.eng.fiu.edu/aacar001/
http://web.eng.fiu.edu/aacar001/
http://web.eng.fiu.edu/selcuk


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


