
A First Look at Code Obfuscation for WebAssembly
Shrenik Bhansali†,∗, Ahmet Aris†, Abbas Acar†, Harun Oz†, and A. Selcuk Uluagac†

†Cyber-Physical Systems Security Lab, Department of Electrical and Computer Engineering,
Florida International University, Miami, Florida, USA

∗Georgia Institute of Technology, Atlanta, Georgia, USA
Emails: sbhansali8@gatech.edu, {aaris, aacar001, hoz001, suluagac}@fiu.edu

Abstract
WebAssembly (Wasm) has seen a lot of attention lately as it spreads
through the mobile computing domain and becomes the new stan-
dard for performance-oriented web development. It has diversified
its uses far beyond just web applications by acting as an execution
environment for mobile agents, containers for IoT devices, and en-
abling new serverless approaches for edge computing. Within the
numerous uses of Wasm, not all of them are benign. With the rise of
Wasm-based cryptojacking malware, analyzing Wasm applications
has been a hot topic in the literature, resulting in numerous Wasm-
based cryptojacking detection systems. Many of these methods rely
on static analysis, which traditionally can be circumvented through
obfuscation. However, the feasibility of the obfuscation techniques
for Wasm programs has never been investigated thoroughly. In
this paper, we address this gap and perform the first look at code
obfuscation for Wasm. We apply numerous obfuscation techniques
to Wasm programs, and test their effectiveness in producing a fully
obfuscated Wasm program. Particularly, we obfuscate both benign
Wasm-based web applications and cryptojacking malware instances
and feed them into a state-of-the-art Wasm cryptojacking detector
to see if current Wasm analysis methods can be subverted with
obfuscation. Our analysis shows that obfuscation can be highly ef-
fective and can cause even a state-of-the-art detector to misclassify
the obfuscated Wasm samples.

CCS Concepts
• Security and privacy→ Software security engineering;Mal-
ware and its mitigation.

Keywords
WebAssembly, Wasm, Obfuscation, Cryptojacking

ACM Reference Format:
Shrenik Bhansali†,∗, Ahmet Aris†, Abbas Acar†, Harun Oz†, and A. Selcuk
Uluagac†. 2022. A First Look at Code Obfuscation for WebAssembly. In
Proceedings of the 15th ACM Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec ’22), May 16–19, 2022, San Antonio, TX, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3507657.3528560

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WiSec ’22, May 16–19, 2022, San Antonio, TX, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9216-7/22/05. . . $15.00
https://doi.org/10.1145/3507657.3528560

1 Introduction

WebAssembly (Wasm) is a compilation target for high-level lan-
guages located within browsers that facilitates the creation of high-
performance web applications (e.g., games, portable languages,
cryptographic computation) that run at near native speed [20].
Wasm has permeated throughout the wireless domain due to its
suitability for mobile agent solutions. However, due to the versa-
tility of Wasm, not all Wasm programs are safe and benign. Over
half of all Wasm instances in the Alexa Top 1 million websites
were found to be of malicious nature, with most of these Wasm
instances consisting of cryptojackers [11]. Wasm malware is not
just limited to cryptojacking, since Wasm’s unrestricted access to
browser functionality and the JavaScript API enables a variety of
potential attacks.

In order to combat Wasm-based malware and detect malicious
Wasm programs (e.g., cryptojackers), numerous static analysis-
based defenses have been proposed [9, 12, 18, 19]. All of these
detection methods rely on the assumption that Wasm modules
are unobfuscated or obfuscated using primitive techniques. How-
ever, a thoroughly obfuscated cryptojacking malware can become
resistant to static analysis techniques such as matching or fuzzy
hashing [14]. Therefore, existing security methods can be circum-
vented, allowing malicious Wasm programs to run undetected. Out
of all Wasm instances in the wild, only 0.2 % of them were found to
be obfuscated [11].

The nature of the Wasm compilation process requires multiple
distinct compilation stages before execution. Therefore, understand-
ing how obfuscation effects the final Wasm program running in the
browser after these stages is necessary, for both benign software
security and creating effective Wasm malware detection methods.
Given the security threats that are presented by Wasm [8], along
with the immense presence of malicious Wasm programs, an un-
derstanding of obfuscating and hiding Wasm programs is essential.
However, in the literature, there are no in-depth discussions or
analysis of obfuscation in Wasm.

In this paper, we address this gap and perform the first look at
code obfuscation for Wasm. We perform two sets of experiments
to analyze the effect of Wasm obfuscation. In the first set of experi-
ments, we apply seven different obfuscation techniques and utilize
the Cosine Similarity of the resulting obfuscated and unobfuscated
web applications as a metric to evaluate the effectiveness of the
obfuscation techniques. While this metric gives us the result of how
successful the obfuscation technique is, it alone cannot tell us if
the obfuscation would be able to affect Wasm static analysis tools.
Therefore, in the second set of experiments, we feed the obfuscated
benign and malicious samples to a state-of-the-art cryptojacking
detection system named MINOS [12] Our results show that MINOS

Session 4: Mobile Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

140

https://doi.org/10.1145/3507657.3528560
https://doi.org/10.1145/3507657.3528560
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3507657.3528560&domain=pdf&date_stamp=2022-05-16

cannot detect any of our obfuscated cryptojacking malware sam-
ples as well as produces false positives on some benign Wasm web
applications such as games.
Contributions: The contributions of this paper are as follows:

• We, first time in the literature, investigate the feasibility of
obfuscation of the Wasm web applications.

• We present a comparative analysis of multiple obfuscation
techniques for Wasm across a variety of different types of
Wasm-based web applications.

• We demonstrate a use-case that illustrates how obfuscated
Wasm web applications can affect the static Wasm analysis
tools in discriminating benign and malicious Wasm applica-
tions.

Organization: The organization of our paper is as follows: Sec-
tion 2 gives background information. Section 3 defines the problem
scope and threat model. Section 4 details the obfuscation techniques
and results. Section 5 discusses the related work. Finally, Section 6
concludes the paper.

2 Background

2.1 WebAssembly
WebAssembly (Wasm) is a low-level bytecode that runs in browsers
and acts a compilation target for higher-level languages. Wasm
is designed with efficiency in mind, executing programs within
browsers at near-native speed [20]. It additionally prides itself on
its safety, with programs being executed in a memory-safe environ-
ment, and platform independence, being able to run in browsers,
integrated environments, and VMs. The safety and platform inde-
pendence is achieved via a stack-based virtual machine in which
the Wasm code is executed

Themost popular compiler forWasm development is Emscripten,
a source-to-source LLVM/clang-based compiler and toolchain for
all LLVM source languages. It takes in a C/C++/Rust source file, and
outputs a Wasm module. This Wasm module is then instantiated
within a browser with JavaScript. Once instantiated, the machine
instructions held in the module are run within a JS stack machine,
converting the Wasm module’s instructions into binary and exe-
cuting within the browser. During this process, the WebAssembly
module has access to the JS context in addition to browser function-
ality, therefore also having access to the computer’s computational
resources.

Source code written in
C, C++, Rust

Wasm
Module

Wasm
Binary

2-tier
Browser

Compilation
Emscipten

Compilation

Figure 1: Compilation process of Wasm applications.

Before Wasm modules are run in the JS stack machine within the
browser, they go through a second compilation process by theWasm
engine of the browser (e.g., V8 for Chrome1 and SpiderMonkey2

1https://v8.dev/blog/liftoff
2https://github.com/bytecodealliance/wasmtime/blob/main/cranelift/

spidermonkey.md

Obfuscator

Copy() Encode() Flatten()
Virtualize()

Copy() Copy()Filler()Dead
Code()

Function1() Function2() Function3() Function4()

Figure 2: Visualization of Control Flow Obfuscation.

for Mozilla), as shown in Figure 1. In this process, the Wasm engine
of the browser compiles the Wasm module twice to convert the
Wasm module to an optimized machine code for the platform. For
instance, V8 engine of Chrome uses Liftoff and TurboFan1 in this
process while Mozilla utilizes Cranelift and IonMonkey2.

2.2 Obfuscation
Obfuscation is the act of rewriting or editing a program’s source
code to preserve its functionality while deliberately making it
harder to understand or analyze [1]. Traditionally, it is used as
a form of source code protection against reverse engineering. There
are two major forms of obfuscation, control flow obfuscation and
data obfuscation [1]. Control flow obfuscation is an attempt to mask
a program’s control flow graph (CFG). An example is demonstrated
in Figure 2. The end goal of CFG obfuscation is to create a CFG that
is radically different from the original, unobfuscated CFG. Data ob-
fuscation is an attempt to make the data being manipulated harder
to decipher. Data obfuscation is much more effective in high-level
languages, where data is represented with variable names, or strings
which contain explicit data. These two obfuscation methods are
usually used together to make a program as incomprehensible as
possible.

Obfuscation techniques are most commonly applied to the source
code of a program by an obfuscator. Obfuscators are programs
specifically designed to take a source file as input and apply a set
of obfuscation techniques in an automated manner. They will then
output the obfuscated source code. Obfuscators for higher-level
languages are easier to find compared to low-level obfuscators and
tend to be less primitive, being able to take advantage of more
advanced obfuscation techniques.

To the best of our knowledge, there are no known obfuscators for
Wasm. While obfuscated Wasm programs do exist, there is nothing
to indicate that these programs were obfuscated at the Wasm level.
Therefore, there are also no known techniques that have been
specifically applied at the Wasm machine code level.

3 Problem Scope and Threat Model

3.1 Problem Scope
Obfuscation can be used both for benign and malicious purposes.
Software developers can employ obfuscation to avoid the studying,
analysis, tampering, and recycling of their software while it can
be abused by attackers to bypass the detection and blacklisting
methods [17]. This area of Wasm development and implementa-
tion, where Wasm code is obfuscated, is a completely undiscovered
research area. Understanding the different ways that Wasm can

Session 4: Mobile Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

141

https://v8.dev/blog/liftoff
https://github.com/bytecodealliance/wasmtime/blob/main/cranelift/spidermonkey.md
https://github.com/bytecodealliance/wasmtime/blob/main/cranelift/spidermonkey.md

be obfuscated, and the effect it has in terms of malware detection,
is vital to understanding the future of Wasm development and
browser-based cryptojacking programs. However, analyzing obfus-
cated Wasm applications is challenging because Wasm applications
go through three distinct compilation and optimization steps before
their execution on browsers. To fill this gap in the literature, we
research and evaluate the feasibility of Wasm obfuscation.

3.2 Threat Model
WebAssembly has become a popular target for cryptojacking au-
thors due to its isolation within the user’s web browser while retain-
ing access and control over computational resources. Because the
Wasm program is run within the browser, there are no red flags for
a traditional antivirus to catch, as there are no system calls, native
compilation or execution, etc. As a result of the popularity of Wasm
cryptojacking malware, there has been a flood of successful anti-
cryptojacking extensions and detectors. To bypass these security
measures, malware authors will have to begin to disguise their code.
They can plug their source code into an obfuscator, and receive
an obfuscated equivalent of their program, ready to be deployed
without detection.

An adversary capable of successful obfuscation can theoretically
have full access to browser functionality through the WebAssembly
and the JavaScript API, meaning attackers can do far more than
just ordinary cryptojacking. Attacker capabilities are only checked
by the permissions that the user grants to the browser. An attacker
could virtually acquire whole data of a user, employ ransomware,
or even perform remote code execution, granting further access to
their system [8].

4 Analysis and Evaluation of Obfuscation
Techniques for WebAssembly

In this paper, we perform the first look at code obfuscation for
WebAssembly and test the effectiveness of high-level obfuscation.
To test the efficacy of high-level obfuscation on Wasm, we chose
several obfuscation techniques and applied them to C source code
of various Wasm web applications. In this section, we describe the
obfuscation techniques we selected, our evaluations, and the results
of the evaluations.

4.1 Obfuscation Techniques
Currently, to the best of our knowledge, there are no Wasm obfus-
cators, so pursuing machine code obfuscation is not practical, and
it would most likely be too primitive to be effective. Since Wasm
was designed to be a compilation target for high-level languages
like C++ or Rust [10], obfuscation would most likely occur at the
highest level. Additionally, more advanced obfuscation techniques
are only available at a high level.

For these reasons, we decided to apply obfuscation in high-level
source-code, compile the obfuscated code toWasm, and evaluate the
effect of obfuscation. Specifically, we chose to perform obfuscation
in C source-code of Wasm web applications. For this aim, we used
Tigress, a free to use C obfuscator that has been widely used in
the literature [4]. We researched the obfuscation techniques and
selected a set of techniques to obfuscate a dataset of C-based Wasm
web applications that include both benign and malicious samples.
Each technique was selected based on its proven effectiveness in the

literature for traditional binaries, as there is no existing discussion
of any obfuscation technique’s effectiveness for Wasm binaries.
Particularly, we apply the following obfuscation techniques:
• Virtualize: Each function in the program is turned into an inter-
preter which has its own unique bytecode. When executed, the
program will interpret each bytecode, creating a virtual machine
that then executes the instructions held within the bytecode,
representing the original function.

• Flatten: The CFG of a program is flattened, creating an unstruc-
tured control flow [7].

• OpaquePredicates:An opaque predicate is a condition or branch
(predicate) that is evaluated as a Boolean value. The outcome of
this predicate is predetermined by the programmer but unknown
to anyone else (opaque). When this predefined value is reached,
the original code is executed.

• Function Copies:Making copies of an existing function. This
results in unique function calls where they may have originally
the same. This can cause the jump table to be allocated differently
when compiled, making jump table references unnecessarily com-
plex.

• Taint Disruption: To disrupt dynamic analyses tools that at-
tempt to use taint analysis, the code is modified to not use a
conventional data flow for variable copying but instead uses the
control flow itself [16].

• Alias Disruption: To disrupt static analysis methods that use
alias analysis, all direct function calls are replaced with indirect
ones.

• Encode Literals: A conversion of static data to procedural data
- both integer and string literals are either generated by function
or replaced with an expression that at runtime is equivalent to
the initial unobfuscated data.

4.2 Evaluation Setup

Wasm Application Category Sample # Portion of Dataset
Games 6 40.0%
Libraries 4 26.6%
Applications / Custom / Testing 3 20.0%
Cryptojackers 2 13.3%
Total 15 100%

Table 1: Sample counts and relative distribution of programs
within the dataset.

4.2.1 Dataset. To perform the set of experiments in assessing the
effectiveness of obfuscation techniques, we built a dataset of Wasm
web applications. Our dataset is comprised of unique open-source
Wasm applications that are written in C language. Each of the
Wasm applications can fall under one of four categories: Games,
Applications, Cryptojackers, or Libraries. The breakdown of the
dataset is detailed in Table 1. Since the obfuscator requires C source
files as its input, we needed to access the source code of the Wasm
programs that would make up our dataset, giving us a smaller
dataset, but still diverse enough to let us analyze the effects of
obfuscation on different categories of Wasm program. Although we
obtained the comprehensive cryptojacking dataset of MINOS [13],
we could not incorporate the all samples into our dataset due to
limitations of the Tigress obfuscator. We specifically chose Wasm

Session 4: Mobile Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

142

programs that are used for web and mobile development, as these
are the common uses of Wasm and can be found in the wild.

C Source Code Dataset
of Wasm Applications

Obfuscator

Wasm
Module

Wasm
Binary

Wasm
Module

Wasm
Binary

Obfuscated
Source File Emscipten

Compilation

2-tier
Browser

Compilation

Original
Source File

Virtualize,
Flatten,
Opaque Predicates,
Function Copies,
Taint Disruption,
Alias Disruption,
Encode Literals.

Similarity
Comparison

2-tier
Browser

Compilation
Emscipten
Compilation

Figure 3: The pipeline used to obfuscate and analyze the
similarity of obfuscated and original Wasm applications in
two stages: after Emscripten compilation and after the 2-tier
compilations of browsers.

4.2.2 The Evaluation Pipeline. C source code of each web applica-
tion in the dataset is fed individually into our pipeline. We begin
by taking the C source files and passing them into the obfuscator,
applying an obfuscation technique. For every obfuscation technique
listed in Section 4.1, a new obfuscated source file is created. Both
the resulting obfuscated source file, along with the original one,
are then compiled to Wasm modules using Emscripten, and ana-
lyzed to check the Cosine Similarity between the two. We then run
these Wasm modules in a browser (e.g., Chrome). Before running
the Wasm modules, the browser performs a 2-tier compilation on
Wasm modules and optimizes them as explained in Section 2.1.
Here, we extract the resulting Wasm binaries both for obfuscated
and unobfuscated web applications and check their similarity for
the second time. This cycle, as shown in Figure 3, is repeated for
every program in our dataset.

4.2.3 Evaluation Criteria. The success of an obfuscation technique
is evaluated at two different points in the compilation process. The
first is done at the Wasm-level, comparing the obfuscated Wasm
module to its unobfuscated counterpart. The second comparison is
done at the binary level, comparing the binaries of the obfuscated
and unobfuscated programs against each other. These binaries are
the result of the Wasm module being instantiated in the browser by
JavaScript, triggering a two-tier compilation process (in our case,
Chrome’s V8 engine).

At either stage, the process for comparing is identical - our
goal to find their similarity. To quantify the similarity between the
unobfuscated and obfuscatedmodules, we use n-gram analysis since
it has been shown effective at analyzing similarity between samples
of fuzzy data [21]. We extract n-grams from the machine code by
partitioning the code into sequences of length n. Using n-grams
allows us to deal with the noisy data presented in Wasm modules.
These n-grams are then mapped onto vectors based on their Term
Frequency Inverse Document Frequency (TF-IDF). We calculate the
similarity score between the unobfuscated and obfuscated samples
using Cosine Similarity formula: cos(𝜃) = (A · B)/(∥A∥∥B∥) =

(
𝑛∑
𝑖=1

𝐴𝑖𝐵𝑖)/(
√

𝑛∑
𝑖=1

𝐴2
𝑖

√
𝑛∑
𝑖=1

𝐵2
𝑖
). Cosine similarity is measured on a

0 5 · 10−20.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Alias Disruption

Taint Disruption

Function Copying

Encode Literals

Flattening

Opaque Predicates

Virtualize

Cosine Similarity

Cryptojackers Libraries Games Applications

Figure 4: Average Cosine similarities of each obfuscation
technique for each program category.

scale of 0 to 1, with 1 meaning the two samples are identical. The
lower the Cosine similarity value, the more dissimilar the two
samples are, which means the obfuscation is more effective, thereby
successful. Cosine similarity gives us the best metric to do so by
checking our n-grams in-context, meaning what code precedes and
succeeds it, granting us a better metric for measuring stack-machine
code, where order is extremely important.

4.3 Results
Figure 4 is a visualization of average Cosine similarities of each
obfuscation technique for each program category. The smaller the
bar is, the less similar the resulting binaries are, and therefore
the more effective the technique is. During the experiments, we
found that once the Wasm modules are instantiated in the browser,
there is a 1-to-1 correlation between the Cosine similarities of
the Wasm modules and Wasm binaries pulled from the browser
while it is running. Therefore, the data represented in Figure 4 is
representative of both the Wasm binaries running in the browser,
and the Wasm module before being instantiated.

Almost every single obfuscation technique, regardless of pro-
gram type, resulted in a Cosine similarity score less than 0.5, with
the exception of encoding literals for cryptojackers. This means
that almost every obfuscated program had binaries that appeared
distinct from their original unobfuscated counterpart, e.g. the pro-
gram was effectively obfuscated. This serves as general proof that
obfuscation at a high level can result in an obfuscated Wasm binary.
The data demonstrates that Alias Disruption is the most effective
obfuscation technique on average overall, but that does not hold
true when looking for the best technique for each specific program
type. For example, Virtualization is more effective than Alias Dis-
ruption for cryptojackers, demonstrating Alias Analysis is not the
best in every case.
Findings: The distribution of the data in our results illustrates that
there is no one “best” technique. While successful obfuscation is
present in all programs, not all have been obfuscated to the same
degree of success. The efficacy of each technique is dependent on
the content of the program being obfuscated.

Session 4: Mobile Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

143

Application
Category

Application
Name Unobfuscated Alias

Disruption
Taint

Disruption
Function
Copying

Encoding
Literals Flattening Opaque

Predicates Virtualize

Application BF Interpreter ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓
Application Conway Life ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Application Spiro ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗
Cryptojacker Garliccoin ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗
Cryptojacker kNight ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Game 2048 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Game Breakout ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Game Circle Collide ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Game Dave ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Game Interplanetary ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗
Game Asteroids ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Library Galaxy sim ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Library OpenGL ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Library Topological ML ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗
Library Tracing ML ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

Table 2: Results ofMINOS cryptojacking detector (✓: MINOS detected sample asmalware, ✗: MINOS detected sample as benign.
red : false positive and false negative results e.g. MINOS was incorrect, green : true positive and true negative results e.g
MINOS was correct.).

Moreover, we also observed that compared libraries and cryp-
tominers, applications and games tend to have more complex con-
trol flows because of more external dependencies such as images
or UI components. These attributes may act as roadblocks for ob-
fuscation, as with the exception of encoding literals, applications
and games were consistently the least obfuscated. Dependencies
like images is harder to obfuscate, as images themselves are not a
part of the control flow, so the importing and loading the images
can often seem to survive the obfuscation and remain decipherable.
The opposite of this is also true; the lack of external dependencies
seems to lead to a more fully obfuscated program.

Finally, we also found that for every type of program, at least
one obfuscation technique was demonstrated to be successful in
outputting an obfuscated program. It is worth noting that these
were tests of singular obfuscation techniques being applied inde-
pendently, meaning the obfuscation can be furthered by stacking
multiple techniques and applying them together to the same pro-
gram. Because of these results, we have arrived at the finding that
obfuscation at the C-level can result in a successfully obfuscated
Wasm program if the correct technique is applied.

4.4 Effects of Obfuscated Cryptojacking
Malware on MINOS

In this section, we feed the obfuscated benign and malicious Wasm
samples to a state-of-the-art cryptojacking detection system named
MINOS [12] and evaluate how MINOS classifies the obfuscated
samples. MINOS [12] is a novel lightweight defense system that
detects malicious Wasm binaries based on their gray-scale image
representations. It uses a Convolutional Neural Network (CNN)
based classifier to classify a gray-scale image of a Wasm binary as
malicious or benign. The performance analysis of MINOS showed
that MINOS is 99% accurate in detecting Wasm cryptojackers.

4.4.1 Test Environment. To test the effect of Wasm obfuscation
with MINOS, we first apply each obfuscation technique listed in
Section 4.1 to each of the Wasm binaries from our dataset presented
in Table 1. This gives us 120 samples (including both unobfuscated

BF
Interpreter

Garliccoin

kNight

OpenGL

Original Obfuscated

Virtualize

Opaque
Predicates

Encode
Literals

Figure 5: Grayscale images of Wasm binaries before and af-
ter obfuscation.

and obfuscated binaries) to test MINOS with. As explained in Sec-
tion 4.4.2, although we obtained the comprehensive cryptojacking
dataset of MINOS we were not able to employ them in this study.
After obfuscating our dataset, we run MINOS on these unobfus-
cated and obfuscated versions of the Wasm binaries and analyzed
the results.

4.4.2 Challenges with Obfuscating CryptojackingMalware. We could
only test MINOS with a limited number of malicious samples due
to limitations of the Tigress obfuscator [4] because most of the
cryptojacking source code found in the wild is is written in C++, or
uses libraries that are not supported with Tigress [4]. This limited
us to two samples, which were written in C, and did not include
unsupported libraries. However, since the cryptojackers obfuscated
are derivatives of the CryptoNight webminer [19], the results can
be generalized for most CryptoNight and Monero miners [5].

4.4.3 Results. We present our results in Table 2. Our results show
that MINOS is not able to detect any obfuscated cryptojacker sam-
ples for six obfuscation techniques while it can only detect one
of two cryptojacker samples for the flattening obfuscation tech-
nique. We were successful in effectively obfuscating malware, with

Session 4: Mobile Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

144

a success rate of 93%, with only one obfuscated cryptojacker sam-
ple being detected by MINOS. Our obfuscated benign programs
additionally created false positives, with a false positive rate of
70% i.e., 70% of all samples categorized as malware (including the
unobfuscated ones) were actually benign.

Visually, in Figure 5, it is clear that the binaries look significantly
different after obfuscation. In the case of cryptominers, the differ-
ence between what MINOS was looking for and obfuscated binaries
are evident. In the case of BF Interpreter, the visible changes are
slightly less obvious when viewed by a human, but evident to MI-
NOS, demonstrated by the BF Interpreter obfuscated with opaque
predicates, which was detected as malware, despite the program
itself being benign.

These results gave us two key findings. The first is that MINOS’
inability to effectively detect obfuscated cryptojacking samples
proves obfuscation of Wasm binaries can generally be successful
for malware in the wild, as our samples successfully bypassed static
analysis. The second finding is that false positives created by the
obfuscated benign samples render MINOS completely ineffective,
as it now detects some obfuscated benign programs as malicious,
and most obfuscated malicious programs as benign.

5 Related Work
There are numerous studies in the literature examining obfusca-
tion techniques and their effectiveness as a means against static
analysis methods [2, 17]. Musch et al. presented the first study
on the prevalence of Wasm [11]. Along with a plethora of static
analysis based cryptojacking detectors [3, 6, 12], Wasm analysis
tools are becoming more prevalent in the literature [9]. Lehman et
al. created a framework to dynamically analyze Wasm programs,
allowing for a multitude of analysis methods like taint analysis or
memory access tracing [9]. Lehman et al. also presented several
security vulnerabilities of WebAssembly, in which they show the
exploitation of the usage of memory unsafe source languages and
attacks that can be contained in Wasm binaries through their unde-
fined behavior [8]. Romano et al. presented a method to obfuscate
JS malware using Wasm, splitting a program between the JS layer
and the Wasm layer, making the program harder to analyze [15].
Their study resulted in obfuscated JavaScript malware, but their
results cannot be extended to Wasm malware.
Differences from existing work: Discussion of the effectiveness
of obfuscation techniques in the literature is limited to traditional
programs and executables. In the context of Wasm obfuscation,
Wasm has been utilized to obfuscate JS code [15], but the obfusca-
tion ofWasm code itself has not been explored in the literature. Even
though Wasm-based cryptojacking malware detection is widely
discussed in the literature, there is no prior study investigating the
feasibility of obfuscation for WebAssembly to bypass current mal-
ware detection methods. We additionally did not create any novel
Wasm malware or Wasm-based attacks, but rather investigate how
current Wasm malware can be obfuscated and disguised to be more
effective by being less detectable.
6 Conclusion
In this paper, we presented the first analysis and evaluation of
obfuscation for WebAssembly. Our results have shown that obfus-
cation at the high level can be effective if the correct techniques

are applied, which allows programmers to create Wasm programs
with an effective deterrent against decompilation or reverse engi-
neering. We also found that obfuscated Wasm malware can bypass
status quo detection methods. We believe this study is important
to show a potentially unexplored attack vector before it is used by
the malware authors in the wild. Consequently, creating analysis
methods that cannot be circumvented by obfuscation techniques
will be necessary to curb the potential influx of obfuscated Wasm
malware.

Acknowledgment
This work was supported by the U.S. National Science Foundation
(Award: NSF-CAREER CNS-1453647 and 1757761). The views ex-
pressed are those of the authors only, not of the funding agencies.

References
[1] Arini Balakrishnan and Chloe Schulze. 2005. Code obfuscation literature survey.

CS701 Construction of compilers 19 (2005).
[2] Chandan Kumar Behera and D Lalitha Bhaskari. 2015. Different obfuscation

techniques for code protection. Procedia Computer Science 70 (2015), 757–763.
[3] Weikang Bian, Wei Meng, and Mingxue Zhang. 2020. Minethrottle: Defending

against wasm in-browser cryptojacking. In Proceedings of The Web Conference
2020. 3112–3118.

[4] Christian Collberg, Sam Martin, Jonathan Myers, Bill Zimmerman, Petr Kra-
jca, Gabriel Kerneis, Saumya Debray, and Babak Yadegari. 2022. The Tigress
Obfuscator. https://tigress.wtf. [Online; accessed 4-April-2022].

[5] Monero Documentation. 2013. CryptoNight. https://monerodocs.org/proof-of-
work/cryptonight/. accessed: 2022-02-12.

[6] Radhesh Krishnan Konoth, Emanuele Vineti, Veelasha Moonsamy, Martina
Lindorfer, Christopher Kruegel, Herbert Bos, and Giovanni Vigna. 2018.
Minesweeper: An in-depth look into drive-by cryptocurrency mining and its
defense. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. 1714–1730.

[7] Tımea László and Ákos Kiss. 2009. Obfuscating C++ programs via control flow
flattening. Annales Universitatis Scientarum Budapestinensis de Rolando Eötvös
Nominatae, Sectio Computatorica 30, 1 (2009), 3–19.

[8] Daniel Lehmann, Johannes Kinder, and Michael Pradel. 2020. Everything old is
new again: Binary security of webassembly. In 29th USENIX Sec. Symp. 217–234.

[9] Daniel Lehmann and Michael Pradel. 2019. Wasabi: A framework for dynamically
analyzing webassembly. In Proceedings of the 24th Int. Conf. on Architectural
Support for Programming Languages and Operating Systems. 1045–1058.

[10] MDN. 2021. WebAssembly Concepts. https://developer.mozilla.org/en-
US/docs/WebAssembly/Concepts. [Online; accessed 10-November-2021].

[11] Marius Musch, Christian Wressnegger, Martin Johns, and Konrad Rieck. 2019.
New Kid on the Web: A Study on the Prevalence of WebAssembly in the Wild. In
Int. Conf. on Detection of Intrusions and Malware, and Vulnerability Assessment.

[12] Faraz Naseem, Ahmet Aris, Leonardo Babun, Ege Tekiner, and A Selcuk Uluagac.
2021. Minos*: A lightweight real-time cryptojacking detection system. In Network
and Distributed Systems Security (NDSS) Symposium. 21–25.

[13] F. Naseem, A. Aris, L. Babun, E. Tekiner, and A. S. Uluagac. 2021. MINOS: A
Lightweight Real-Time Cryptojacking Detection System. In NDSS.

[14] Harun Oz, Ahmet Aris, Albert Levi, and A. Selcuk Uluagac. 2022. A Survey on
Ransomware: Evolution, Taxonomy, and Defense Solutions. ACM Comput. Surv.
(jan 2022). https://doi.org/10.1145/3514229

[15] Alan Romano, Daniel Lehmann, Michael Pradel, and Weihang Wang. 2022. Wob-
fuscator: Obfuscating JavaScript Malware via Opportunistic Translation to We-
bAssembly. In Proceedings of the 2022 IEEE Symposium on Security and Privacy.

[16] Golam Sarwar, Olivier Mehani, Roksana Boreli, and Mohamed Ali Kaafar. 2013.
On the Effectiveness of Dynamic Taint Analysis for Protecting against Private
Information Leaks on Android-based Devices.. In SECRYPT, Vol. 96435.

[17] S. Schrittwieser and S. Katzenbeisser. 2011. Code obfuscation against static and
dynamic reverse engineering. In Int. workshop on information hiding. Springer.

[18] E. Tekiner, A. Acar, A. S. Uluagac, E. Kirda, and A. A. Selcuk. 2021. In-Browser
Cryptomining for Good: An Untold Story. In 2021 IEEE Int. Conf. on Decentralized
Applications and Infrastructures (DAPPS). 20–29.

[19] E. Tekiner, A. Acar, A. S. Uluagac, E. Kirda, and A. A. Selcuk. 2021. SoK: Crypto-
jacking Malware. In 2021 IEEE European Symposium on Security and Privacy.

[20] Conrad Watt. 2018. Mechanising and verifying the webassembly specification. In
Proceedings of the 7th ACM SIGPLAN Int. Conf. on certified programs and proofs.
53–65.

[21] Jun Ye. 2011. Cosine similarity measures for intuitionistic fuzzy sets and their
applications. Mathematical and computer modelling 53, 1-2 (2011), 91–97.

Session 4: Mobile Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

145

https://tigress.wtf
https://monerodocs.org/proof-of-work/cryptonight/
https://monerodocs.org/proof-of-work/cryptonight/
https://doi.org/10.1145/3514229

	Abstract
	1 Introduction
	2 Background
	2.1 WebAssembly
	2.2 Obfuscation

	3 Problem Scope and Threat Model
	3.1 Problem Scope
	3.2 Threat Model

	4 Analysis and Evaluation of Obfuscation Techniques for WebAssembly
	4.1 Obfuscation Techniques
	4.2 Evaluation Setup
	4.3 Results
	4.4 Effects of Obfuscated Cryptojacking Malware on MINOS

	5 Related Work
	6 Conclusion
	References

