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Abstract
Today, the USB protocol is among the most widely used protocols—mostly due to its plug-and-play nature and number of
supported devices. However, the mass-proliferation of USB has led to a threat vector wherein USB devices are assumed
innocent, leaving computers open to an attack. Malicious USB devices are able to disguise themselves as benign devices
to insert malicious commands to connected end devices. Currently, a rogue device appears as a normal USB device to the
average OS, requiring advanced detection schemes (i.e., classification) to identify malicious behaviors from the devices.
However, using system-level hooks, an advanced threat may subvert OS-reliant detection schemes. This paper showcases
USB-Watch, a hardware-based USB threat detection framework. The use of hardware allows the framework to collect live
USB traffic before advanced threats may alter the data in a corrupted OS. Through analyzing the behavioral dynamics
of USB devices, a decision tree anomaly detection classifier can be placed into hardware—allowing for the detection of
abnormal USB device behavior from connected USB devices. The framework tested achieves an ROC AUC of 0.99 against
a testbed of live USB devices acting both normally and maliciously.

Keywords USB · Hardware security · Machine learning

1 Introduction

Sensitive computing environments (e.g., government lab-
oratories, corporate offices, military institutions) that har-
bor critical infrastructure and highly confidential informa-
tion [2] are key targets to cyber threats. Although research
institutions invest considerate amounts to protect their data
from possible outsider attacks [3, 6, 7, 17, 19, 32], insiders
are still a source of potential attacks. There is currently little
to be done should a malicious insider insert a device (e.g.,
USB device) with the intent to steal valuable data from or
cause harm to the sensitive computing environment.
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Methods to detect and prevent USB-based attacks can be
categorized as static analysis–based or dynamic analysis–
based. Static analysis methods [9] detect potential malicious
activity before the USB is operating [25]. While there
are a handful of these methods in use [33, 35], they are
not sufficient. Should an attacker know which methods
are implemented, they could circumvent them. Dynamic
analysis methods are needed in the case of such attacks.
Dynamic analysis methods [4, 5] operate once a USB device
has already been inserted [11, 26, 29].

With this paper, we introduce a hardware-based dynamic
analysis framework, called USB-Watch, to detect and
prevent USB-based insider threats. This framework aims to
analyze unknown USB devices introduced to a computing
environment and, through the use of machine learning
algorithms, determine the behavior of the device before it
can potentially cause harm to the computing environment.

All interconnected devices need a data protocol to
effectively communicate. Likewise, each device needs a
piece of hardware (commonly referred to as a “bus”) to
transmit and receive communication utilizing such a data
protocol. The USB-Watch framework aims to improve upon
these hardware buses to create a “smart bus” which can
determine the nature of an unknown, connected USB device
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communicating with the host machine. If the hardware bus
determines the USB device is malicious or abnormal, the
bus can cease communication with the device until the user
prompts the bus to reestablish communication.

Also considered in this paper is the possibility of
advanced adversaries which aim to subvert naive machine
learning approaches. Such an adversarial model is investi-
gated using live devices on our machine learning models.
We then take the results of this to motivate specialization
over generalization when using certain anomaly detection
models so that an adversary has a more limited potential to
mimic a target class.

Contributions: The contributions of this work are as
follows:

– USB-Watch: We introduce a novel hardware-based
USB detection framework called USB-Watch to
dynamically detect and prevent USB devices from
injecting malicious commands in a target computing
environment.

– Effective classification: We perform an in-depth
analysis of timing-based features on a wide variety of
USB devices (e.g., mouse, keyboard, communication
“dongles”) to create both a generalized model for
detecting simple malicious USB devices and a
specialized model for detecting advanced devices
which mimic benign behavior.

Organization: The rest of this paper is organized as
follows: In Section 2, we briefly overview the concepts
of the USB protocol and USB-based command injection
attacks. In Section 3, we discuss the state-of-the-art
approaches in malicious USB detection, showing how
USB-Watch offers similar results while also being
tamper-proof and OS-independent. Section 4 introduces
the real-world threat model that our framework prevents.
The architecture of the proposed framework and our
implementation of the architecture in this work is
described in Section 5. The results of our experiments
are outlined in Section 6 along with an analysis of the
proposed framework against existing works and lists key
benefits of USB-Watch. Concluding thoughts and future
work are provided in Section 8.

2 Background

In this section, we outline important background infor-
mation which is needed for the remainder of this paper.
First, we overview the USB protocol and how human inter-
face devices (e.g., USB keyboards and mice) interact with
a computer. From there, we highlight how a malicious

USB device can utilize this functionality to perform HID
injection attacks.

2.1 USB Protocol

In this paper, we utilize a hardware-based mechanism to
collect incoming USB data, and we overview the basics of
the USB protocol and how the operating system handles
incoming USB data.

The USB protocol operates in a master-slave fash-
ion [10]. First, a device connects to a computing system via
a USB host controller. The host controller (master) requests
all data from the USB device (slave). A request for data is
periodically sent to the USB device and, if the device has
any, the data is placed on a USB buffer. A system interrupt
is performed, the host controller reads the data on the buffer,
and the communication process restarts from there.

Each USB transaction contains a token packet, data
packet, and status packet. The token packet establishes what
type of data flow (i.e., read, write, etc.) will occur. The
data packet contains the actual USB data. The status packet
reports if the prior packets were received correctly or if the
end device is currently stalled or unable to receive packets.

2.2 USB Human Interface Device Reports

Some of the USB devices the detection framework in
this paper attempts to distinguish are known as human
interface devices (HIDs). Human interface devices (HIDs)
are a subclass of USB devices which are designed for
human input (e.g., keyboards, mice, gaming controllers) [1].
Since HID functionality is built into every computer, it
does not require the installation of drivers. This is part
of why we chose to examine these devices specifically.
They are already granted functionality and assumed to be
benign.

To communicate, the host machine will periodically
request input information from the HID. The HID will then
produce a HID report and encapsulate it in a USB packet.
The report format for a standard keyboard is shown in
Fig. 1a. As shown, there is field in a keyboard report for a
total of six concurrent key presses plus any modifier keys
(i.e., SHIFT, CTRL, ALT, etc.). Note that the reserved bit is
ignored in the reports. When a user presses a key, the HID
report will continuously include the key being pressed until
the user subsequently releases the key. Similarly, Fig. 1b
shows the report format for a standard USBmouse. The first
byte describes if a button is pressed (with the remaining 5
bits reserved for no use). The next two bytes are for the
X axis and Y axis, respectively. Finally, the mouse wheel
information is stored in the fourth byte. In this paper, we
use these HID reports to collect data for our detection
framework.
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Fig. 1 a, b USB human interface device (HID) report examples

2.3 USB HID Injection Attacks

A common attack with embedded USB devices we refer to
as HID injection attacks [27]. In these attacks, the embedded
device mimics a USB HID to inject malicious commands.
Two of the most common devices used to implement
HID injection attacks are the Rubber Ducky [15] and the
BadUSB [34]. Both come with a pre-defined language for a
user to easily create an attack script to embed in his/her USB
device. First, the malicious actor designs the attack s/he
wants performed. The attacker determines which commands
are needed to carry out the attack, for instance opening
a terminal and deleting specific files or directories. From
there, the attacker writes a script which iterates each HID
command as text strings. To make sure the command is
performed at the correct moment, the attacker introduces
delays between major events (e.g., opening terminal and
sequentially typing in command). With the script created,
the malicious actor must compile the malicious commands
(“payload”) into an embedded USB device disguised as a
common device (e.g., flash-drive, keyboard) [15].

To perform the attack, the attacker must have the
malicious USB device inserted into the target computer.
There are two common methods to do so: (1) a malicious
insider plugs the device into the target machine when the
user walks away or (2) the malicious device is dropped
near the target premises, leading to an unwitting insider
mistakenly plugging the device into a target machine [8,
30]. Once inserted, the device begins performing the attack
by sending a HID report with the current command in the
payload. To the computer, this HID report simply looks
like it comes from benign devices. To prevent onlooker
detection, intricate attacks may wait for onlookers to
disappear by delaying for an arbitrary time or waiting for the
computer to enter rest-mode. Since the payload is embedded
in a USB device, this attack is difficult to detect through
normal means, as a common anti-virus cannot simply scan
the file to determine if it is malware.

2.4 USB Command Injection Attacks

We can further extrapolate the HID injection attack
described above to any generic USB device that is
capable of sending commands via a USB interface, such
as communication “dongles” (i.e., devices which enable
Bluetooth, ZigBee communications). Such a device may
be infected with malicious hardware designed to send
falsified or malicious commands to the host computer.
We call this form of attack “command injection attacks.”
Through generalizing features across multiple device types,
USB-Watch can detect malicious activities across both
HID devices and any generic USB device which inputs
commands via the USB protocol.

3 RelatedWork

3.1 Embedded Device Threats

The rise of small, embedded devices (i.e., USB devices)
brought a new attack vector through these devices acting
maliciously when inserted to a computing system [12–14,
22, 27, 34]. Traditional intrusion detection systems are not
suited to detect these threats as, to the computing system,
the behavior appears to come from a legitimate user. This
requires new solutions to be added to effectively detect
these embedded device threat vectors. We overview two
categories of detection models: static and dynamic.

3.2 Static DetectionMethods

Access control or policy-based methods to detect compro-
mised USB devices aim to analyze a potential threat by
examining it before being executed [25]. These methods
normally focus on statically analyzing relevant USB con-
troller and device information right before the data request
process between both parties is established and initiated
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(see Section 2). When detecting threats from embedded
devices, static detection methods include disallowing unreg-
istered devices from communicating [33], require devices
to request functionality permission [35], formal verification
of the USB protocol [16], or simply disabling unnecessary
USB ports [33]. Assuming a trusted device contains mali-
ciously embedded circuitry [31], these static frameworks
are not enough to detect and eliminate all threats from
embedded devices.

3.3 Dynamic DetectionMethods

Dynamic analysis methods, on the other hand, analyze
the potential threat as it is operating and examines the
performance behavior of the device. Dynamic analysis
today tends to involve the use of machine learning
algorithms and classification models [11, 26, 29]. In the
case of malicious threat detection, this entails using binary
classification schemes to differentiate benign and malicious
behavior on the system. Current approaches for dynamic
threat detection in embedded devices use software on the
host system to collect and process data. It has been shown
that it is possible for advanced threats to spoof or alter
software-based collection approaches by altering OS-level
code [21]. Transferring the dynamic analysis to hardware
placed between an unknown embedded device and the host
system would ensure that the data collection is unalterable
through these means.

3.4 Differences from ExistingWork

Our approach aims to develop a dynamic detection
framework to detect and prevent insider threats through
embedded devices. Our proposed approach differs from
prior work through three distinct characteristics stemmed
from the use of a hardware mechanism. First, an advanced
threat to the computing system may leave software-based
detection approaches vulnerable to spoofing. The use of
a hardware mechanism between the embedded device and
the internal computing system ensures the capturing of raw,
unaltered behavior of the device—allowing the detection
of any malicious behavior performed by the embedded
device. Second, any software-based approach to intrusion
detection consumes resources of the computing system.
Segmenting the intrusion detection into dedicated hardware
removes computation cost that would otherwise needed
to be performed on the host machine. Finally, assuming
a malicious device is embedded in an authenticated USB
device, the attack can bypass static systems such as [35]
whereas our dynamic approach can still detect. Hence, this
work aims to provide a dynamic, hardware-based intrusion
detection framework to mitigate USB-based attacks.

We have established prior work in regards to hardware-
assisted dynamic detection models. The prior work was
done to establish a classification model to detect malicious
keyboard-based attacks. In this work, we extend upon our
prior work by (1) generalizing the proposed framework
to include any class of USB device evaluating the
generalized framework’s performance and (2) evaluating
the framework’s performance against advanced adversaries
which can mimic 1:1 behaviors of benign devices and
discussing means to mitigate this threat.

4 Threat Model

In this section, we define the threat model which we aim
to prevent with our detection framework. We first define an
attacker’s motivations through a real-world scenario. Then,
we state assumptions that effectively subvert previous work
in USB detection.

4.1 Subverting Prior Works

As stated in Section 3, there has been prior work in detecting
malicious USB devices through the aid of classification.
However, we identify two key threat vectors that can subvert
prior attempts: kernel-level USB-trace hooking and mimicry
attacks. As shown in Section 6, these threat vectors can
cause prior works to fail. However, we account for both of
these in our work (through hardware-assistance and feature
selection, respectively).

4.1.1 Kernel-Level USB-Trace Hooking

Hooking is the process to alter the normal behavior of an
operating system. This is typically done by intercepting
operating system calls or events to output custom code (e.g.,
output “Hello World!” every time a device is inserted). A
common method for sampling USB-traces is through the
USBmon tool. In the Linux Kernel, USB traces are sent
through a buffer which USBmon hooks into this buffer
and outputs relevant trace information [20] (i.e., timestamp,
device ID, device bus, etc.).

Through the use of system hooks, it is possible that an
attacker may maliciously alter USBmon or other related
hooks to not output specific USB device information.
Should such an attack take effect, prior work discussed in
Section 3 becomes effectively useless as the attacker can
simply hide his USB device from detection schemes which
utilize USBmon.

With a novel hardware-based mechanism called USB-
Watch, we overcome this limitation. Since our data is
collected in hardware, it is not feasible for an insider threat
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to alter incoming USB data packets from a malicious device,
thereby obtaining the true output from a device.

4.1.2 Mimicry Attacks

Prior work in classification of malicious USB devices
specify that the malicious USB device is assumed to act
distinctly different from normal human behavior (i.e., vastly
different typing patterns). This work shows it is still possible
for an attacker to develop a smarter USB device which
subverts these prevention schemes.No known work has been
done to determine effective methods to detect a USB device
which attempts to mimic human behavior.

To show the simplicity of such an attack, we developed
a malicious device which aims to subvert prior works. We
developed a simple Python script which writes the attack
file to inject the payload. The script takes in the text used
for the attack and implements a delay between each USB
command. The delay can have a custom lower/upper bound
to more effectively mimic benign behavior.

As we show later in our analysis, implementing this
simple delay method is enough to fool other detection
works. The only possible flaw with this method is the
increased possibility of interference between the malicious
device and the human interacting on the target machine.
However, we believe that the attack would still be able to
perform properly if done within a reasonable time frame
(e.g., 30 s) to minimize the likelihood of interference.

4.1.3 Subverting Anomaly Detection

There arises an issue in classification when mimicry attacks
are introduced. If a mimic is able to replicate features of
a target class, then the classifier will incorrectly label the
mimic as that target class. Here, we provide a general proof
to showcase this issue followed by details on how this
specifically impacts an anomaly detection model.

An inherent problem with using anomaly detection (or
any machine learning approach) comes from the possibility
of an adversary who attempts to deceive the machine
learning model [36]. We specifically look at an adversary
model for an anomaly detection model in this work due to
the adversary’s ability to infer features and behaviors of an
anomaly detection model over a more granular, multi-class
machine learning model.

Let us assume there is an anomaly detection model (M).
M has a feature set X with features (x1, x2, ...xi). The
anomaly detection model uses X to identify patterns in
sampled data (D) and anomalous data (A) such that D ≡
D′ and D �≡ A. With patterns identified, the model can then
identify new sampled data Y and apply it to the normal or
anomalous class.

If an adversary were to know (or infer) X, he/she may
construct malicious data (M) such that the data confuses the
model to mistakenly classify M . In this case of this work,
an adversary may build a malicious USB device which,
when inserted, appears as a benign device to a machine
learning model. For example, a device can be built which
has typing dynamics similar to a human, therefore confusing
an anomaly detection model designed to distinguish human
and machine typing dynamics.

Therefore, when constructing machine learning models
for threat prevention, we must consider the weaknesses in
the model an adversary may exploit (e.g., ability to falsify
features, low specificity between classes). In Section 6, we
show the feasibility of constructing such an adversary and
steps done to mitigate this threat.

5 Overview of Architecture

In this section, we discuss the architecture of the proposed
detection framework. We start with a custom-built hardware
tool which we use to collect USB data. Then, we discuss
components of the classifier: what pre-processing was
required on unlabeled data, the features extracted, and what
algorithms were tested for classification. Finally, we discuss
how these two components work together to detect and
classify malicious USB behavior in a live system.

As stated, the ultimate goal is a USB host controller
with smart functionality. The host controller should be able
to differentiate between normal USB performance and a
potential USB-based attack. If the host controller identifies
a potential attack, communication between the device and
host computer is severed.

For the USB-Watch hardware to understand normal
behavior, a machine learning technique can be utilized to
teach a model the difference between benign and malicious
USB device behaviors. Samples from both malicious and
benign USB devices can be used to train and fit a model,
such that it accurately distinguishes the two types of
behavior.

The final model can be placed on the USB-Watch
hardware so that when a USB device is inserted, it can
properly infer the device’s intent. If the hardware determines
the device is malicious, it can cease communication with the
device before an attack can occur. The hardware would be
capable of retraining in a live setting to fit user needs.

The overall architecture for the detection framework is
described in Fig. 2. First, a USB device is inserted into a
hardware mechanism located between the device and the
host computer. Through the hardware module, the USB
device establishes a connection to the host OS as normal.
When the USB device communicates with the host machine,

J Hardw Syst Secur (2020) 4:136–149140

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Fig. 2 USB-Watch architecture to classify malicious USB attacks

the raw USB signals are both sent to the host machine and
collected for analyzing if the device is a potential threat (1).
In (2), the hardware processes the USB packets to further
extract relevant information (e.g., packet timestamps, keys
being pressed, mouse movements). With the captured USB
packets, the hardware can extract behavioral features which
can be used to identify if the device is acting maliciously (3).
Finally, the features are sent to a machine learning classifier
which determines the behavior of the unknown USB device
(i.e., benign vs. malicious) (4). If the classifier deems the
USB device as acting maliciously, it terminates the device’s
connection to the host machine.

5.1 Data Collection

We utilize a hardware-based mechanism between the USB
port and the computer to collect USB traffic. Basically,
the hardware provides similar functionality to a software-
based USB sniffer. For simulation purposes, we used a
field-programmable gate array (FPGA) board to emulate
a modified USB host controller capable of detecting
malicious USB devices. First, an unknown USB device is
connected to the FPGA board which is further connected
to the user’s machine. From there, normal USB traffic
flows from the USB device through the FPGA and into the
user’s machine. Utilizing a hardware mechanism such as
this provides two distinct advantages. First, the hardware
cannot be spoofed as it collects data at the USB physical
layer. As discussed, it is possible to subvert or tamper data
collected by software sniffers. However, we collect data
from the physical layer signals created by the USB device,
which is not susceptible to OS-level obfuscation means.
Additionally, by using a separated piece of hardware for
data collection and pre-processing, an entire segment of
computation is removed that would be normally performed
on the host computer—saving resources for classification
and detection.

5.2 Pre-Processing

The data pre-processor takes incoming binary from the data
collection to collect information about the connected USB
device. USB packets are analyzed and relevant information
about the device (e.g., device ID, frequency of packets sent,
the data of each packet) is gathered for further analysis.
For the purposes of this work, we analyze two common
human interface devices (keyboard and mouse) for further
behavioral analysis, but we also demonstrate that analysis
can be done on any USB-based device.

5.3 Feature Extraction

Once the USB packets are collected, further analysis is
done to construct features which can be used to determine
the behavior of an unknown USB device. In this work, we
demonstrate this by creating a command time-based feature
set which, when generalized, can be applied to any number
of USB devices.

The feature set is created by demonstrating reasonable
variance in device behaviors in its uses. For instance, with
keyboards, it has been shown that every user has a uniquely
distinguishable typing behavior [24]. This fact can be used
to create a feature set aimed to classify specific users on
a machine and only permit authorized entities from using
a keyboard on the host machine. To show variance in the
USB-Watch framework, we demonstrate

1. Device type—The device type is simply whatever
function the device is intended to form. For instance, a
keyboard or mouse would be classified as such.

2. Packet size—A packet is a collection of data sent by
a device. Packet size is the size, in bits, of that data
collection. Packet size is standard by the type of device.
This feature is included in this classifier to protect
potential buffer-overflow style attacks that a device may
use by sending incorrect packet sizes.

3. Command transition time (CT T )—The command
transition time (CTT) is calculated for every command
(i) by taking the difference of the time stamp (ti) of the
command prior (ti−1). Since there is no prior command
to compare for the first sampled command, ctt0 is given
a value of 0. The equation for extracting the CTT feature
is provided below.

ctti = ti − ti−1, (1)

4. Duration held (D)—This feature defines how long a
command was held. To obtain this, the framework scans
the incoming USB packets for the first instance of
a specific command. Then, the framework scans all
sequential USB packets until the command is removed
from the report. The difference in timestamps between
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the packet with the command removed and initial
packet gives the duration the command was held. The
equation is provided below.

di = tReleased − tStart (2)

Note that this feature does not apply to all command
types. For instance, duration held makes sense for
a keyboard or mouse where buttons may be pressed
down. However, commands such as mouse movement
or devices establishing communication do not have
a command duration. For these command types, the
duration is held to a normalized average value so it does
not impact the performance of the machine learning
model.

5. Command frequency (F )—This feature is defined
simply as how often a command occurs over a sliding
window of time. For instance, clicking the left-click
button multiple times would report a high command
frequency.

Note that this feature also does not apply to all command
types. Getting a command frequency for a keyboard device
would entail keeping track of what is being typed by the user
of the keyboard—something we do not consider in this work
for efficient and effective performance of the framework.

Standardized features—Since we analyze multiple
device types with widely variant behaviors, we normalize
features defined above. This is done by taking the mean (μ)
and standard deviation (σ ) of a feature vector (X = < x1,
x2, ...>). Each value in the normalized feature vector is then
calculated through the standardization equation:

‖xi‖ = (xi − μ)/σ . (3)

Standardizing the features allows USB-Watch to still
identify malicious behavior across multiple device types.
Not standardizing them would result in USB-Watch
requiring a different classification model for every device
type analyzed. We can subvert this through standardization
to get a generalized sense of malicious activity in the
features USB-Watch uses.

5.4 Classification

The extracted features are then placed into a anomaly
detection classifier to determine if the device is benign
or potentially malicious. If the device is considered an
anomaly, communication between the USB device and the
host system is discontinued—preventing a potential attack
from occurring.

During data collection, we sampled benign and malicious
devices using the FPGA board and labeled the samples
as such. To train the anomaly detection model, we used
90% of the collected benign data so that the model can
understand how normal USB devices should behave. To

test the model, the remaining 10% of benign data and
all samples of malicious data were fed to the model. The
model should be able to identify which of the samples are
anomalous. If the model is working correctly, it should flag
those anomalous samples as potential malicious and cut off
communication from them. The best performing model was
chosen to conduct live testing. We discuss the results of the
model performance in Section 6 below.

For practicality, this model was constructed in software,
using Python machine learning libraries (Sci-Kit Learn).
The best performing model was re-written into hardware
logic (VHDL). The hardware logic was then placed onto
the FPGA board to test the model on live performance. We
plugged in a sample of benign and malicious USB devices
(e.g., keyboards, mice) into the FPGA board to test (1) if the
model works and (2) if there are any performance overhead
costs from introducing a piece of hardware between the
USB device and host computer. The results of this testing
are discussed in Section 6 below.

6 Performance Evaluation

This section aims to evaluate the proposed framework
model on a live test bed. First, we evaluate the prototype
hardware device used in this work by showing the overhead
introduced into the system. Then, we aim to establish a
final classification model to evaluate against other works.
Feature analysis is performed on the proposed feature set
of timing dynamics. Once a feature ranking is obtained,
model selection is performed on a sample of classification
algorithms (e.g., decision tree, random forest, naive Bayes,
k-nearest neighbors, and support vector machine). With
the best overall model chosen, a comparative analysis
is performed where the proposed USB-Watch detection
framework and prior works are tested against real-world
attack scenarios to evaluate which detection framework
performs the best.

6.1 Attack Implementation

As mentioned in Section 4, this work considers the
possibility that a malicious USB device may intentionally
mimic benign device dynamics so as to appear normal to
an onlooker. To show the simplicity of such an attack,
we developed a malicious device which aims to subvert
prior works. We developed a simple Python script which
writes the attack file that the attacker can use to inject the
payload. The script takes in the text used for the attack and
implements a delay between each typed character. The delay
can have a custom lower/upper bound to more effectively
mimic human behavior. For the purposes of our analysis, we
used a lower bound delay of 100 ms and an upper bound
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of 150 ms. This ensures the USB device does not type
faster than 100 ms per keystroke so that the device types
slow enough to subvert static threshold blocks. The 150-
ms upper bound is chosen so that the typing speed is not
too slow as to impact the attack itself (i.e., being detected
by a human observer, text being interspersed with other
keystroke input).

We implement this random delay using Python’s random
number generator [28], which utilizes the Mersenne Twister
(MT) algorithm. We use this algorithm as it comes with
a variety of advantages an attacker would find beneficial:
(1) MT is used in most modern programming languages,
making it ubiquitous to implement, (2) it utilizes a long
period (219937 − 1) which is beneficial to not repeat cycles,
and (3) MT passes many statistical tests of randomness (e.g.,
birthday spacings, random spheres). With these 3 benefits,
an attacker can easily implement the mimicry attack with
more than sufficient assumptions his/her mimic can deceive
simple detection schemes.

6.2 Anomaly DetectionModel Performance

To perform our evaluations, we used a combination of a
Zynq ZedBoard and a USB3300 evaluation board for a
hardware data collector as shown in Fig. 3. The process
to construct a machine learning model is to (1) collect
sample data from an available dataset and simulated
attackers with real RubberDucky devices plugged into the
ZedBoard, (2) train and test various models in Python from
the available data, (3) choose the best performing model
through performance metrics, and (4) program the Python
model in hardware logic (i.e., VHDL) to place on the
ZedBoard for validation in a real testbed.

6.2.1 Data Collection

To train and test the model, a number of public datasets and
live-captured USB samples were used. The data collected is
described in detail below.

A public keyboard sample dataset comes from Carnegie
Mellon [18] which contains 400 samples from 51 users each
of their typing behaviors. From there, we collected samples
from a RubberDucky USB device acting both as a simple,
static typing behavior and an advanced model which mimics
one of the users sampled in the dataset. The latter is done to
attempt and fool our anomaly detection model.

Additionally, we collected data from other live USB
devices. USB mouse samples were collected over normal
use. The device list includes USB keyboards, USB mice,
and dongles used to enable connection with BlueTooth and
ZigBee devices over USB. This was done to showcase the
variability of the USB-Watch hardware over multiple device
types.

With the USB data collected, the features defined in
Section 5 were used to create a signature of each device
class (e.g., keyboard, mouse, BlueTooth dongle, ZigBee
dongle). The collected data was processed to fit the defined
features and then standardized to get a sense of normal
behavior from the device. This creates a device class
signature which can be used by the classifier to understand
how a normal USB device should behave.

6.2.2 Classification Performance

With the device signatures created, the benign data was
used to train the anomaly detection classifier. To train the
classification model, we used a 10-fold cross-validation

Fig. 3 Zedboard FPGA used to
implement USB-Watch’s testbed
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approach on 90% of the collected benign samples. This is
done so that the classification models may understand what
is expected of USB device behavior. To test the model, the
remaining 10% of the benign samples and all malicious
samples were used. Ideally, the classification model should
label the benign samples as such and the malicious samples
as anomalous.

First, an analysis of classification models is performed.
The models chosen are decision trees, random forest
ensembles, k-nearest neighbors, naive Bayes, and support
vector machines. The best performing model in all criteria is
chosen at the end. The metrics used to evaluate the models
are accuracy, precision, recall, fit time, and score time.
The first three metrics characterize how well the classifier
predicts the target class. Good models correctly predict
the target class (true positives (TP )) and differentiate from
other classes (true negatives (TN )). Conversely, poor models
falsely classify the target incorrectly (false negatives (FN ))
or classify other data as the target class (false positives
(FP )). Accuracy is defined as the number of correct
classifications over the total number of classifications. The
addition of precision and recall gives a sense of how often
a classification model incorrectly classifies data as the
target class (precision) and how often the target class goes
undetected by the model (recall). These three metrics are
defined in Eqs. 4, 5, and 6, respectively.

Accuracy = TP + TN

TP + TN + FP + FN

(4)

Precision = TP

TP + FP

(5)

Recall = TP

TP + FN

(6)

The other two metrics fit time and score time tell how fast a
classification model performs. Fit time is defined as the time
it takes to construct a model given the set of training data.
Similarly, score time is how long it takes the constructed
model to predict new data.

The first metric analyzed was the accuracy of the
classification models. To analyze this, a 10-fold cross-
validation, replicated 100 times, was conducted on each of
the five tested classifiers. The results are shown in Fig. 4a.
Figure 4a first compares the overall score of each model in
cross validation. As shown, the decision tree, random forest,
k-nearest neighbor, and naive Bayes classifiers performed
the best overall with near-perfect scores. The SVM classifier
performs quite poorly at a rate of 0.6. As for the
performance of the SVM classifier, the results relate back
to the sample data. The data was intentionally constructed
to produce overlaps in both benign and malicious samples.
Therefore, the SVM cannot successfully converge all of
the data on a single dimension. From there, the precision
and recall of the classifiers were analyzed. To do this,
newly generated test samples with similar behaviors as the
training samples were collected. Each classifier attempted to
classify the test data and returned the probability to predict
either malicious or benign behavior. Precision and recall
are calculated by taking the percentage of false positives
(human typing classified as a malicious actor) and false
negatives (malicious actor going undetected in the model).
These precision and recall scores were calculated over a
range of classification thresholds then plotted in Fig. 4b.
As stated in our motivation, we prioritize classification
models which produce a high precision as we do not
want models believing normal behavior is malicious. As
shown, the decision tree and random forest classifiers
produce high results, whereas the kNN, naive Bayes, and
SVM classifiers produce quite poor results. For the latter
classifiers, as the models try to capture all malicious
devices, the model inevitably treats human behavior as
malicious.

Figure 4c compares the time to fit and time to score the
data the remaining models. The higher the bar, the more
time it takes to fit/score. As shown, the random forest takes
considerably longer to fit the data, but comparable time
to score new data. This makes sense as a random forest

Fig. 4 a–cModel evaluations for decision tree, random forest, naive Bayes, k-nearest neighbor, and support vector machine classifiers
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ensemble creates many decision trees with slight variances
in which data to split on—meaning that there is a linear
increase in complexity to train on data compared with a
decision tree.

When considering all the evaluation metrics (accuracy,
precision/recall, computation time), the decision tree is
finally chosen for the classification model. This is chosen
because while normally a random forest model removes
bias and overfitting that comes from decision trees, this
does not appear to be the case in fitting the sample data.
Indeed, the two models perform comparably in accuracy,
precision, and recall. However, the random forest model
takes considerably longer to fit/score the data, so we choose
instead to go with the decision tree.

With the final model created, evaluation of the model
can be performed. To test the validity of the anomaly
detection model, the receiver operating characteristic (ROC)
curve was calculated for each USB device analyzed and
the accumulative data as a whole. The ROC curve scores
the model on its ability to differentiate proper signals
(true positives) from noise (false positives) in the sampled
data. Figure 5a shows the ROC curve of the proposed
USB-Watch classifier. Note the dashed line shows a
hypothetical model which simply guesses the output class.
Any line above the diagonal indicates a predictive model
which can properly infer the correct class from the input
data—the higher the curve, the better the classification
model.

Figure 5a shows an ROC curve for each evaluated
USB device type (e.g., keyboard, mice, and communication
dongles) from the collected samples. Additionally, the ROC
curve was collected from a random collection of the overall
sample set. As shown, the model performs quite well when
trying to distinguish benign vs malicious USB behavior
from the collected samples—each performing with an area

under the curve (AUC) of over 0.90, which indicates an
excellent model [23].

6.3 Hardware Latency Analysis

Our proposed architecture utilizes hardware to detect and
prevent malicious USB devices from injecting malicious
commands to the host computer. Therefore, there is added
latency since all USB traffic must go through an additional
step before reaching the operating system. Here, we analyze
the additional latency introduced in the system and show its
minimal effects on overall performance.

To test for added latency, we created a benign Rubber
Ducky script which typed 1000 characters with a delay of
100 ms between each character. We plugged this device
into both (1) a normal computer system and (2) a computer
system with our USB-Watch hardware placed between it
and the Rubber Ducky device. When the Rubber Ducky is
inserted, we time how long it takes to complete the script.
This process is performed 30 times for each system, and
then the results are all averaged. The results are shown
in Fig. 5b. As shown, the average time to complete the
script for the normal and USB-Watch systems were 113 s
and 119 s respectively. When considering each individual
keystroke, that adds an increased latency of about 6 ms
per keystroke. This makes sense as the only increased
latency the Rubber Ducky device sees is the USB-Watch
hardware copying the USB packet during transit before
sending the packet to the host OS—all other analysis is done
concurrently by the hardware.

6.4 Comparative Analysis

In this section, the viability of the proposed USB-
Watch framework is discussed. An analysis is performed

Fig. 5 a, b Performance analysis of the final USB-Watch model
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to compare USB-Watch against other works. Here, we
construct a test suite of increasingly complex attack
scenarios and simulate them against USB-Watch and other
frameworks.

With the final detection model created, we need to show
how effective it is. Here, simulated frameworks of prior
works are created and tested against increasingly complex
attack models to compare prior work with USB-Watch. We
start by describing the frameworks evaluated, then detail
the attack models, and conclude with results of how each
framework performs against the attack models.

6.4.1 Static Detection Models

There has been prior work to prevent malicious USB devices
from being authenticated to operate on a computer [35].
However, this approach does not guarantee mitigation of
all attack vectors. It has been shown that malicious actors
can embed malicious circuits within larger devices [31].
Assume a malicious device is embedded within a trusted
USB device and waits for specific keyphrases (e.g., wait
for a user to type “confidential”, then execute an attack to
collect the last typed document). To the computer, the device
is still an authenticated device and is trustworthy—even
when the embedded circuit is conducting the attack. USB-
Watch would be able to detect this attack as it is a dynamic
approach to detecting USB attacks.

6.4.2 Dynamic Detection Models

Here, we describe the dynamic detection models we
recreated for evaluation. Each model is created using the
same data and tested against the same attacks which are
described in the section below.

Prior 1 —This framework blocks USB keyboard packets
which do not exceed a minimum key transition
time threshold. We use the same threshold as
described in USBlock [26] of 80 ms.

Prior 2 —A one-class SVM is used for this model and is
trained using CTT and ‖CTT‖ features, similar to
USBeSafe [11].

USB-Watch 1 —This is our proposed classification model.
However, we replace the hardware-based
data collector with software-based tools
used in other works (e.g., usbmon [20]).

USB-Watch 2 —This is our final proposed framework with
the fully hardware-based detection scheme.

6.4.3 Attack Models

The frameworks were tested against a number of attacks
with increased sophistication. Each attack model is

described below. For each attack, the payload attempts to
delete the user’s Documents folder through the use of key-
board commands. Additionally, to increase sophistication,
each subsequent attack model implements all the methods
introduced in prior attack models (i.e., attack 3 has all the
subversion features of attacks 1 and 2).

Attack 1 —This is a simple keystroke injection attack.
Once plugged in, the USB device immediately
executes the payload and types it as fast as
possible. This attack is used as a baseline to
demonstrate all the frameworks operate correctly.

Attack 2 —To subvert human detection, this attack waits
for 1 min before executing the payload. Again,
the payload is typed as fast as possible.

Attack 3 —This attack attempts to mimic human typing
dynamics by implementing a static delay of
100 ms between each typed character.

Attack 4 —This attack uses random delays between an
interval of 100 ms and 150 ms for each typed
character.

Attack 5 – Here, we assume that the target computer is
subject to an advanced threat which falsifies
usbmon outputs. A rootkit introduces a system
hook to the system which removes any USB
packet which matches a Rubber Ducky or
BadUSB vendor ID from displaying in usbmon.
Although an attacker has access to other targets
when corrupting an OS, this is still a valid attack
vector. We highlight this attack vector to show
the importance of isolation in secure designs—
specifically with isolated hardware in the USB-
Watch approach.

6.4.4 Results

With the attack models and frameworks defined, we eval-
uate each attack model against each detection framework.
Since each attack model increases in sophistication from the
prior, we detail which attack causes the detection model to
fail. Table 1 provides the complete results of our findings.

Table 1 Each detection framework’s ability to detect different attacks

Prior 1 [26] Prior 2 [11] USB-Watch 1 USB-Watch 2

Attack 1 � � � �
Attack 2 � � � �
Attack 3 X � � �
Attack 4 X X � �
Attack 5 X X X �
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Prior 1 —This framework fails after attack 3 is intro-
duced. Since the CTT threshold should not falsely
claim human typing is malicious, the attacker can
make an educated guess as to what delay he/she
should implement in their device as to surpass the
threshold check. In the test results, the minimum
delay of 100 ms exceeds the CTT check of 80 ms,
so the malicious device is allowed to operate.

Prior 2 – The classifier based on CTT also begins to
weaken at attack 3, but since attack 3 has a static
CTT, the classifier still performs relatively well.
However, with attack 4 introducing a random
delay interval, the classifier begins to classify the
attack as human in nature.

USB-Watch 1 —This model performs well against all
mimicry attacks due to a larger fea-
ture selection to properly detect malicious
behaviors. However, once the rootkit is
introduced in attack 5, the detection frame-
work is simply unable to collect data from
the attack and therefore cannot even begin
to classify the attack.

USB-Watch 2 —Our final proposed framework performs
well against all of the simulated attack mod-
els. It properly classifies attacks 1–4 like
USB-Watch 1. However, because the hard-
ware mechanism is used to collect/analyze
the raw USB signals from the malicious
device, this model can properly classify
attack 5 even when the operating system on
the host machine is corrupted.

7 Discussion

In this section, we discuss key findings of USB-Watch and
how the proposed framework may be implemented in real-
world scenarios. From there, benefits and limitations of the
framework are elaborated.

Performance: The final USB-Watch classification model
uses a binary decision tree classifier to distinguish
between benign and malicious USB device behaviors. To
do so, a feature set of device type, packet size, command
transition time, command duration, and command
frequency is used. We further show that mimicking
benign dynamics or altering kernel modules may cause
other dynamic detection frameworks to fail. However,
USB-Watch is able to detect these advanced threats due
to its feature set and hardware mechanism respectively.
Multiple device types were introduced in this work to
show the ability to generalize our approach beyond just
HID-based devices. Figure 5a discusses the impact on

classification performance when introducing multiple
device types. We assume the performance is a result of
the data collected and specific device behaviors, rather
than the capabilities of the classifier itself. We believe
that developing and honing the training data would be a
wonderful compliment to this work. When considering
the amount of packets needed to confidently identify a
malicious actor, we calculated the confidence interval
of our model’s ability to determine if the device is
malicious. Given our model’s performance, it can be 90%
confident of the attacker in 40 packets or less. This is well
within an acceptable range to identify attacks before they
can finish.

Scalability: The prototype implemented in this work is
meant to mimic the behavior of a sole USB port (though
full production may emulate any number of USB ports).
With the addition of dongles, bridges, etc., the single
USB port can be capable of supporting up to 127
distinct USB devices, which is the limitation of the USB
protocol itself. Classification performance would not be
impacted as each device is uniquely identified in order
to effectively communicate on the channel—allowing the
classifier to similarly uniquely identify specific malicious
actors. On average, the additional latency introduced
per keystroke is 6 ms per keystroke—an overall low
latency. This latency is largely due to the USB-Watch
prototype acting as a second USB host controller between
the USB device and the host OS. This is supported
when testing the prototype’s scalability. When plugging
in multiple devices, the latency remained a constant. In
a final realization of USB-Watch, the actual USB host
controller of the host system would have the functionality
of USB-Watch, further reducing the latency.

Benefits: The proposed USB-Watch architecture utilizes
a hardware mechanism to dynamically collect and
process incoming USB traffic which provides two
distinct benefits. First, the use of a segmented piece
of hardware ensures that the architecture is operating
system–independent. If a device supports the USB
protocol and has a USB host controller, USB-Watch
will work on the system. Second, data collection and
processing take up computation time with any security
mechanism on a computing device. Detaching these
processes to a segmented hardware like USB-Watch
frees up resources on the host machine. This provides a
lightweight solution to detection and minimizes overhead
on the host system. With the low cost of simple FPGA
circuitry (<$20 USD for a simple programmable logic
board), this solution can easily be implemented when
fabricating a computer with minimal increase in price per
unit.

Limitations: An advanced adversary may be able to
mimic behavior dynamics used to train the classifier. We
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Fig. 6 ROC curve of the USB-Watch classifier when against an
unknown and mimicked adversary

tested this possibility of (1) an adversary who uses their
own behaviors to initiate the attack and (2) an attacker
who mimicked the target’s exact behaviors against our
model. As shown in Fig. 6, the model performs weaker
against both types of adversaries. However, the model is
not fully broken unless the adversary can truly mimic the
target’s behaviors (which is unrealistic in most cases). We
consider this attack vector unlikely as the adversary must
install keylogging capability in the target machine. If the
adversary can do this, then they may install another, more
advanced attack on the target machine. Nonetheless, this
result implies limiting the training data to as few users as
possible so that it becomes more difficult for an adversary
to effectively mimic exact user behaviors. The method
described in this work dynamically detects malicious
USB devices. While it has been shown to be effective, it
does not cover all attack vectors. Static detection methods
as described in the related work can be implemented in
congruence with USB-Watch to cover a wider range of
threats.

8 Conclusions and FutureWork

In this work, we use a model to dynamically analyze
USB device behavior, using an anomaly detection classifier.
Since this framework was created in hardware, we were
able to accurately identify abnormal behaviors with an
aggregate ROC AUC score of 0.99 from the collected data,
even when the attacker uses advanced threats that may be
able to circumvent currently established static and dynamic
analysis methods used in software.

We show in this study that USB-Watch hardware can be
used to replicate a smart USB host controller. When a USB

device is inserted into the USB-Watch hardware, it can infer
the behavior of the device and prevent malicious actions.
This is done with the introduction of minimal performance
overhead.

More work can be done to improve the USB-Watch
framework. First, future work can be done to improve
the dynamic detection model, teaching it to infer more
information about the USB devices being plugged in (i.e.,
what is the device, what user is using the device, etc.)
based on the security needs of the user. Second, further
static analysis methods can be introduced to the USB-Watch
framework, as dynamic methods cannot cover all potential
threats. Merging both dynamic and static analyses into the
USB-Watch framework would create a truly smart USB host
controller that can prevent malicious USB behavior.
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