
VEBEK: Virtual Energy-Based Encryption
and Keying for Wireless Sensor Networks
Arif Selcuk Uluagac, Student Member, IEEE, Raheem A. Beyah, Senior Member, IEEE,

Yingshu Li, Member, IEEE, and John A. Copeland, Fellow, IEEE

Abstract—Designing cost-efficient, secure network protocols for Wireless Sensor Networks (WSNs) is a challenging problem because

sensors are resource-limited wireless devices. Since the communication cost is the most dominant factor in a sensor’s energy

consumption, we introduce an energy-efficient Virtual Energy-Based Encryption and Keying (VEBEK) scheme for WSNs that

significantly reduces the number of transmissions needed for rekeying to avoid stale keys. In addition to the goal of saving energy,

minimal transmission is imperative for some military applications of WSNs where an adversary could be monitoring the wireless

spectrum. VEBEK is a secure communication framework where sensed data is encoded using a scheme based on a permutation code

generated via the RC4 encryption mechanism. The key to the RC4 encryption mechanism dynamically changes as a function of the

residual virtual energy of the sensor. Thus, a one-time dynamic key is employed for one packet only and different keys are used for the

successive packets of the stream. The intermediate nodes along the path to the sink are able to verify the authenticity and integrity of the

incoming packets using a predicted value of the key generated by the sender’s virtual energy, thus requiring no need for specific rekeying

messages. VEBEK is able to efficiently detect and filter false data injected into the network by malicious outsiders. The VEBEK

framework consists of two operational modes (VEBEK-I and VEBEK-II), each of which is optimal for different scenarios. In VEBEK-I,

each node monitors its one-hop neighbors where VEBEK-II statistically monitors downstream nodes. We have evaluated VEBEK’s

feasibility and performance analytically and through simulations. Our results show that VEBEK, without incurring transmission overhead

(increasing packet size or sending control messages for rekeying), is able to eliminate malicious data from the network in an energy-

efficient manner. We also show that our framework performs better than other comparable schemes in the literature with an overall

60-100 percent improvement in energy savings without the assumption of a reliable medium access control layer.

Index Terms—Security, WSN security, VEBEK, virtual energy-based keying, resource-constrained devices.

Ç

1 INTRODUCTION

RAPIDLY developed WSN technology is no longer nascent
and will be used in a variety of application scenarios.

Typical application areas include environmental, military,
and commercial enterprises [1]. For example, in a battlefield
scenario, sensors may be used to detect the location of
enemy sniper fire or to detect harmful chemical agents
before they reach troops. In another potential scenario,
sensor nodes forming a network under water could be used
for oceanographic data collection, pollution monitoring,
assisted navigation, military surveillance, and mine recon-
naissance operations. Future improvements in technology
will bring more sensor applications into our daily lives and
the use of sensors will also evolve from merely capturing
data to a system that can be used for real-time compound
event alerting [2].

From a security standpoint, it is very important to
provide authentic and accurate data to surrounding sensor
nodes and to the sink to trigger time-critical responses (e.g.,

troop movement, evacuation, and first response deploy-
ment) [3]. Protocols should be resilient against false data
injected into the network by malicious nodes. Otherwise,
consequences for propagating false data or redundant data
are costly, depleting limited network resources and wasting
response efforts.

However, securing sensor networks poses unique chal-
lenges to protocol builders because these tiny wireless
devices are deployed in large numbers, usually in unattended
environments, and are severely limited in their capabilities
and resources (e.g., power, computational capacity, and
memory). For instance, a typical sensor [4] operates at the
frequency of 2.4 GHz, has a data rate of 250 Kbps, 128 KB of
program flash memory, 512 KB of memory for measure-
ments, transmit power between 100 �W and 1 mW, and a
communications range of 30 to 100 m. Therefore, protocol
builders must be cautious about utilizing the limited
resources onboard the sensors efficiently.

In this paper, we focus on keying mechanisms for WSNs.
There are two fundamental key management schemes for
WSNs: static and dynamic. In static key management
schemes, key management functions (i.e., key generation
and distribution) are handled statically. That is, the sensors
have a fixed number of keys loaded either prior to or
shortly after network deployment. On the other hand,
dynamic key management schemes perform keying func-
tions (rekeying) either periodically or on demand as needed
by the network. The sensors dynamically exchange keys to
communicate. Although dynamic schemes are more attack-
resilient than static ones, one significant disadvantage is
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that they increase the communication overhead due to keys
being refreshed or redistributed from time to time in the
network. There are many reasons for key refreshment,
including: updating keys after a key revocation has
occurred, refreshing the key such that it does not become
stale, or changing keys due to dynamic changes in the
topology. In this paper, we seek to minimize the overhead
associated with refreshing keys to avoid them becoming
stale. Because the communication cost is the most dominant
factor in a sensor’s energy consumption [5], [6], the message
transmission cost for rekeying is an important issue in a
WSN deployment (as analyzed in the next section).
Furthermore, for certain WSN applications (e.g., military
applications), it may be very important to minimize the
number of messages to decrease the probability of detection
if deployed in an enemy territory. That is, being less
“chatty” intuitively decreases the number of opportunities
for malicious entities to eavesdrop or intercept packets.

The purpose of this paper is to develop an efficient and
secure communication framework for WSN applications.
Specifically, in this paper, we introduce Virtual Energy-
Based Encryption and Keying (VEBEK) for WSNs, which is
primarily inspired by our previous work [7]. VEBEK’s
secure communication framework provides a technique to
verify data in line and drop false packets from malicious
nodes, thus maintaining the health of the sensor network.
VEBEK dynamically updates keys without exchanging
messages for key renewals and embeds integrity into
packets as opposed to enlarging the packet by appending
message authentication codes (MACs). Specifically, each
sensed data is protected using a simple encoding scheme
based on a permutation code generated with the RC4
encryption scheme and sent toward the sink. The key to the
encryption scheme dynamically changes as a function of
the residual virtual energy of the sensor, thus requiring no
need for rekeying. Therefore, a one-time dynamic key is
used for one message generated by the source sensor and
different keys are used for the successive packets of the
stream. The nodes forwarding the data along the path to the
sink are able to verify the authenticity and integrity of the
data and to provide nonrepudiation. The protocol is able to
continue its operations under dire communication cases as
it may be operating in a high-error-prone deployment area
like under water. VEBEK unbundles key generation from
other security services, namely authentication, integrity,
and nonrepudiation; thus, its flexible modular architecture
allows for adoption of other encryption mechanisms if
desired. The contributions of this paper are as follows:

1. a dynamic en route filtering mechanism that does
not exchange explicit control messages for rekey-
ing;

2. provision of one-time keys for each packet trans-
mitted to avoid stale keys;

3. a modular and flexible security architecture with a
simple technique for ensuring authenticity, integrity,
and nonrepudiation of data without enlarging
packets with MACs; and

4. a robust secure communication framework that is
operational in dire communication situations and
over unreliable medium access control layers.

Both analytical and simulation results verify the feasibility
of VEBEK. We also illustrate that VEBEK is significantly

more energy efficient than other comparable schemes in the
literature with an overall 60-100 percent improvement.

The paper proceeds as follows: To motivate our work, a
preliminary analysis of the rekeying cost with and without
explicit control messages is given in Section 2. Section 3
discusses the semantics of VEBEK. VEBEK’s different
operational modes are discussed in Section 4. An analytical
framework and performance evaluation results including a
comparison with other relevant works are given in Section 5.
Section 6 summarizes the design rationale and benefits of the
VEBEK framework. Related work is presented in Section 7.
Finally, Section 8 concludes the paper.

2 BACKGROUND AND MOTIVATION

One significant aspect of confidentiality research in WSNs
entails designing efficient key management schemes. This is
because regardless of the encryption mechanism chosen for
WSNs, the keys must be made available to the commu-
nicating nodes (e.g., sources and sink(s)). The keys could be
distributed to the sensors before the network deployment
or they could be redistributed (rekeying) to nodes on
demand as triggered by keying events. The former is static
key [8] management and the latter is dynamic key [9]
management. There are myriads of variations of these basic
schemes in the literature. In this work, we only consider
dynamic keying mechanisms in our analysis since VEBEK
uses the dynamic keying paradigm. The main motivation
behind VEBEK is that the communication cost is the most
dominant factor in a sensor’s energy consumption [5], [6].
Thus, in this section, we present a simple analysis for the
rekeying cost with and without the transmission of explicit
control messages. Rekeying with control messages is the
approach of existing dynamic keying schemes whereas
rekeying without extra control messages is the primary
feature of the VEBEK framework.

Dynamic keying schemes go through the phase of
rekeying either periodically or on demand as needed by
the network to refresh the security of the system. With
rekeying, the sensors dynamically exchange keys that are
used for securing the communication. Hence, the energy
cost function for the keying process from a source sensor to
the sink while sending a message on a particular path with
dynamic key-based schemes can be written as follows
(assuming computation cost, Ecomp, would approximately
be fixed):

EDyn ¼
�
EKdisc

þ Ecomp

�
� E½�h� �

�

�
; ð1Þ

where � is the number of packets in a message, � is the key
refresh rate in packets per key, EKdisc

is the cost of shared-
key discovery with the next hop sensor after initial
deployment, and E½�h� is the expected number of hops. In
the dynamic key-based schemes, � may change periodically,
on demand, or after a node-compromise. A good analytical
lower bound for E½�h� is given in [10] as

E½�h� ¼
D� tr
E½dh�

þ 1; ð2Þ

where D is the end-to-end distance (m) between the sink
and the source sensor node, tr is the approximated
transmission range (m), and E½dh� is the expected hop
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distance (m) [11]. An accurate estimation of E½dh� can be
found in [11]. Finally, EKdisc

, can be written as follows:

EKdisc
¼ fE½Ne� � EnodeÞ �M � 2 � Enodeg; ð3Þ

Enode ¼ Etx þErx þEcomp; ð4Þ

where Enode is the approximate cost per node for key
generation and transmission, E½Ne� is the expected number
of neighbors for a given sensor, M is the number of key

establishment messages between two nodes, and Etx and
Erx are the energy cost of transmission and reception,
respectively. Given the transmission range of sensors

(assuming bidirectional communication links for simpli-
city), tr, total deployment area, A, total number of sensors
deployed, N , E½Ne� can be computed as

E½Ne� ¼
N � � � t2r

A
: ð5Þ

On the other hand, VEBEK does rekeying without messages.
There are two operational modes of VEBEK (VEBEK-I and
VEBEK-II). The details of these modes are given in Section 4.
However, for now it suffices to know that VEBEK-I is
representative of a dynamic system without rekeying
messages, but with some initial neighborhood info exchange
whereas VEBEK-II is a dynamic system without rekeying
messages and without any initial neighborhood info ex-
change. Using the energy values given in [4], Fig. 1 shows the
analytical results for the above expressions. For both VEBEK
modes, we assume there would be a fixed cost of Ecomp

1

because VEBEK does not exchange messages to refresh keys,
but for VEBEK-I, we also included the cost of EKdisc

.
With this initial analysis, we see that dynamic key-based

schemes, in this scenario, spend a large amount of their
energy transmitting rekeying messages. With this observa-
tion, the VEBEK framework is motivated to provide the
same benefits of dynamic key-based schemes, but with low
energy consumption. It does not exchange extra control
messages for key renewal. Hence, energy is only consumed
for generating the keys necessary for protecting the
communication. The keys are dynamic; thus, one key per
packet is employed. This makes VEBEK more resilient to
certain attacks (e.g., replay attacks, brute-force attacks, and
masquerade attacks).

3 SEMANTICS OF VEBEK

The VEBEK framework is comprised of three modules:
Virtual Energy-Based Keying, Crypto, and Forwarding.

The virtual energy-based keying process involves the
creation of dynamic keys. Contrary to other dynamic keying
schemes, it does not exchange extra messages to establish
keys. A sensor node computes keys based on its residual
virtual energy of the sensor. The key is then fed into the
crypto module.

The crypto module in VEBEK employs a simple encoding
process, which is essentially the process of permutation of
the bits in the packet according to the dynamically created
permutation code generated via RC4. The encoding is a
simple encryption mechanism adopted for VEBEK. How-
ever, VEBEK’s flexible architecture allows for adoption of
stronger encryption mechanisms in lieu of encoding.

Last, the forwarding module handles the process of
sending or receiving of encoded packets along the path to
the sink.

A high-level view of the VEBEK framework and its
underlying modules are shown in Fig. 2. These modules are
explained in further detail below. Important notations used
are given in Table 1.

3.1 Virtual Energy-Based Keying Module

The virtual energy-based keying module of the VEBEK
framework is one of the primary contributions of this paper.
It is essentially the method used for handling the keying
process. It produces a dynamic key that is then fed into the
crypto module.

In VEBEK, each sensor node has a certain virtual energy
value when it is first deployed in the network. The rationale
for using virtual energy as opposed to real battery levels as
in our earlier work, DEEF [7], is that in reality battery levels
may fluctuate and the differences in battery levels across
nodes may spur synchronization problems, which can
cause packet drops. These concerns have been addressed
in VEBEK and are discussed in detail in the performance
evaluation section (Section 5).

After deployment, sensor nodes traverse several func-
tional states. The states mainly include node-stay-alive,
packet reception, transmission, encoding, and decoding. As
each of these actions occur, the virtual energy in a sensor
node is depleted. The current value of the virtual energy,Evc,
in the node is used as the key to the key generation function,
F . During the initial deployment, each sensor node will have
the same energy level Eini, therefore, the initial key, K1, is a
function of the initial virtual energy value and an initializa-
tion vector (IV ). The IV s are predistributed to the sensors.
Subsequent keys, Kj, are a function of the current virtual
energy, Evc, and the previous key Kj�1. VEBEK’s virtual
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Fig. 1. Keying cost of dynamic key-based schemes based on E½nh�
versus VEBEK.

Fig. 2. Modular structure of VEBEK framework.

1. A more rigorous analysis is presented in Section 5.
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energy-based keying module ensures that each detected
packet2 is associated with a new unique key generated based
on the transient value of the virtual energy. After the
dynamic key is generated, it is passed to the crypto module,
where the desired security services are implemented. The
process of key generation is initiated when data is sensed;
thus, no explicit mechanism is needed to refresh or update
keys. Moreover, the dynamic nature of the keys makes it
difficult for attackers to intercept enough packets to break
the encoding algorithm. The details are given in Algorithm 1.
As mentioned above, each node computes and updates the
transient value of its virtual energy after performing some
actions. Each action (or state traversal) on a node is
associated with a certain predetermined cost. Since a sensor
node will be either forwarding some other sensor’s data or
injecting its own data into the network, the set of actions and
their associated energies for VEBEK includes packet recep-
tion (Erx), packet transmission (Etx), packet encoding (Eenc),
packet decoding (Edec) energies, and the energy required to
keep a node alive in the idle state (Ea).

3 Specifically, the
transient value of the virtual energy, Ev, is computed by
decrementing the total of these predefined associated costs,
Evc, from the previous virtual energy value.

Algorithm 1. Compute Dynamic Key

1: ComputeDynamicKey(Evc; IDclr)
2: begin

3: j txIDclr
cnt

4: if j ¼ 1 then

5: Kj  F ðEini; IV Þ
6: else

7: Kj  F ðKðj�1Þ; EvcÞ
8: end if

9: return Kj

10: end

The exact procedure to compute virtual cost, Evc, slightly
differs if a sensor node is the originator of the data or the
forwarder (i.e., receiver of data from another sensor). In
order to successfully decode and authenticate a packet, a
receiving node must keep track of the energy of the sending
node to derive the key needed for decoding. In VEBEK, the
operation of tracking the energy of the sending node at the
receiver is called watching and the energy value that is
associated with the watched sensor is called Virtual
Perceived Energy (Ep) as in [7]. More formal definitions for
watching are given as follows:

Definition 1. Given a finite number of sensor nodes, N
(N ¼ f1; . . . ; Ng), deployed in a region, watching is defined

as a node’s responsibility for monitoring and filtering packets
coming from a certain (configurable) number of sensor nodes,
r, where r <¼ N . <� is used to denote the watching operation.

Definition 2. Given a sensor node i, the total number of watched
nodes, r, which the node is configured to watch, constitutes a
watching list, WLi for node i and WLi ¼ ð1; 2; . . . ; rÞ.
Node i watches node k if IDk 2WLi.

Deciding which nodes to watch and how many depends on
the preferred configuration of the VEBEK authentication
algorithm, which we designate as the operational mode of
the framework. Specifically, we propose two operational
modes VEBEK-I and VEBEK-II and they are discussed in
the next section.

When an event is detected by a source sensor, that node
has remained alive for t units of time since the last event (or
since the network deployment if this is the first event
detected). After detection of the event, the node sends the
l-bit length packet toward the sink. In this case, the
following is the virtual cost associated with the source node:

Evc ¼ l � ðetx þ eencÞ þ t � ea þ Esynch: ð6Þ

In the case where a node receives data from another node,
the virtual perceived energy value can be updated by
decrementing the cost associated with the actions per-
formed by the sending node using the following cost
equation. Thus, assuming that the receiving node has the
initial virtual energy value of the sending node and that the
packet is successfully received and decoded associated with
a given source sensor, k, the virtual cost of the perceived
energy is computed as follows:

Ek
p ¼ l � ðerx þ edec þ etx þ eencÞ þ t � 2 � ea; ð7Þ

where in both the equations, the small es refer to the one bit
energy costs of the associated parameter. However, Esynch in
(6) refers to a value to synchronize the source with the
watcher-forwarders toward the sink as watcher-forwarder
nodes spend more virtual energy due to packet reception
and decoding operations, which are not present in source
nodes. Hence, Esynch ¼ l � ðerx þ edecÞ þ ea � t. The watching
concept is illustrated with an example in Fig. 3. In the figure,
there is one source sensor node, A, and other nodes B, C,
and D are located along the path to the sink. Every node
watches its downstream node, i.e., B watches A (B <� A), C
watches B (C <� B), and D watches C (D <� C). All the nodes
have the initial virtual energy of 2,000 mJ and as packets are
inserted into the network from the source node (A) over
time, nodes decrement their virtual energy values. For
instance, as shown in Fig. 3, node A starts with the value of
2,000 mJ as the first key to encode the packet (key generation
based on the virtual energies is explained in the crypto
module). Node A sends the first packet and decrements its
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TABLE 1
Notations Used

2. Indeed, the same key can be used for a certain number of
transmissions, n, to further save energy.

3. The set of actions can be extended to include other actions depending
on the WSN application or functionality of the network.
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virtual energy to 1,998 mJ. After node B receives this first
packet, it uses the virtual perceived energy value
(Ep ¼ 2;000 mJ) as the key to decode the packet, and
updates its Ep (1,998 mJ) after sending the packet. When
the packet travels up to the sink, the virtual energy becomes
a shared dynamic cryptic credential among the nodes.

3.2 Crypto Module

Due to the resource constraints of WSNs, traditional digital
signatures or encryption mechanisms requiring expensive
cryptography is not viable. The scheme must be simple, yet
effective. Thus, in this section, we introduce a simple
encoding operation similar to that used in [7]. The encoding
operation is essentially the process of permutation of the
bits in the packet, according to the dynamically created
permutation code via the RC4 encryption mechanism. The
key to RC4 is created by the previous module (virtual
energy-based keying module). The purpose of the crypto
module is to provide simple confidentiality of the packet
header and payload while ensuring the authenticity and
integrity of sensed data without incurring transmission
overhead of traditional schemes. However, since the key
generation and handling process is done in another module,
VEBEK’s flexible architecture allows for adoption of
stronger encryption mechanisms in lieu of encoding.

The packets in VEBEK consists of the ID (i-bits), type
(t-bits) (assuming each node has a type identifier), and
data (d-bits) fields. Each node sends these to its next hop.
However, the sensors’ ID, type, and the sensed data are
transmitted in a pseudorandom fashion according to the
result of RC4. More specifically, the RC4 encryption
algorithm takes the key and the packet fields (byte-by-
byte) as inputs and produces the result as a permutation
code as depicted in Fig. 4. The concatenation of each 8-bit
output becomes the resultant permutation code. As
mentioned earlier, the key to the RC4 mechanism is taken
from the core virtual energy-based keying module, which

is responsible for generating the dynamic key according to
the residual virtual energy level. The resultant permuta-
tion code is used to encode the hIDjtypejdatai message.
Then, an additional copy of the ID is also transmitted in
the clear along with the encoded message. The format of
the final packet to be transmitted becomes Packet ¼
½ID; fID; type; datagk� where fxgk constitutes encoding x
with key k. Thus, instead of the traditional approach of
sending the hash value (e.g., message digests and message
authentication codes) along with the information to be
sent, we use the result of the permutation code value
locally. When the next node along the path to the sink
receives the packet, it generates the local permutation
code to decode the packet.

Another significant step in the crypto module involves
how the permutation code dictates the details of the
encoding and decoding operations over the fields of the
packet when generated by a source sensor or received by a
forwarder sensor.

Specifically, the permutation code P can be mapped to a
set of actions to be taken on the data stream combination.
As an example, the actions and their corresponding bit
values can include simple operations such as shift, inter-
leaving, taking the 1’s complement, etc. Other example
operations can be seen in Table 2.

For example, if a node computed the following permuta-
tion code P ¼ f1100100101g, the string in Fig. 5a becomes
the string in Fig. 5d before it is transmitted. The receiver
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Fig. 3. An illustration of the watching concept with forwarding.

Fig. 4. An illustration of the use of RC4 encryption mechanism in

VEBEK.

TABLE 2
Example Encoding Operations

Fig. 5. Illustration of a sample encoding operation. (a) iþ tþ d bit string

before permutation. (b) Example encoding operations. (c) Example

permutation code value. (d) iþ tþ d bit string after permutation.
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will perform the same operations (since the inputs to RC4
are stored and updated on each sensor) to accurately
decode the packet. To ensure correctness, the receiver
compares the plaintext ID with the decoded ID. Moreover,
although it is theoretically possible (1 in 2iþtþd) for a hacker
to accurately inject data, it becomes increasingly unlikely as
the packet grows.

The benefits of this simple encoding scheme are: 1) since
there is no hash code or message digest to transmit, the
packet size does not grow, avoiding bandwidth overhead
on an already resource-constrained network, thus increas-
ing the network lifetime, 2) the technique is simple, thus
ideal for devices with limited resources (e.g., PDAs), and
3) the input to the RC4 encryption mechanism, namely, the
key, changes dynamically without sending control mes-
sages to rekey.

3.3 Forwarding Module

The final module in the VEBEK communication architecture
is the forwarding module. The forwarding module is
responsible for the sending of packets (reports) initiated at
the current node (source node) or received packets from other
sensors (forwarding nodes) along the path to the sink. The
reports traverse the network through forwarding nodes and
finally reach the terminating node, the sink. The operations
of the forwarding module are explained in this section.

3.3.1 Source Node Algorithm

When an event is detected by a source node, the next step is
for the report to be secured. The source node uses the local
virtual energy value and an IV (or previous key value if not
the first transmission) to construct the next key. As
discussed earlier, this dynamic key generation process is
primarily handled by the VEBEK module. The source
sensor fetches the current value of the virtual energy from
the VEBEK module. Then, the key is used as input into the
RC4 algorithm inside the crypto module to create a
permutation code for encoding the hIDjtypejdatai message.
The encoded message and the cleartext ID of the originating
node are transmitted to the next hop (forwarding node or
sink) using the following format: ½ID; fID; type; datagPc�,
where fxgPc constitutes encoding x with permutation code
Pc. The local virtual energy value is updated and stored for
use with the transmission of the next report.

3.3.2 Forwarder Node Algorithm

Once the forwarding node receives the packet it will first
check its watch-list to determine if the packet came from a
node it is watching. If the node is not being watched by the
current node, the packet is forwarded without modification
or authentication. Although this node performed actions on
the packet (received and forwarded the packet), its local
virtual perceived energy value is not updated. This is done to
maintain synchronization with nodes watching it further up
the route. If the node is being watched by the current node,
the forwarding node checks the associated current virtual
energy record (Algorithm 2) stored for the sending node and
extracts the energy value to derive the key. It then
authenticates the message by decoding the message and
comparing the plaintext node ID with the encoded node ID. If
the packet is authentic, an updated virtual energy value is
stored in the record associated with the sending node. If the
packet is not authentic it is discarded. Again, the virtual

energy value associated with the current sending node is only
updated if this node has performed encoding on the packet.

Algorithm 2. Forwarding Node Algorithm with

Communication Error Handling

1: Forwarder(currentNode;WatchedNode; UpstreamNode)

2: begin

3: i currentNode; enc 0;WLi  WatchList

4: k WatchedNode; src 0; j 0

5: Erxi ; hIDclr; fmsggKi  ReceivePacketðÞ
6: if IDclr 2WLi then

7: while ðkeyFound ¼ 0Þandðj <¼ thresHoldÞ do

8: Ek
pi
 FetchV irtualEnergyði; IDclr; enc; srcÞ

9: K  ComputeDynamicKeyðEk
pi
; IDclrÞ

10: Pc RC4ðK; IDclrÞ
11: Edeci ;MsgID  decodeðPc; fmsggKÞ
12: if IDclr ¼MsgID then

13: keyFound true

14: else

15: jþþ
16: Ek

pi
 Ek

pi
� Etxi �Eenci � Erxi � Edeci � 2 � Eai

17: end if

18: end while

19: if keyFound ¼ true then

20: if j > 1 then

21: reEncode true

22: else

23: if Ebi > 0 then

24: reEncode true

25: else

26: reEncode false

27: end if

28: end if

29: if reEncode ¼ true then

30: enc 1

31: Ebi  FetchV irtualEnergyði; IDclr; enc; srcÞ
32: K  ComputeDynamicKeyðEbi ; IDclrÞ
33: Pc RC4ðK; IDclrÞ
34: Eenci ; fmsggPc  encodeðPc;msgÞ
35: packet hIDclr; fmsggPci
36: Etxi  ForwardPacketðÞ
37: Ebi  Ebi � Etxi � Eenci �Erxi � Edeci � 2 � Eai

38: else

39: ForwardPacket() //Without any modification

40: end if

41: else

42: DropPacket() //Packet not valid

43: end if

44: else

45: ForwardPacket() //Without any modification

46: end if

47: end

3.3.3 Addressing Communication Errors via Virtual

Bridge Energy

In VEBEK, to authenticate a packet, a node must keep track
of the virtual energy of the sending node to derive the key
needed for decoding. Ideally, once the authenticating node
has the initial virtual energy value of the sending node, the
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value can be updated by decrementing the cost associated
with the actions performed by the sending node using the
cost equations defined in the previous sections on every
successful packet reception. However, communication
errors may cause some of the packets to be lost or dropped.
Some errors may be due to the deployment region (e.g.,
underwater shadow zones) while operating on unreliable
underlying protocols (e.g., medium access control protocol).
For instance, ACK or data packets can be lost and the sender
may not be able to determine which one actually was lost.
Moreover, malicious packets inserted by attackers who
impersonate legitimate sensors will be dropped intention-
ally by other legitimate sensors to filter the bad data out of
the network. In such communication errors or intentional
packet drop cases, the virtual energy value used to encode
the next data packet at the sending node may differ from the
virtual energy value that is stored for the sending node at its
corresponding watching node. Specifically, the node that
should have received the dropped packet and the nodes
above that node on the path to the sink lose synchronization
with the nodes below (because the upper portion never sees
the lost packet and does not know to decrement the virtual
energy associated with servicing the lost transmission). If
another packet was to be forwarded by the current watching
node using its current virtual energy, the upstream node(s)
that watch this particular node would discard the packet.
Thus, this situation needs to be resolved for proper
functioning of the VEBEK framework.

To resolve potential loss of packets due to possible
communication errors in the network, all the nodes are
configured to store an additional virtual energy value,
which we refer to as the Virtual Bridge Energy, Ebi , value to
allow resynchronization (bridging) of the network at the
next watching sensor node that determines that packets
were lost.

Definition 3. Given a node, i, bridging is defined as the process
of encoding the incoming packet coming from any sensor node
in WLi for the upstream sensor node, j, with the key generated
using the local copy of Ebi .

That is, as subsequent packets generated from the node
of interest pass through the next watching node, the next
watching node will decode the packet with the virtual
perceived energy key of the originating node and reencode
the packet with the virtual bridge energy key, thus, the
network will be kept synchronized. It is important to note
that once this value is activated for a watched node, it will
be always used for packets coming from that node and used
even if an error does not occur for the later transmissions of
the same watched node. The watching node always updates
and uses this parameter to keep the network bridged.

Another pertinent point is the determination of packet
loss by the first upstream watching node who will bridge
the network. The VEBEK framework is designed to avoid
extra messages and not increase the packet size to
determine packet loss in the network. Thus, the next
watching node tries to find the correct value of the virtual
perceived energy for the key within a window of virtual
energies. For this, a sensor is configured with a certain
VirtualKeySearchThreshold value. That is, the watching node
decrements the predefined virtual energy value from the
current perceived energy at most virtualKeySearchThres-
hold times. When the node extracts the key successfully, it

records the newest perceived energy value and associates it
with the sender node (lines 7-18 in Algorithm 2). This
approach may also be helpful in severe packet loss cases
(i.e., bursty errors) by just properly configuring the
virtualKeySearchThreshold value. However, if the watcher
node exhausts all of the virtual energies within the
threshold, it then classifies the packet as malicious.

The combined use of virtual perceived and bridge
energies assure the continued synchronization of the net-
work as whole. The forwarding node algorithm including the
handling of communication errors is shown in Algorithm 2.

4 OPERATIONAL MODES OF VEBEK

The VEBEK protocol provides three security services:
Authentication, integrity, and nonrepudiation. The funda-
mental notion behind providing these services is the
watching mechanism described before. The watching
mechanism requires nodes to store one or more records
(i.e., current virtual energy level, virtual bridge energy
values, and Node-Id) to be able to compute the dynamic
keys used by the source sensor nodes, to decode packets,
and to catch erroneous packets either due to communica-
tion problems or potential attacks. However, there are costs
(communication, computation, and storage) associated with
providing these services. In reality, applications may have
different security requirements. For instance, the security
need of a military WSN application (e.g., surveiling a
portion of a combat zone) may be higher than that of a
civilian application (e.g., collecting temperature data from a
national park). The VEBEK framework also considers this
need for flexibility and thus, supports two operational
modes: VEBEK-I and VEBEK-II. The operational mode of
VEBEK determines the number of nodes a particular sensor
node must watch. Depending on the vigilance required
inside the network, either of the operational modes can be
configured for WSN applications. The details of both
operational modes are given below. The performance
evaluation of both modes is given in Section 5.

4.1 VEBEK-I

In the VEBEK-I operational mode, all nodes watch their
neighbors; whenever a packet is received from a neighbor
sensor node, it is decoded and its authenticity and integrity
are verified. Only legitimate packets are forwarded toward
the sink. In this mode, we assume there exists a short
window of time at initial deployment that an adversary is
not able to compromise the network, because it takes time
for an attacker to capture a node or get keys. During this
period, route initialization information may be used by each
node to decide which node to watch and a record r is stored
for each of its one-hop neighbors in its watch-list. To obtain
a neighbor’s initial energy value, a network-wise master key
can be used to transmit this value during this period similar
to the shared-key discovery phase of other dynamic key
management schemes. Alternatively, sensors can be pre-
loaded with the initial energy value.

When an event occurs and a report is generated, it is
encoded as a function of a dynamic key based on the
virtual energy of the originating node and transmitted.
When the packet arrives at the next-hop node, the
forwarding node extracts the key of the sending node (this
could be the originating node or another forwarding node)
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from its record. (The virtual perceived energy value
associated with the sending node and decodes the packet.)
After the packet is decoded successfully, the plaintext ID is
compared with the decoded ID. In this process, if the
forwarding node is not able to extract the key successfully,
it will decrement the predefined virtual energy value from
the current perceived energy (line 16 in Algorithm 2) and
tries another key before classifying the packet as malicious
(because packet drops may have occurred due to commu-
nication errors). This process is repeated several times;
however, the total number of trials that are needed to
classify a packet as malicious is actually governed by the
value of virtualKeySearchThreshold. If the packet is
authentic, and this hop is not the final hop, the packet is
reencoded by the forwarding node with its own key
derived from its current virtual bridge energy level. If the
packet is illegitimate, the packet is discarded. This process
continues until the packet reaches the sink. Accordingly,
illegitimate traffic is filtered before it enters the network.

Reencoding at every hop refreshes the strength of the
encoding. Recall that the general packet structure is
½ID; fID; type; datagk�. To accommodate this scheme, the
ID will always be the ID of the current node and the key is
derived from the current node’s local virtual bridge energy
value. If the location of the originating node that generated
the report is desired, the packet structure can be modified to
retain the ID of the originating node and the ID of the
forwarding node.

VEBEK-I reduces the transmission overhead as it will be
able to catch malicious packets in the next hop, but
increases processing overhead because of the decode/
encode that occurs at each hop.

4.2 VEBEK-II

In the VEBEK-II operational mode, nodes in the network are
configured to only watch some of the nodes in the network.
Each node randomly picks r nodes to monitor and stores
the corresponding state before deployment. As a packet
leaves the source node (originating node or forwarding
node) it passes through node(s) that watch it probabilisti-
cally. Thus, VEBEK-II is a statistical filtering approach like
SEF [12] and DEF [13]. If the current node is not watching
the node that generated the packet, the packet is forwarded.
If the node that generated the packet is being watched by
the current node, the packet is decoded and the plaintext ID
is compared with the decoded ID. Similar to VEBEK-I, if the
watcher-forwarder node cannot find the key successfully, it
will try as many keys as the value of virtualKeySearch-
Threshold before actually classifying the packet as mal-
icious. If the packet is authentic, and this hop is not the final
destination, the original packet is forwarded unless the
node is currently bridging the network. In the bridging case,
the original packet is reencoded with the virtual bridge
energy and forwarded. Since this node is bridging the
network, both virtual and perceived energy values are
decremented accordingly. If the packet is illegitimate,
which is classified as such after exhausting all the virtual
perceived energy values within the virtualKeySearchThres-
hold window, the packet is discarded. This process
continues until the packet reaches the sink.

This operational mode has more transmission overhead
because packets from a malicious node may or may not be
caught by a watcher node and they may reach the sink

(where it is detected). However, in contrast to the VEBEK-I
mode, it reduces the processing overhead (because less
reencoding is performed and decoding is not performed at
every hop). The trade-off is that an illegitimate packet may
traverse several hops before being dropped. The effective-
ness of this scheme depends primarily on the value r, the
number of nodes that each node watches. Note that in this
scheme, reencoding is not done at forwarding nodes unless
they are bridging the network.

5 PERFORMANCE ANALYSIS

In this section, we evaluate the effectiveness of the VEBEK
framework via both simulations and analysis.

5.1 Assumptions

Due to the broadcast nature of the wireless medium used in
sensor networks, attackers may try to eavesdrop, intercept,
or inject false messages. In this paper, we mainly consider
the false injection and eavesdropping of messages from an
outside malicious node; hence, similar to [12], insider
attacks are outside the scope of this paper. This attacker is
thought to have the correct frequency, protocol, and
possibly a spoofed valid node ID. Throughout this work,
the following assumptions are also made:

. Directed Diffusion [14] routing protocol is used, but
others such as [15] can also be used. According to
specifics of Directed Diffusion, after the sink asks for
data via interest messages, a routing path is
established from the sources in the event region to
the sink. We assume that the path is fixed during the
delivery of the data and the route setup is secure.

. The routing algorithm is deployed on an unreliable
medium access control protocol. The network may
experience ACK or data packet drops.

. The sensor network is densely populated such that
multiple sensors observe and generate reports for
the same event.

. Sensors are assumed to have the same communication
ranges and may have different initial battery supplies.

5.2 Simulation Parameters

We use the Georgia Tech Sensor Network Simulator
(GTSNetS) [16], which is an event-based object-oriented
sensor network simulator with C++, as our simulation
platform to perform the analysis of the VEBEK commu-
nication framework. The topology used for the simulation is
shown in Fig. 6, while the parameters used in the
simulation are summarized in Tables 3 and 4. Nodes were
distributed randomly in the deployment region and on
average, the distance between the source nodes and the sink
was around 25-35 hops. The virtualKeySearchThreshold
value was 15 [17]. The energy costs for different operations
in the table are computed based on the values given in [4].
However, the costs for encoding and decoding operations
are computed based on the reported values of the
implementation of RC4 [18] on real sensor devices.

5.3 Attack Resilience

In this section, the performance of VEBEK is analyzed when
there are malicious source nodes in the data collection field
who insert bad packets into the network. Specifically, the
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analytical basis of the VEBEK framework’s resilience
against malicious activities is formulated. Then, this
theoretical basis is verified with the simulation results. We
compare VEBEK-I and VEBEK-II considering the drop
probability versus number of hops. We also take a closer
look at VEBEK-II and how it is affected by the parameter, r
(the number of records).

In VEBEK-I and VEBEK-II, in order for an attacker to be
able to successfully inject a false packet, an attacker must
forge the packet encoding (which is a result of dynamically
created permutation code via RC4). Given that the complex-
ity of the packet is 2l, where l is the sum of the ID, TYPE,
and DATA fields in the packet, the probability of an
attacker correctly forging the packet is:

Pforge ¼
1

2packetsize
¼ 1

2l
: ð8Þ

Accordingly, the probability of the hacker incorrectly
forging the packet, and therefore, the packet being dropped
(pdrop�I) is:

Pdrop�I ¼ 1� Pforge: ð9Þ

Since VEBEK-I authenticates at every hop, forged packets

will always be dropped at the first hop with a probability

of Pdrop�I .
On the other hand, VEBEK-II statistically drops packets

along the route. Thus, the drop probability for VEBEK-II

(Pdrop�II) is a function of the effectiveness of the watching
nodes as well as the ability for a hacker to correctly guess
the encoded packet structure. Accordingly, the probability
of detecting and dropping a false packet at one hop when
randomly choosing r records (nodes to watch) is:

Pdrop�II ¼
r

N
� ð1� PforgeÞ: ð10Þ

Thus, the probability to detect and drop the packet when
choosing r records after h hops is:

Pr;h
drop�II ¼ 1� ð1� Pdrop�IIÞh: ð11Þ

Moreover, even if one false packet successfully makes it to
the sink, we assume that the sink has enough resources to
determine which data to process and accept.

Fig. 7 shows both the theoretical and simulation results
for VEBEK-II based on the above equations for a varying
number of watched nodes, r, in the WSN. Note that
VEBEK-I is not shown in this figure because it eliminates
malicious data immediately. The x-axis represents the
number of hops a malicious packet travels before it has
been detected and taken out of the network. As can be seen
from the figure, VEBEK-II is able to eliminate malicious
packets from the WSN within 15 hops with 0.5 probability
when nodes watch 25 randomly chosen nodes (r value).
However, if more storage is available on the sensors, then
VEBEK-II can detect and remove malicious packets within
15 hops with 0.90 probability when r is 60. A similar trend is
observed in the same figure with the simulation results.

On the other hand, Fig. 8 presents the comparison of
VEBEK-I (VI in the figure) and VEBEK-II (VII in the figure)
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TABLE 3
General Simulation Parameters

TABLE 4
Energy Related Parameters

Fig. 7. Theoretical and simulation results with varying number of
watched nodes.

Fig. 8. Comparison of filtering efficiency for VEBEK-I and VEBEK-II with
varying number of malicious nodes.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 07,2023 at 16:10:11 UTC from IEEE Xplore.  Restrictions apply. 



via simulation in terms of their filtering efficiency. The x-axis
represents the number of watched nodes (r) that each node is
configured to watch in VEBEK-II and the y-axis shows the
percent of in-network malicious packet dropped with
varying number of malicious nodes in the simulation. As
expected, we see that VEBEK-I is always able to filter
malicious packets from the network with its 100 percent
filtering efficiency. This is mainly due to the fact that
malicious packets are immediately taken out from the
network at the next hop. However, the filtering efficiency
of VEBEK-II is closely related to the number of nodes (r) that
each node watches. The more nodes watched by other nodes,
the more efficient VEBEK-II is with filtering malicious data.
Additionally, as seen when r is equal to 40, it is possible to
achieve almost 90 percent filtering efficiency. This particular
observation with VEBEK-II is significant because for some
WSN applications, energy can be saved by properly
configuring the r parameter. Finally, with respect to Fig. 8,
we observe that the VEBEK framework is independent of the
number of malicious nodes as the framework still filters the
malicious data from the network successfully.

5.4 Energy Consumption of VEBEK-I and VEBEK-II

In this section, we look at the associated costs to transmit
valid data in VEBEK-I and VEBEK-II.

In both operational modes, there is a single cost (ESo) to
stay-alive, sense the event, encode the packet, and transmit
the packet (Esa; Esens; Eenc; Etx) at the source sensor. Thus,

ESo ¼ Esens þEenc þ Etx þ Esa: ð12Þ

Additionally, there is a recurring forwarding cost (EFW ) to
marshal the packet through the network depending on the
number of hops. In VEBEK-I, this cost is

EFW ¼ Erx þ Edec þEenc þEtx þ Esa ð13Þ

for all of the intermediate nodes since all of the nodes
perform the same operations. Hence, the average cost to
transmit a packet in VEBEK-I using E½�h� from (2) is:

EFWI
¼ ESo þ ðE½�h� � EFW Þ: ð14Þ

On the other hand, in VEBEK-II, the cost of EFWII
consists of

EFWw
and EFWnw

for variable fractions of the forwarding
nodes depending on the number of nodes each node chose to

watch, whereEFWw
¼EFW andEFWnw

¼ErxþEtxþEsa. Hence,
the average cost to transmit a packet using VEBEK-II is:

EFWII
¼ ESo þ ðE½�hw � � EFWw

Þ þ ðE½�hnw � � EFWnw
Þ; ð15Þ

where E½�hw � and E½�hnw � represent the expected number
of nodes along the path who are watcher and nonwatcher
nodes, respectively. The values for these expectations can
be computed given the total expected number of hops
with E½�h� from (2), where E½�h� ¼ E½�hw � þ E½�hnw � for
i ¼ 1; 2; 3; . . . ; �h.

Let Xi ¼ 1 if the ith sensor is a watcher and let Xi ¼ 0,
otherwise for a given path to the sink with probabilities
Pfp ¼ 1g ¼ r

N , Pfq ¼ 0g ¼ N�r
N , and N sensors. Then, Xi �

BernoulliðpÞ i.i.d. random variables and �hw¼X1 þ � � � þX�h .

E½�hw � ¼ E
X�h
i¼1

Xi

" #
¼ E E

X�h
i¼1

Xij�h

" #" #
: ð16Þ

Hence, by the independence of Xi and �h;

E½�hw � ¼ E½�h� � E½Xi� ¼
r

N
� E½�h�: ð17Þ

With a similar reasoning, an expression for the expected
number of nonwatchers, E½�hnw �, can be written as follows:

E½�hnw � ¼ E½�h� � E½Xi� ¼
N � r
N
� E½�h�: ð18Þ

Implementing these costs inside the GTSNetS simulator, we
have evaluated the energy performance of the scheme both
for VEBEK-I and VEBEK-II and plotted the results. In all the
figures, the x-axis represents the number of malicious nodes
while the y-axis is the energy consumption. Different values
for the number of watched nodes (r) were analyzed for
VEBEK-II. Furthermore, two attack scenarios were consid-
ered: Attack-Scenario-1 and Attack-Scenario-2. VEBEK-I
and VEBEK-II are abbreviated as VI and VII in the figures.

In Attack-Scenario-1, less powerful malicious nodes are
assumed. The total number of healthy source nodes that
collect the event information and send it toward the sink is
assumed to be fixed, whereas the number of malicious nodes
are increased over time. Letting i be the number of healthy
source nodes and j be the number of malicious nodes, in
Attack-Scenario-1, j � i, where i ¼ n and n > 0. Figs. 9a, 9b,
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and 9c show the results for Attack-Scenario-1. As seen from
the computation costs (i.e., Eenc and Edec) (Fig. 9a), VEBEK-
II’s consumption is less than that of VEBEK-I. The primary
reason for this behavior stems from decoding and reencod-
ing of packets at every hop in the network for VEBEK-I. Also,
as the number of watched nodes (r) increases, VEBEK-II’s
computation cost increases because more packets are
processed for the filtering operation. On the other hand,
the more malicious nodes in the system, the more resources
are consumed to filter the increased number of malicious
packets in the network. As for the transmission costs (i.e.,Etx

and Erx) in Fig. 9b, VEBEK-I is better as the nodes are able to
catch and drop malicious packets and do not let malicious
packets traverse the network. As r decreases, fewer nodes
are watched by the sensors. Thus, the transmission cost
increases in the network because more traffic traverses the
network as a result of less filtering capability with smaller r
values. Furthermore, as the number of malicious nodes
increases in the network, the transmission cost increases due
to more malicious traffic. Finally, analyzing the results for
the total energy consumption, we see that the total energy
consumption in the network exhibits a similar behavior as
transmission costs because the overall energy consumption
is greatly dominated by the transmission costs. Moreover,
we observe that the total energy consumption for VEBEK-II
is smaller than VEBEK-I up to a certain number of malicious
nodes (1 and 2) for certain values of r (all watching values at
1 malicious node; and watching values of 30, 40, and 60 at
2 malicious nodes). The implication of this result is
interesting. If the deployment region is a relatively safe
environment (<2 malicious nodes in our scenario), a similar
filtering efficiency of VEBEK-I can be achieved using
VEBEK-II (100 percent for VEBEK-I versus 99 percent for
VEBEK-II with r ¼ 60) (Fig. 8) if more storage is available on
the nodes. This can be accomplished while consuming less
energy than VEBEK-I (3,400 mJ for VEBEK-I versus 2,800 mJ
for VEBEK-II).

In Attack-Scenario-2, more powerful malicious nodes are
assumed. For instance, they can jam the signal and not
allow healthy nodes to transmit. Over time, more powerful
nodes are assumed to replace the number of healthy source
nodes. Hence, j ¼ 0; 1; 2; . . . ; n and i ¼ n; n� 1; n� 2; . . . ; 0
where again n > 0. Figs. 10a, 10b, and 10c present the
results for Attack-Scenario-2. In all the figures, it is possible

to observe the same patterns as Attack-Scenario-1. The only
difference is the downward slope with some of the plots.
This is attributed to the fact that the ratio of the healthy
traffic diminishes in this attack scenario as the number of
bad packets increases due to the number of malicious nodes
in the network.

So, if a more secure application is desired or if the WSN
application is deployed in an hostile environment, then
VEBEK-I is recommended because VEBEK-I provides
security services at every hop. VEBEK-I also watches fewer
nodes in comparison to VEBEK-II. Thus, the lower storage
requirement (i.e., fewer watched nodes) and providing
security at every hop make VEBEK-I well suitable for
military WSN applications where immediate reaction to
enemy units is necessary. However, the downside of the
VEBEK-I operational mode is its high processing costs. On
the other hand, if the deployment region is expected to be a
relatively safe environment, which may be true for some
civilian WSN applications, then VEBEK-II can be utilized.
But, as discussed above, to provide a comparable level of
vigilance to the network, this operational mode uses much
more storage than VEBEK-I.

5.5 Comparison of VEBEK-II with Other Statistical
Schemes

In this section, we evaluate the energy performance of
VEBEK-II with other “en-route dynamic filtering” works in
the literature. We focus on statistical schemes because they
have received a lot of attention in recent years. Specifically,
we compare the expected energy costs of DEF [13], SEF [12],
and STEF [19]4 with that of VEBEK-II because VEBEK-II is
the statistical mode of the VEBEK framework. First, we
briefly summarize each protocol and discuss their draw-
backs. Then, the comparison results are presented. An
illustration of each protocol is given in Fig. 11.

In the Dynamic En-route Filtering (DEF) scheme by Yu
and Guan [13], a legitimate report is endorsed by multiple
sensing nodes using their own authentication keys. Before
deployment, each node is preloaded with a seed authenti-
cation key and lþ 1 secret keys randomly chosen from a
global key pool. Before sending reports, the cluster head
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Fig. 10. (a) Computation costs (Attack-Scenario-2). (b) Transmissions costs (Attack-Scenario-2). (c) Total energy costs (Attack-Scenario-2).

4. Although STEF is not a statistical approach, we included in our
comparison because it is a relevant en route filtering study.
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disseminates the authentication keys to forwarding nodes
encrypted with secret keys that will be used for endorsing.
The forwarding nodes stores the keys if they can decrypt
them successfully. Later, cluster heads send authentication
keys to validate the reports. The DEF scheme involves the
usage of authentication keys and secret keys to disseminate
the authentication keys; hence, it uses many keys and is
complicated for resource-limited sensors.

Ye et al., proposed statistical en-route filtering (SEF) [12].
In SEF, each sensing report is validated by multiple keyed
message authentication codes. Specifically, each node is
equipped with some number of keys that are drawn
randomly from the global key pool. First, a center of stimulus
is selected among the source sensor nodes in the event
region. Then, once a report is generated by a source node, a
MAC is appended to the report. Next, another upstream
node that has the same key as the source can verify the
validity of the MAC and filters the packet if the MAC is
invalid. However, the downside of SEF is that the nodes must
store keys and packets are enlarged by MACs. Although the
authors suggest the use of bloom-filters to decrease the MAC
overhead, SEF is a static key-based scheme and it inherits all
the downsides of static key management schemes.

The scheme, Secure Ticket-Based En-route Filtering
(STEF) [19], by Krauss et al., proposes using a ticket concept,
where tickets are issued by the sink and packets are only
forwarded if they contain a valid ticket. If a packet does not
contain a valid ticket, it is immediately filtered out. STEF is
similar in nature to SEF and DEF. The packets contain a
MAC and cluster heads share keys with their immediate
source sensor nodes in their vicinity and with the sink. The
downside of STEF is its one way communication in the
downstream for the ticket traversal to the cluster head.

Since DEF and SEF are probabilistic schemes, a compar-
ison of each scheme with VEBEK-II in terms of their energy
consumption is presented in Fig. 12. The results are generated
for one round of communication from a source node to the
sink, which is assumed to be located n hops away from the
source node. The x-axis represents the hop count and is
varied, while the y-axis is the energy. To simplify the
comparisons, we assumed that all the nodes in DEF, SEF,
and VEBEK-II would have the necessary keying material
with 0.7 probability to do the desired security features
imposed by the specific protocol in a benign environment (no
malicious nodes). We also assumed that the protocols that use

hashing and encryption mechanisms would use MD5 and

RC4, respectively. The real sensor implementation values for

these crypto mechanisms are taken from [18] and [20].

Another necessary assumption was that all protocols would

work in perfect communication cases without packet loss

because only the VEBEK framework has been designed with

handling communication error cases and it would not be

meaningful to compare VEBEK with others when others were

not designed to handle errors. As can be seen, VEBEK-II is

better than all the schemes, exhibiting a performance

improvement of 60-100 percent in energy consumption than

the closest scheme, SEF. We note that all other schemes

provide a nice framework for filtering malicious data en

route; however, the other schemes exchange many messages,

involve the use of many keys, and do not have any

mechanism to cope with packet loss.
Moreover, we analyze how VEBEK improves the syn-

chronization problems that may occur due to communica-
tion errors in our previous work, DEEF [7]. Since DEEF is
based on generating communication keys with real battery
levels, packet drops may cause the nodes to easily loose
synchronization with other nodes along the path to the sink.
To analyze the synchronization problem, we define synchro-
nization ratio as a metric to measure the performance of the
VEBEK framework during packet drops. Specifically, we
denote the synchronization ratio, ’, as follows:
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Fig. 11. Illustrations of (a) DEF, (b) SEF, and (c) STEF.

Fig. 12. Comparison of VEBEK, DEF [13], SEF [12], and STEF [19].
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’ ¼
X�hw
i¼1

�i
�i þ "i

; ð19Þ

where i is the node, � is the number of forwarded-watched
packets, " is the number of dropped-watched packets, and
�hw is the number of watcher nodes between the source and
the sink. Fig. 13 presents the simulation results of the
synchronization ratio with respect to DEEF and VEBEK. As
can be seen, VEBEK outperforms DEEF and it is able to
keep its synchronization even in dire communication
scenarios. The x-axis is the the percent of the packets that
are dropped due to communication errors.

6 RELATED WORK

En route dynamic filtering of malicious packets has been
the focus of several studies, including DEF by Yu and Guan
[13], SEF, [12], and STEF [19]. As the details are given in the
performance evaluation section (Section 5) where they were
compared with the VEBEK framework, the reader is
referred to that section for further details as not to replicate
the same information here. Moreover, Ma’s work [21]
applies the same filtering concept at the sink and utilizes
packets with multiple MACs appended. A work [22]
proposed by Hyun and Kim uses relative location informa-
tion to make the compromised data meaningless and to
protect the data without cryptographic methods. In [23],
using static pairwise keys and two MACs appended to the
sensor reports, “an interleaved hop-by-hop authentication
scheme for filtering of injected false data” was proposed by
Zhu et al. to address both the insider and outsider threats.
However, the common downside of all these schemes is
that they are complicated for resource-constrained sensors
and they either utilize many keys or they transmit many
messages in the network, which increases the energy
consumption of WSNs. Also, these studies have not been
designed to handle dire communication scenarios unlike
VEBEK. Another significant observation with all of these
works is that a realistic energy analysis of the protocols was
not presented. Last, the concept of dynamic energy-based
encoding and filtering was originally introduced by the
DEEF [7] framework. Essentially, VEBEK has been largely
inspired by DEEF. However, VEBEK improves DEEF in
several ways. First, VEBEK utilizes virtual energy in place
of actual battery levels to create dynamic keys. VEBEK’s
approach is more reasonable because in real life, battery
levels may fluctuate and the differences in battery levels

across nodes may spur synchronization problems, which
can cause packet drops. Second, VEBEK integrates handling
of communication errors into its logic, which is missing in
DEEF. Last, VEBEK is implemented based on a realistic
WSN routing protocol, i.e., Directed Diffusion [14], while
DEEF articulates the topic only theoretically.

Another crucial idea of this paper is the notion of sharing
a dynamic cryptic credential (i.e., virtual energy) among the
sensors. A similar approach was suggested inside the
SPINS study [24] via the SNEP protocol. In particular,
nodes share a secret counter when generating keys and it is
updated for every new key. However, the SNEP protocol
does not consider dropped packets in the network due to
communication errors. Although another study, Minisec
[25], recognizes this issue, the solution suggested by the
study still increases the packet size by including some parts
of a counter value into the packet structure. Finally, one
useful pertinent work [6] surveys cryptographic primitives
and implementations for sensor nodes.

7 CONCLUSION AND FUTURE WORK

Communication is very costly for wireless sensor networks
(WSNs) and for certain WSN applications. Independent of
the goal of saving energy, it may be very important to
minimize the exchange of messages (e.g., military scenar-
ios). To address these concerns, we presented a secure
communication framework for WSNs called Virtual Energy-
Based Encryption and Keying.

In comparison with other key management schemes,
VEBEK has the following benefits: 1) it does not exchange
control messages for key renewals and is therefore able to
save more energy and is less chatty, 2) it uses one key per
message so successive packets of the stream use different
keys—making VEBEK more resilient to certain attacks (e.g.,
replay attacks, brute-force attacks, and masquerade at-
tacks), and 3) it unbundles key generation from security
services, providing a flexible modular architecture that
allows for an easy adoption of different key-based encryp-
tion or hashing schemes.

We have evaluated VEBEK’s feasibility and perfor-
mance through both theoretical analysis and simulations.
Our results show that different operational modes of
VEBEK (I and II) can be configured to provide optimal
performance in a variety of network configurations
depending largely on the application of the sensor net-
work. We also compared the energy performance of our
framework with other en route malicious data filtering
schemes. Our results show that VEBEK performs better (in
the worst case between 60-100 percent improvement in
energy savings) than others while providing support for
communication error handling, which was not the focus of
earlier studies. Our future work will address insider
threats and dynamic paths.
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