
27

Who’s Controlling My Device? Multi-User
Multi-Device-Aware Access Control System
for Shared Smart Home Environment

AMIT KUMAR SIKDER and LEONARDO BABUN, Florida International University, USA

Z. BERKAY CELIK, Purdue University, USA

HIDAYET AKSU, Google, USA

PATRICK MCDANIEL, Pennsylvania State University, USA

ENGIN KIRDA, Northeastern University, USA

A. SELCUK ULUAGAC, Florida International University, USA

Multiple users have access to multiple devices in a smart home system – typically through a dedicated app

installed on a mobile device. Traditional access control mechanisms consider one unique, trusted user that

controls access to the devices. However, multi-user multi-device smart home settings pose fundamentally

different challenges to traditional single-user systems. For instance, in a multi-user environment, users have

conflicting, complex, and dynamically-changing demands on multiple devices that cannot be handled by tra-

ditional access control techniques. Moreover, smart devices from different platforms/vendors can share the

same home environment, making existing access control obsolete for smart home systems. To address these

challenges, in this paper, we introduce Kratos+, a novel multi-user and multi-device-aware access control

mechanism that allows smart home users to flexibly specify their access control demands. Kratos+ has four

main components: user interaction module, backend server, policy manager, and policy execution module.

Users can easily specify their desired access control settings using the interaction module that are translated

into access control policies in the back-end server. The policy manager analyzes these policies, initiates au-

tomated negotiation between users to resolve conflicting demands, and generates final policies to enforce in

smart home systems. We implemented Kratos+ as a platform-independent solution and evaluated its perfor-

mance on real smart home deployments featuring multi-user scenarios with a rich set of configurations (337

different policies including 231 demand conflicts and 69 restriction policies). These configurations also in-

cluded five different threats associated with access control mechanisms. Our extensive evaluations show that

Kratos+ is very effective in resolving conflicting access control demands with minimal overhead. We also per-

formed an extensive user study with 72 smart home users to better understand the user’s needs before design-

ing the system and a usability study to evaluate the efficacy of Kratos+ in a real-life smart home environment.

This work is partially supported by the US National Science Foundation (Awards: NSF-CAREER-CNS-1453647, NSF-

1663051, NSF-1705135), and US Office of Naval Research grant Cyber-physical Systems. The views expressed are those

of the authors only, not of the funding agencies.

Authors’ addresses: A. K. Sikder, Florida International University, USA, 10555 West Flagler St. EC 3900, Miami, Florida,

33174; email: asikd003@fiu.edu; L. Babun, Florida International University, USA, 10555 West Flagler St. EC 3900, Miami,

Florida, 33174; email: lbabu002@fiu.edu; Z. Berkay Celik, Purdue University, USA, 610 Purdue Mall, West Lafayette, Indiana,

47907; email: zcelik@purdue.edu; H. Aksu, Google, USA, 1600 Amphitheatre Parkway, Mountain View, California, 94043;

email: hidayetaksu@gmail.com; P. McDaniel, Pennsylvania State University, USA, W303 Westgate Building, University

Park, Pennsylvania, 16802; email: mcdaniel@cse.psu.edu; E. Kirda, Northeastern University, USA, 360 Huntington Ave.,

Room 617, Boston, Massachusetts, 02115; email: ek@ccs.neu.edu; A. Selcuk Uluagac, Florida International University, USA,

10555 West Flagler St. EC 3900, Miami, Florida, 33174; email: suluagac@fiu.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

2577-6207/2022/09-ART27 $15.00

https://doi.org/10.1145/3543513

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

https://orcid.org/0000-0002-0207-7154
https://orcid.org/0000-0002-7082-8423
https://orcid.org/0000-0001-7362-8905
https://orcid.org/0000-0003-0159-2522
https://orcid.org/0000-0003-2091-7484
https://orcid.org/0000-0001-9988-6873
https://orcid.org/0000-0002-9823-3464
mailto:permissions@acm.org
https://doi.org/10.1145/3543513
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543513&domain=pdf&date_stamp=2022-09-06

27:2 A. K. Sikder et al.

CCS Concepts: • Security and privacy→ Access control;

Additional Key Words and Phrases: Smart home system, access control, internet-of-things, policy language,

privilege escalation

ACM Reference format:

Amit Kumar Sikder, Leonardo Babun, Z. Berkay Celik, Hidayet Aksu, Patrick McDaniel, Engin Kirda, and A.

Selcuk Uluagac. 2022. Who’s Controlling My Device? Multi-User Multi-Device-Aware Access Control System

for Shared Smart Home Environment. ACM Trans. Internet Things 3, 4, Article 27 (September 2022), 39 pages.

https://doi.org/10.1145/3543513

1 INTRODUCTION

Cyberspace is expanding fast with the introduction of new smart home technologies dedicated
to making our homes automated and smarter [55]. This trend will only continue, and billions
of smart devices will dominate our everyday lives by the end of this decade [44, 49, 51]. Smart

home systems (SHSs) typically allow multiple devices to be connected to increase the overall
efficiency of the home and automate daily tasks, making it more convenient for its occupants.
Devices as simple as a light bulb to ones as complicated as an entire AC system can be connected
and exposed to multiple users. The users then interact with the devices through different smart
home applications installed via a mobile host app provided by the smart home vendors.

Traditional access control mechanisms proposed for personal devices such as computers and
smartphones primarily target single-user scenarios. However, in an SHS, multiple users access the
same smart device, typically via an app (e.g., SmartThings App) installed on their smartphones or
smartwatches (a controller device), causing conflicting device settings. For instance, a homeowner
may want to lock the smart door lock at midnight while a temporary guest may want to access
the lock after midnight. Also, current smart home platforms do not allow the users’ conflicting
demands to be expressed explicitly. Finally, the current access control mechanism in smart home
platforms offer coarse-grained solutions that might cause safety and security issues [5, 9, 26, 35].
For instance, smart home platforms often give automatic full access to every user added to the
SHS [40]. With full access, a new user can easily add new unauthorized users or reconfigure the
connected devices without the device owner’s consent [56] and cause safety issues [10, 52]. For
instance, a temporary guest can acquire sensitive information from the homeowner or a rogue
user can leave the smart lock open for unauthorized physical access. In these real-life scenarios,
current smart home platforms cannot fulfill such complex, asymmetric, and conflicting demands
of the users as they can only handle primitive and broad controls with static configurations. Once
the setup is done, smart home platforms do not allow fine-grained controls or dynamic conditional
choices to meet users’ complex demands.

In this paper, we introduce Kratos+, a multi-user, multi-device-aware access control system de-
signed for smart home systems. We designed Kratos+ based on an access control user study with
72 real-life smart home users. Kratos+ introduces a formal policy language that allows users to
define different policies for smart home devices, specifying their needs. It also implements a policy
negotiation algorithm that automatically solves and optimizes the conflicting policy requests from
multiple users by leveraging user roles and priorities. Lastly, Kratos+ governs different policies for
different users, reviewing the policy negotiation results, and enforcing the negotiation results over
the smart home devices and apps. We designed Kratos+ as a platform-independent access control
system and implemented it in a real a multi-user multi-device SHS that included 22 different sen-
sors and actuators from three different smart home platforms (i.e., Samsung SmartThings, Philips
Hue, and LIFX). We further evaluated Kratos+ performance on 337 different access control policies,
including 231 demand conflicts and 69 restriction policies. We also assessed the performance of

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

https://doi.org/10.1145/3543513

Who’s Controlling My Device? 27:3

Kratos+ against five different threats. Kratos+ resolves demand conflicts and detects different
threats with a 100% success rate in a multi-user smart home system with minimal overhead.
Finally, we performed a usability study of 43 smart home users. Overall, Kratos+ achieved an
average rating of 4.6 out of 5 based on user-friendliness, demand, deployment, and effectiveness.
Note that this work is an extension of our previous work [50]. Kratos+ is more user-centered as we
conducted a user study among real-life smart home users to understand and address real-world ac-
cess control needs. We also significantly improved our prior work to build a platform-independent
and cloud-integrated access control system to ensure deployability in a real-life smart home
environment. In addition, we implemented and evaluated Kratos+ in different smart home layouts
and platforms with new user data. Lastly, we performed a usability study with real-life smart
home users and devices to evaluate the usability of our proposed access control system.

Contributions: Kratos+ is the first work implementing a priority-based access-policy negotiation
technique based on real users’ needs to resolve conflicting user demands in a shared smart home
system with multiple users and devices in an automated and configurable fashion. The summary
of the main contributions of this work are as follows:

• We conducted a user study of 72 different smart home users to understand the user needs
for multi-user multi-device access control mechanisms in their SHS.
• We introduced Kratos+, a platform-independent multi-user and multi-device access control

mechanism for SHS. Kratos+ implements flexible policy-based user controls to define user
roles and understand users’ demands on a smart home platform, a formal policy language
to express users’ desires, and a policy negotiation mechanism to automatically resolve and
optimize conflicting demands and restrictions in a multi-user smart home system.
• We implemented Kratos+ on a real SHS using 17 different smart home devices and sensors.

Further, we evaluated its performance with 309 different policies provided by real users. Our
evaluation results show that Kratos+ effectively resolves conflicting demands with minimal
overhead.
• We tested Kratos+ against five different threats arising from an inadequate access control

system. Our evaluation shows that Kratos+ can detect different threats with a 100% success
rate.
• Finally, we performed a usability study with 43 different smart home users to understand

the effectiveness of Kratos+. Our results showed that Kratos+ achieves an average of 4.6
ratings out of 5 from users on user-friendliness, demand, deployment, and effectiveness.

Organization: The remainder of the paper is organized as follows. In Section 2, we present the
main findings of our access control study and discuss the shortcomings of existing access control
mechanisms in SHS. In Section 3, we articulate the problem with a use case and explain our threat
model. Later, we detail the architecture of Kratos+ in Section 4. Section 5 articulates the imple-
mentation of Kratos+ in a real-life setting. In Section 6, we evaluate the performance of Kratos+

in resolving and optimizing diverse user demands and in detecting different threats in an SHS. In
Section 7, we discuss the findings extracted from the usability study of Kratos+. The benefits of
Kratos+ are presented in Section 8. Finally, Section 9 discusses the related work, and Section 10
concludes the paper.

2 MOTIVATION AND DEFINITIONS

2.1 Access Control Needs of Users in a Smart Home

Access control in multi-user SHSs poses unique challenges in terms of device sharing and conflict
resolution. People sharing smart devices in the same environment may have different needs and

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

27:4 A. K. Sikder et al.

usage patterns that can lead to conflict scenarios [21, 45]. However, existing smart home platforms
mostly offer a binary control mode where a user acquires all the control or has no control at
all. For instance, Samsung SmartThings provides full access to all the connected devices to a user.
Unfortunately, this all-inclusive access permits any authorized users to control the smart devices,
which can lead to conflicting demands, privacy violations, and undesired app installations [17].
It is also important to understand smart home users’ relationships, social norms, and personal
preferences before designing a fine-grained access control system as these dynamics can lead to
diverse users’ needs in an SHS. For instance, parents may want to restrict smart TV access for the
kids, roommates may want privacy for bedroom locks in an apartment that is shared, or owners
may want to give AirBnB guests temporary access. Hence, a fine-grained access control system
should address users’ diverse needs in a multi-user, multi-device smart home ecosystem. Several
prior works have focused on understanding user preferences and needs by conducting user studies
among smart home users [20, 62, 63]. Although these are useful studies, they were prematurely
designed and are limited in their scope. In this work, we consider the access control needs and
suggestions of SHS users reported in prior works, along with our findings from our user study,
to design a platform-independent, fine-grained access control system for multi-user multi-device
SHSs.

2.2 User Study

We first conducted a user study to understand the real needs for multi-device, multi-user access
control systems in smart home settings. We then considered these findings to propose a novel
access control system. Although the user study is not the primary goal of this work, it is instru-
mental in understanding the users’ needs in a multi-user smart home environment. To conduct
our user study, we obtained appropriate approvals from the Institutional Review Board (IRB)

and provided monetary compensation to each participant. While prior works established the need
for access control mechanisms in smart home systems, they do not cover users’ expectations in an
effective access control system [20]. In our study, we asked the participants a total of 28 questions
organized into three different categories, including (1) user characterization, (2) smart home set-
ting preferences, and (3) user preferences in multi-user multi-device scenarios. Additionally, we
asked for the users’ expectations regarding design features and implementation of an access con-
trol system – topics that are missing in the prior works. In the following, we present the survey’s
results and discuss how Kratos+ addresses the needs of users in each case.

Selecting participants. We selected the study participants by a university-wide open call for par-
ticipation and flyers distributed through communities of participants from different backgrounds,
technical expertise, ethnicity, age ranges, etc. Our main target was to recruit participants either
with hands-on experience in using smart home devices or willing to use them in the future. While
the prior participant group may provide insights into existing access control needs, the latter would
shed light on access control expectations from potential future users.

Block 1- User Characterization. We surveyed a total of 72 smart home users. We recruited the
smart home users with an open call for participation on our website to avoid bias in our study.
We aimed to fully characterize the group of users, their households, and their smart home system
experiences with the questions.

Age: Out of the total, 20 (27.7%) users reported ages in the range of 16–24 years, 41 (56.94%) users
were in the range of 25–34 years, and 11 (15.36%) in the range of 35–44 years.

Occupation: 31 out of 72 participants (43.05%) had a university degree, 28 (38.89%) had a post-
graduate study, and 12 (16.67%) were full-time job holders.

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

Who’s Controlling My Device? 27:5

Smart Device Usage: 61 out of 72 participants (85.7%) stated that they either have used or have
some smart home device in their homes. The rest of the users mentioned minimum knowledge
about smart home devices and were interested to use smart devices in the future.

Smart Home Device Types: We also asked participants about the device types they had. The
most popular devices among the surveyed users were: smart light 45 (62.5%), Smart TV 37 (51.38%),
smart thermostat 23 (31.94%), smart camera 16 (22.22%), smart lock 14 (19.44%), and smart switch
8 users (11.11%).

Smart Home Platforms: Out of 10 different smart home platforms included in the survey, the
users stated that they were familiar with four smart home platforms: Google Home (63 users -
87.5%), Samsung SmartThings (57 users - 79.16%), Amazon Alexa (48 users - 66.67%), Apple Home-
Kit (39–54.17%), and OpenHAB (16 users - 22.22%). Further, we asked for details about the specific
smart home platform that they actually used (or were willing to use). Similar to the previous re-
sults, Google Home, Samsung SmartThings, and Apple HomeKit were the majority of the answers,
38 (52.77%), 20 (27.78%), and 12 (16.67%), respectively.

Technical Experience: We also surveyed the participants regarding their technical experience
with smart home devices and apps. Out of the total participants, 57 (79.17%) reported that they
knew how to set up smart devices, 43 (59.72%) stated that they knew how to install Apps, and 37
(51.38%) said that they felt comfortable integrating different smart home devices using a hub or
cloud.

Household Characteristics: We concluded the first block of the survey by asking questions about
the household characteristics. The participants reported that they lived with different family/room-
mate sizes. For instance, 9 (12.5%) users lived in a family size of 5 or higher, 27 (37.5%) users stated
that they lived in a size of 4, 21 (29.17%) reported living in a size of 3, and 15 (20.83%) users shared
their spaces with at least another person. Further, we asked about how many members of these
households shared smart devices. Interestingly, out of 36 participants, only 6 (8.33%) reported that
they did not share deployed smart devices with anyone else. Then, out of the 72 users remaining,
66 of them disclosed that they shared devices with at least two more household members and up
to 7.

We used the answers obtained in this block of questions to characterize the target users of
Kratos+. In most cases, the users of smart home devices and apps know the basics of how to con-
figure devices and install apps. Additionally, multi-user smart households represent a positive po-
tential environment for multi-user access control systems like Kratos+. Finally, we note that most
of the users reported that they share a smart device with at least two other household members.

Block 2- Smart Home Setting Preferences and Characterization. In this part of the user study,
participants answered questions regarding the need for an access control mechanism in the smart
home system.

Multi-member Settings: We asked users if they had ever considered a need for defining various
controls on the other users while installing or using smart apps. In total, 49 (68.05%) users answered
“Yes” to this question.

Multi-member Access: Further, we investigated if the users were ever had given device access
to other members. In this case, a higher majority of 59 (81.94%) users answered “Yes”.

Conflicts Among Settings: In multi-user scenarios, 64 (88.89%) surveyed participants disclosed
having to update or re-evaluate smart device settings after discovering that original settings had
been changed/modified by other members of the household that had authorized access to the
devices.

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

27:6 A. K. Sikder et al.

Table 1. Summary of User Study and the Need of Access Control

Among Smart Home Users

Category Features/survey questions User response

B
lo

ck
1

User Characterization

Age range 16–44 years

Prior Smart Device

Experience
85.7%

Common smart devices smart light, smart TV, smart thermostat

Common smart home

platform

Google Home 87.5%, SmartThings 79.16%, Amazon

Alexa 66.67%, Apple HomeKit 54.17%, OpenHab 22.22%

Technical experience
Device installation 79.17%, App installation 59.72%

Hub/cloud integration 51.38%

Shared Household 91.67% users

B
lo

ck
2

Smart home settings

and preferences

Need for multi-user

settings
68.06%

Shared device access 81.94%

Conflicting device settings 88.89%

Access control

admin interface
84.72%

Guest Access 94.44%

B
lo

ck
3

Multi-user multi-device

access features

Built-in multi-user

access feature
86.11%

Third-party multi-platform

access control
77.58% (22.41% users willing to pay for the service)

Access control identifier
Email - 65.27%, Smart home ID - 62.2%,

Smart home account - 55.56%

Automatic policy negotiation 75%

Integrated policy update 80.56%

Minimum user interaction

in access control
72.22%

Multiple policies for

single device
77.78%

Centralize admin monitoring 76.39%

Restricted access for guests 100%

Multi-member Admin Interface: Regarding the multi-member scenarios, 61 out of 72 users
(84.72%) agreed that smart home apps should have an interface that can be regularly checked by
the device owner to control the access rights of devices.

Guest Access: Lastly, we asked about giving device access to guest members (i.e., visitors, tenants,
etc.). A vast majority of users (68–94.44%) answered “Yes” to the option of smart Apps having an
automated mechanism to revoke access requests from guest users.

Overall, this set of questions shows the need for access control mechanisms in smart home sys-
tems. We found that the device owners frequently had to deal with conflicts due to settings changed
by other household members. Additionally, the device owner wants to control who accesses the
devices and desires to enforce limited access controls for the users that are not fully trusted.

Block 3- Multi-user/Multi-device Access Control. Finally, we assessed the need for the access
control mechanisms and received feedback from the users on designing and implementing such
mechanisms.

Integrated Access Control: We asked the users whether they thought an access control mecha-
nism should be provided in smart home scenarios. A majority of 62 (86.11%) users answered that
it would be an essential feature, and smart home platforms should provide an integrated access
control system.

Separated Access Control: We further asked whether there is a need for a separate app/system
to manage the access controls. 58 (80.55%) users answered positively. Out of 58 users, 45 (77.58%)
users desired to use an access control application if it were free, and secure while 13 users (22.41%)
stated that they might even pay for the service. Additionally, the users agreed to share some specific
personal information (PI) with the access control app if required for the app design. Out of six
different options provided, the users stated that they would allow the app to use their email address
(47 users - 65.27%), smart home user ID (52 users - 62.2%), smart home account credentials (40 users -
55.56%), and smart device ID (32 users - 44.4%).

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

Who’s Controlling My Device? 27:7

Member Priorities: In a multi-user environment, access control can be provided by assigning
priorities to different household members. We asked the users which household should have the
highest priority (the most trusted member) and the lowest one (the least trusted member). The
user’s assigned priority levels in between these boundaries. The “Spouse/Partner”, “Father”, and
“Mother” are among the members with the highest priorities. On the contrary, “Babysitter”, “Tem-
porary Guest”, “Frequent Visitor”, and “Cleaning Personnel” were among the members that were
assigned the lowest priority.

Device Priorities: We evaluated what type of devices should be included in the access control
mechanism. Out of 18 options, the devices related to security and safety were selected to be the
most important devices for access control. This list includes the smart lock, smart thermostat,
smart fire alarm, smart monitoring system, presence sensor, and smoke sensor. On the other hand,
devices with the least importance to the user were the smart coffee machine, doorbell, and smart
light.

Automated System: Out of 72 participants, 54 (75%) users answered positively to the possibility
of having an automated negotiation system to solve access control conflicts among members with
the same level of priority.

Update Policy Feature: Out of 72 participants, 58 (80.56%) users expressed their interest in having
a feature to update/change current access control policies.

Negotiation Process: We presented four different options to the users about how the policy
negotiation process should work among users of the same priority (superusers or admin level).
Users’ answer shows that users desire to automate this process with minimal interaction (52 users
- 72.22%). The users’ answers also suggested that the access control system should notify the mem-
bers affected by the policy conflict.

Multiple Policies: The participants reported that the access control system should allow multi-
ple policies when a conflict occurs. 56 (77.78%) users suggested that a simple notification and an
automated approval of the non-conflicting policies are sufficient.

Conflicting Policies: If two policies conflict and one of them is defined by a member with lower
priority, 33 (45.83%) users suggested that the lower priority policy should be rejected. However, 25
(34.72%) other users indicated that the member with the higher priority should be asked to assess
the possibility of changing its policy to allow the lower priority member to add its settings without
conflict. In both cases, they again suggested that a notification system is a critical feature to resolve
policy conflicts. Further, we presented a situation where a member with the same priority level
as the owner introduces a conflicting policy on behalf of a low-priority member. In this scenario,
39 (54.17%) users suggested that both the owner and the member with similar priorities should be
notified to negotiate together on how to solve the conflict. However, 22 (30.56%) users proposed
that the high-priority member should be notified about the conflict with the owner, and the new
policy should be automatically rejected.

Low-Priority Members: The last two questions were about managing the low-priorities mem-
bers. The majority of the users (55–76.39%) confirmed that the access control system should have
a feature to monitor the actions and settings of low-priority members, while the other 17 (23.61%)
suggested that this may be an additional feature to have. We obtained similar results when we
specifically asked about access control for guest members. In this case, 51 (70.83%) surveyed users
replied that guest members needed to have some restrictions while other 21 (29.17%) users said
that this would be an additional feature to include.

Clearly, the participants expressed their interest in having access control mechanisms for smart
home scenarios. Also, they suggested that despite a necessary notification system, the access

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

27:8 A. K. Sikder et al.

Fig. 1. Existing access control system in smart home platforms.

control mechanism should work effectively and independently with minimal user interaction. Fi-
nally, users stated that the access control system should be able to differentiate between users with
different levels of priority and negotiate accordingly. Conflicts between users with the highest pri-
orities should be resolved with human intervention when necessary. In contrast, conflicts between
members with high and low-level priority should automatically be resolved by rejecting the lat-
ter’s requests. Additional features were suggested to monitor and restrict the actions of low-level
priority members. Table 1 summarizes the outcomes of the user study and desired access control
features in a multi-device multi-user smart home environment.

2.3 Existing Access Control Mechanisms in Smart Homes

Existing smart home platforms offer limited features to support access control mechanisms. Cur-
rent smart platforms often provide access control via an edge device (i.e., hub) that is part of the
network and to where smart devices are connected to. Users then may use smartphone applica-
tions offered by the smart home vendors to configure basic rules to control and manage their smart
devices. For instance, smart home platforms such as Samsung SmartThings and Apple HomeKit
allow users to install smart lights and define start and end times using corresponding mobile ap-
plications. In some cases (e.g., Samsung SmartThings), the mobile application also enables users
to install different smart home apps to enable new functionality on a device or change the way
the device is controlled. In a multi-user smart home environment, all authorized users can control
and change device tasks as the current access control systems in smart home platforms work in a
binary control mode where a user gets all the control or no control. For example, Samsung Smart-

Things provides full access to all the connected devices to a user (Figure 1(b)). Moreover, any user
gets the privilege to add new users and install new apps in the system. To protect smart devices
from unauthorized app installation and device settings, some smart home platforms (e.g., Apple

HomeKit) offer two different options: remote access and editing (Figure 1(a)). In remote access, a
new user gets an “access-only” privilege to the connected devices. In the editing option, a new
user obtains permission to add or remove any app, device, or user in the system. However, this

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

Who’s Controlling My Device? 27:9

access control system cannot reflect the conflicting demands generated in a multi-user environ-
ment. For instance, if two users try to set the smart thermostat in different temperatures simul-
taneously, current smart home platforms cannot differentiate user conflicts and execute any user
command without verifying with other users. We also found that some IoT devices such as Au-
gust smart lock and RemoteLock offer immature time-based access control mechanisms [31, 38].
However, these solutions are vendor- and device-specific, and thus, are not ready and applicable
in a multi-device multi-user smart home system. In summary, existing access control mechanisms

in smart home technologies fail to deliver the diverse and complex user demands in a multi-device

multi-user setting.

2.4 Terminology

We define several terms that we consistently use throughout this work.

Multi-device Multi-platform Smart Home. Modern smart home systems allow users to install
multiple devices from different vendors in the same physical environment. We consider a multi-
device smart home environment as a physical environment with multiple smart home devices
installed from the same vendor. On the contrary, a multi-platform smart home environment refers
to a physical environment with multiple smart home devices installed from different vendors.

Vendor-specific Smartphone App. We consider vendor-specific smartphone app as the smart
home device controller app published by the device vendors.

Policy. We consider Policy as the group of requests made by the users to control device usage in a
multi-user smart environment. Based on the nature of the request, there are three types of policies.

(1) Demand Policy. We consider Demand Policy as the group of requests made by a user that
define the control rules for a specific device or group of devices in the smart home system.
Demand policies can be general (i.e., created by the admin and applied to all the users in the
system) or specific to a certain user. If a demand policy is general to all users, we define that
as General Policy.

(2) Restriction Policy. We consider Restriction Policy as the set of rules that govern the accessi-
bility and level of control of a user or group of users to a certain device or group of devices
in the smart home system. Restriction policies regulate (1) what devices the user has access
to, (2) the time frame in which the user is authorized to use/control the device, and (3) the
control setting limits.

(3) Location-based Policy We consider Location-based Policy as the set of automation rules en-
forced by the user that are only applicable if the user is connected to the system/local net-
work. Location-specific policies regulate (1) what devices the user has remote access to and
(2) the control setting limit if a specific user is not present in the smart home network.

Priority. We call Priority as the importance level of a user that may be used to create preferences
for users of higher priority over users with lower priority during new user addition, restriction,
and demand negotiation processes. In Section 4, we detail the different priority levels considered
in this work.

Conflict. For this work, Conflict is defined as the dispute process generated from two or more
demand policies that interfere or contradict based on the specific requests of the policies. Based
on the nature of demand and restriction policies, three types of conflict can occur.

(1) Hard conflict. A hard conflict occurs when demand policies of a specific device enforced by
two different users do not have any overlapping device conditions.

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

27:10 A. K. Sikder et al.

(2) Soft conflict. A soft conflict occurs when demand policies enforced by different users for a
specific device have overlapping device conditions.

(3) Restriction conflict. Restriction conflict occurs when the restricted user is disputing the re-
striction policy for a device.

Permission Level. Permission level specifies the ability of a user to modify current configuration
in the smart home system.

Device condition. We consider device condition as the set of rules assigned to a device by the user
to perform a specific task in an SHS. For instance, if the user configures a smart light to switch on
at sunset, the specified time is considered as the device condition.

Common access point. Smart home devices are usually connected to each other via a common
access point such as a hub or router. The main purpose of the common access point is to create
a network of devices in the home environment and provide a seamless internet connection to the
smart devices. In this work, we consider both the smart home hub and router as common access
points.

Credential Array. We define the credential array as a structured format to add or delete a user
in an access control system with specified priorities. A credential array includes the following
information- commanding user ID, new user ID, priority level, permission level, and access period
of the user in the system. In Section 4, we detail the credential array and how Kratos+ uses this to
assign new users and policies.

3 PROBLEM AND THREAT MODEL

This section introduces the challenges of an access control mechanism in the smart home through
an example scenario. Then we articulate the threat model considered in this work.

3.1 Problem Definition and Assumptions

We assume a smart home setting (S) similar to the one depicted in Figure 2. The smart home has
several installed devices to create an automated smart environment. In S, four different users - Bob
(father), Alice (mother), Kyle (child), and Gary (guest) interact with the devices. We assume Bob and
Alice are the smart device owners, and all four users have access to the smart home system through
their controller app (installed on their smartphone or tablet). Here, the term access to the smart

home system refers to the ability to control the devices, configure the system (add/delete devices),
and add new users to the system. We assume that the users are performing the following activities
which result in conflicting demands- (1) Bob and Alice configure the smart thermostat to different
overlapping values at the same time (soft conflict), (2) Alice wants to limit access to smart lock
after midnight while Gary wants to have access (hard conflict), (3) Alice tries to restrict Kyle from
using the smart coffee machine, but the smart home system does not allow her (restriction conflict),
(4) Alice wants Kyle to have access to the smart light only while Kyle is present (location access).
Hence, a new access control system is needed and designed to answer the following questions:
(1) How can Bob and Alice solve their conflicting demand and use the thermostat simultaneously?
(2) How can Alice give exclusive permission to use the smart lock to Gary after midnight? (3) How
can Alice restrict a specific device for a specific user? (4) How can Alice give location-based access
to Kyle? (5) How can Bob limit the access of Gary to add a new user? To address these questions,
we propose Kratos+, a fine-grained access control system for the smart home that allows users to
resolve the conflicting access control demands automatically, add new users, select specific devices
to share, limit the access to specific users, and prevent undesired user access in the system.

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

Who’s Controlling My Device? 27:11

Fig. 2. Sample smart home with multiple users attempting to control multiple devices with conflicting

demands.

3.2 Threat Model

Kratos+ considers undesired access control decisions that may arise from existing coarse-grain so-
lutions. For instance, a new user automatically gets full access to the system (i.e., over-privileged
control), leading to undesired device access. Also, Kratos+ considers legitimate smart home users
trying to change the system settings without authorization (e.g., overriding the existing system by
installing new apps) that may result in undesired device actions such as installing unknown apps
and overriding device conditions (i.e., privilege abuse), even deleting device owners from the sys-
tem (i.e., privilege escalation). Furthermore, Kratos+ considers threats that arise from inadequate,
inaccurate, or careless access control to multi-user multi-device smart homes (i.e., transitive priv-
ilege). In fact, access to an SHS granted to unknown parties by an authorized user other than the
owner may escalate to additional threats (i.e., unauthorized device access), that Kratos+ also con-
siders as malicious activity. Also, if a temporary guest is not timely removed from the system by
the authorized user, it may lead to malicious activities such as sensitive information leakage. We
do not consider any unauthorized user access due to malicious apps installed in the system. We
also assume that the SHS is not compromised, which means no malicious user has been added au-
tomatically at the time of system installation as they are different problems from the contributions
of Kratos+. In Table 2, we detail five different threats that we use later to evaluate the performance
of Kratos+ (Section 6).

We do not consider any unauthorized user access caused due to malicious apps installed in
the system. We also assume that the smart home system is not compromised, which means no
malicious user has been added automatically at the time of system installation as they are different
problems from the contributions of Kratos+.

4 KRATOS+ ARCHITECTURE

In this section, we present the architecture of the Kratos+ and its main components. Kratos+ is a
comprehensive access control system for multi-user smart home system where users can express

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

27:12 A. K. Sikder et al.

Table 2. Summary of the Threat Model

Considered in Kratos+

Threat Attack Method Attack Example

Threat-1
Over privileged

controls

A newly added smart home user gets the

access to use all the connected devices

which can lead to undesired activities in

the smart home system.

Threat-2
Privilege

abuse

A newly added smart home user can

abuse the granted privilege to perform

malicious activities in the smart home

system.

Threat-3
Privilege

escalation

A newly added smart home user can use

the legitimate permissions to remove de-

vices and apps, change device settings, or

make a device unavailable to the owner.

Threat-4
Unauthorized

access

A temporarily added smart home user

can have an access to the smart home sys-

tem if the owner forgets to delete the ac-

cess manually.

Threat-5
Transitive

privilege

A newly added user adds a new user in

the system who automatically gets the

same privilege level as the owner and

may utilize this transitive privilege to per-

petrate his/her exploits.

their conflicting demands, desires, and restrictions through policies. Kratos+ allows an authorized
user to add new users and enforce different policies to connected smart devices based on the needs
of users and the environment. Kratos+ considers all the enforced policies from authorized users
and includes a policy negotiation algorithm to optimize and solve conflicts among users. In design-
ing the Kratos+ framework, we consider the following design features and goals.

User-friendly Interface. An access control system should have a user-friendly interface to add
or remove users as well as assign policies in the smart home system. We integrate Kratos+ into
the mobile app provided by smart home vendors to provide a single user interface to manage users
and assign policies to the connected devices.

Diverse User Roles/Complex Relations. In a smart home, users have different roles that an
access control system needs to define. For example, a user having a parent role should be able to
express controls on a user with a child role, while adults in the same priority class should be able to
negotiate the access control rules automatically. To address this design feature, Kratos+ introduces
user priority in the system to define user roles.

Conflict Resolution. As discussed earlier, diverse needs in device usage result in usage conflict
among smart home users in a shared smart home environment. The main challenge of an access
control system in a smart home is to resolve these conflicts in a justified way. In addition, users in
a multi-user smart home environment should agree with the conflict resolution outcome provided
by the access control system. Kratos+ uses a novel policy negotiation system to automatically
optimize and resolve the conflicting demands among users and institute a generalized usage policy
reflecting the needs of all the users. Additionally, Kratos+ notifies the users of the results of the
policy negotiation system.

Expressive Control. In a smart home system, a user should be able to express the desired device
settings easily. An access control system should provide a simple method for users to express their
diverse needs. Kratos+ introduces a unified policy language that covers different control parame-
ters (e.g., role, environmental, time, device-specific expressions) in a smart home environment to
understand the users’ needs and control the devices accordingly.

Unified Policy Enforcement. All user commands to the smart devices should go through
an access control enforcement layer to provide fine-grained access control in a smart home

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

Who’s Controlling My Device? 27:13

Fig. 3. Architecture of Kratos+ system.

environment. Kratos+ uses an execution module that checks all enforced policies before
executing a user command in the smart home environment.

Multi-platform Support. Access control in the smart home environment should support multi-
ple smart home platforms as smart devices from different vendors may share the same physical
environment. To support a multi-platform smart environment, Kratos+ offers access control im-
plementation both at the app-level (smart home apps) and access point level (hubs and routers).
While app-level implementation supports standalone smart devices, Kratos+ ensures fine-grained
access control in the multi-platform smart environment by enforcing policies in a common access
point.

Figure 3 details the architecture of the Kratos+ system. Kratos+ includes four main modules:
(1) user interaction module, (2) back-end module, (3) policy manager, and (4) policy execution
module. First, the user interaction module provides a user interface to add new users and assign
priorities based on the user’s role. This module also collects user-defined device policies for smart
home devices. These device policies and priority assignment data are forwarded to the back-end

module via the common access point (smart home hub or router). The back-end module captures
these data and creates a user priority and device policy list for the users. The policy manager

module then gathers user priorities and device policies from the generated lists and triggers the
policy generation and negotiation process. After successfully negotiating policies among smart
home users, the policy manager generates final device policies, and the policy execution module
implements the policies. The following subsections detail each module in Kratos+ and explain how
policy generation and negotiation processes are initiated by Kratos+.

4.1 User Interaction Module

The user interaction module collects priority assignment data and device policies from the users.
All the authorized users in a smart home environment can use controller devices (smartphones,
smart tablets) to access the user interaction module. It includes two sub-modules: priority assign-
ment and policy input.

Priority Assignment Module. The priority assignment module operates as a user interface to
add new users and assign priorities to the users. Kratos+ introduces a formal format to specify
new users, illustrated as follows: Ua = [Aid , Nid , P , D, T], where, Aid is the unique ID of the
commanding user, Nid is the new user ID that is added in the system, P is the priority level of the
new user, D is the permission to add or remove devices from the system, andT is the validity time
of the new user in the system. The user priority level is used in the policy generation module to

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

27:14 A. K. Sikder et al.

negotiate policies among users and create device policies. To add a new user and assign priorities,
we consider the following rules to avoid conflicts in the priority assignment.

• Each user has the authority to add new users and assign a priority.
• The Owner of the smart home system will have the highest priority in the system by default.
• Priority in the system is depicted with a numerical value. The lower the priority of a user,

the higher is the level of priority. For example, the owner of the hub has the priority of “0”.
• Each user can only assign the same or higher value of the priority to a new user, e.g., a user

with a priority of “1” can only assign a priority of “1” or higher to a new user.
• If two existing users add the same new user with a different priority level, the user with a

higher priority level gets the privilege to add the new user.
• If two existing users with the same priority level assigned different priority levels to a new

user, the system notifies the existing users to fix a priority level of the new user.
• Each user can only assign permissions for adding or removing devices to a new user if the

commanding user has the same permission.

The priority assignment of Kratos+ can also be configured to define the roles of the users. For
example, in the smart home environment in Figure 2, Alice and Bob (parents) can be assigned to
priority 0, Gary (guest) can be assigned to priority 2, and Kyle (child) can be assigned to priority
3. We use this priority list to explain the functions of Kratos+ throughout the paper. In Kratos+,
the administrator or homeowner obtains the privilege to define the priority-role mappings in the
system. Kratos+ also allows the users to add temporary users by specifying the validity time (T) of
a user in the system. After the specified validity time, Kratos+ removes the user from the system
to automatically prevent unauthorized access from a temporary guest. The collected credentials
are forwarded to the back-end through a hub to create the user priority structure.

Policy Input Module and Access Policy Language. Policy input module provides an interface
to the users for assigning policies in connected smart home devices. All the authorized users can
choose any connected devices and create a device policy using this module. To define the device
policies, Kratos+ introduces a formal access control policy language for the smart home environ-
ment to express complex user preferences (e.g., smart home users’ demands, desires, and restric-
tions) by utilizing an existing open-source smart home ecosystem (e.g., Samsung SmartThings).
Each user defines a policy about their preferences for each smart device and any restriction over
others’ accesses to the smart home system. For instance, sample policies for the smart home of
four users are shown in Figure 2, where each user defines her requirements for other users in a
smart home with the thermostat, bulbs, lock, and coffee maker are shown in Figure 4. The criteria
defined by the users are used throughout this sub-section to construct their policies.

Policy Structure. Kratos+ represents the policies as collections of clauses. The clauses allow each
user to declare an independent policy for their demands and other users. The clauses have the
following structure: 〈users〉 : 〈devices〉 : 〈conditions〉 : 〈actions〉. The first part of the policy is users,
which defines a user assigned to the policy in the system. This part also includes the information
of the targeted user for whom the policy is assigned. The second part, devices, specifies the list
of the devices included in this statement. Similar to the users part, this can be a single device
or a list of devices. Kratos+ uses device ID assigned by the smart home system to distinguish
device-specific policies in a multi-device environment. The third part, conditions, is a list of device
conditions defining different control parameters (time-based operation, values, etc.) based on the
smart devices’ capabilities. For instance, a user may define a condition where only a pre-defined
range of commands or a certain time-window is matched. The final part of the policy is 〈action〉
which states the clause type, either demand or restrict. We note that the Kratos+’s policy language

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

Who’s Controlling My Device? 27:15

Fig. 4. An example demand and restriction requirements of users in Figure 2.

Fig. 5. Sample policy clauses to partially implement demands and restrictions shown in Figure 4.

allows users to define multiple clauses. For instance, a user may restrict a distinct subset of smart
home devices for different conditions and different users. A sample policy scenario is illustrated
in Figure 5. Here, two users, U1 and U2, define different demand and restriction policies in a smart
home environment.

4.2 Back-end Module

The user interaction module collects the user credentials and device policies generated using the
access policy language. It then forwards them to the back-end module, where these data are stored
and formatted for policy generation and negotiation. The back-end module has two functionalities:
(1) generating a user priority list and (2) generating a device policy list.

User Priority List. The back-end module collects the credential arrays and creates a database
for authorized users and their assigned priorities. Here, all the credential arrays are checked with
the priority assignment rules (explained in Section 4.1) and sorted as valid and invalid priority
assignments. For each invalid priority assignment, the back-end module notifies the users who
initiated the priority assignment. The back-end module also checks the validity of the users added
to the user priority list based on the validity time specified in the credential arrays. The back-end
module automatically removes users with expired validity and updates the user priority table. A
sample user priority list is shown in Figure 6.

Device Policy List. The back-end module accumulates all the policies assigned by the users and
creates a database based on the device ID. As explained in Section 4.1, the access policy language
assigns a device ID to determine the intended policy for each device. This list is updated each time
a user generates a new policy for different devices.

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

27:16 A. K. Sikder et al.

Fig. 6. A sample user priority list generated by Kratos+.

4.3 Policy Manager Module

The policy manager module collects the user priority list and device policy list from the back-end
module and compares different user policies. This module consists of two sub-modules (policy
negotiation module and policy generation module) to initiate the policy negotiation and generation
processes.

Policy Negotiation Module. The policy negotiation module compares all the user-defined poli-
cies and detects different types of conflicts based on user priorities and demands. Similar to tra-
ditional RBAC, Kratos+ uses assigned user roles and priorities to understand the user needs in a
smart home hierarchy. However, a smart home environment needs a more fine-grained approach
than RBAC to address the conflicting scenarios based on users’ relationships, social norms, and
personal preferences. To address these diverse needs, Kratos uses an automatic policy negotia-
tion module to resolve conflicts in a multi-user smart home environment. The policy negotiation
module identifies types of conflicts based on user roles and priorities, categorizes the conflicts
based on implemented policies, automatically decides whether a policy should be executed or not,
starts a negotiation method between conflicting users using notification methods, and chooses an
optimum operating point for both users upon mutual agreement. Kratos+ considers three types
of conflicts in a multi-user smart home environment: hard conflict, soft conflict, and restriction
conflict.

A hard conflict happens when device policies enforced by two or more users with the same or
different priorities conflict with each other over different non-overlapping device conditions. For
instance, in Figure 2, Alice and Bob try to set the thermostat temperature to two distinct temper-
ature ranges 60–70 and 75–80, respectively. Kratos+ considers this conflicting demand as a hard
conflict and starts policy negotiation. On the other hand, soft conflicts occur when device policies
assigned by the users with the same or different priorities have an overlapping device condition.
For example, in Figure 2, if Alice and Bob try to set the thermostat temperature with overlapping
ranges (65–75 and 70–80 respectively), Kratos+ considers this as a soft conflict. Restriction con-

flicts occur when restricted policy disputes with a device policy. As an example, in Figure 2, Kyle
(child) wants to access the coffee machine, but Alice restricts the access for Kyle, which results
in a restriction conflict. In Kratos+, a policy negotiation algorithm is developed to resolve policy
conflicts and trigger the policy generation module to create acceptable policies for all authorized
users.

Policy Negotiation Algorithm. For policy negotiation, Kratos+ considers two essential research
questions: (1) How does Kratos+ handle the policy conflicts between users with the same and
different priority levels?, and (2) How does Kratos+ handle restriction policies without affecting
smart home operations? In the following, we address these questions.

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

Who’s Controlling My Device? 27:17

The policy negotiation algorithm processes all the policies and computes the negotiated results
by modeling the users’ authorities (classes, roles) in a multi-layer list. Figure 6 illustrates this model.
User authorities are split into ordered classes. Class 0 has the highest priority, and a higher class
number means a lower priority. Each class may include a list of users (or roles as roles are just a set
of users). Users in the same priority class share the same priority. Kratos+ considers three types of
conflicts between user policies after users are classified into authorities. During policy negotiation,
each policy clause is compiled into a quintuple, Ψ = {P ,U ,D,C,A}, where P is the policy assigner
(that shows who states this clause), U is the assignee (about whom this statement is), D is the
targeted smart device, C is a set of conditions over D and U , and configurable environmental
attributes. Finally, A ∈ {demand, restrict } is the action requested by this statement when the set
of conditions is satisfied. Kratos+ implements an algorithm to solve the policy conflicts through a
set of equations as follows:

inter f ere (Ψi ,Ψj) ← Ui = Uj ∧ Di = D j (1)

hard_conf lict (Ψi ,Ψj) ← inter f ere (Ψi ,Ψj) ∧ ((Ai � Aj ∧ ∀c ∈ Ci ∩ Cj : Θ(V (c,Ci),V (c,Cj)))

∨(Ai = Aj ∧ ∃c ∈ Ci ∩ Cj : ¬Θ(V (c,Ci),V (c,Cj))))
(2)

so f t_conf lict (Ψi ,Ψj) ← inter f ere (Ψi ,Ψj) ∧ ((Ai = Aj ∧ ∀c ∈ Ci ∩ Cj : Θ(V (c,Ci),V (c,Cj)))

∨(Ai � Aj ∧ ∃c ∈ Ci ∩ Cj : V (c,Ci) � V (c,Cj)))
(3)

HPC (Ψi ,Ψj) ← hard_conf lict (Ψi ,Ψj) ∧ Ξ(Pi) � Ξ(Pj) (4)

SPC (Ψi ,Ψj) ← so f t_conf lict (Ψi ,Ψj) ∧ Ξ(Pi) � Ξ(Pj) (5)

HCC (Ψi ,Ψj) ← hard_conf lict (Ψi ,Ψj) ∧ Ξ(Pi) = Ξ(Pj) (6)

SCC (Ψi ,Ψj) ← so f t_conf lict (Ψi ,Ψj) ∧ Ξ(Pi) = Ξ(Pj) (7)

RC (Ψi ,ψj) ← Restriction_conf lict (Ψi ,ψj) ∧ Ξ(Pi) > Ξ(Pj)

∧Ai = restrict
(8)

where Ψi ,Ψj is the evaluated pair of policies, and V (c,C) is the value function that returns the
value of conditional c in the set C , Θ(x ,y) checks the overlap between the provided (x ,y) tuple
and Ξ(u) returns the priority of user u as the value of user’s assigned priority class.

When two different policies include clauses of the same user’s access for the same device, there
can be an interference between those clauses. Any such possible interference is further checked to
disclose potential conflicts. In this, hard conflicts can happen when two interfering clauses dictate
different actions for some overlapping cases or dictate the same action for never overlapping cases.
In other words, when policies have no possible way of cooperation or compromising, (e.g., Alice
demands 60–70 range while Bob demands of 75–80 range for the same thermostat). In such cases,
Kratos+ detects a hard conflict; however, if the same action exists with some common overlap
while opposite actions never occur together, such interference is a soft conflict. Moreover, con-
flicts are further categorized as Priority Conflicts or Competition Conflicts based on the priority of
policy owners. When the conflict happens between users’ policies with different priority classes,
Kratos+ defines a priority conflict. However, if the users have the same priority, competition con-

flicts happens. Additionally, if any interference is caused by the nature of action requested in two

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

27:18 A. K. Sikder et al.

Fig. 7. An example of mapping a sample policy to ABAC rule through a transformation function. ABAC (Ψi)
is a translation of action, subject, resources, constraints defined in a policy.

different policies, Kratos+ detects a restriction conflict in the system. Incorporating these with
hard, soft, and restriction conflicts, Kratos+ overall implements five distinct conflict types.

Policy Negotiation Process. The negotiation N between two given policy clauses (Ψi ,Ψj) can
be formally expressed and computed by Equation (9).

N (Ψi ,Ψj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

⎧⎪⎨
⎪
⎩

Ψi if Ξ(Pi) > Ξ(Pj)

Ψj otherwise
, if HPC (Ψi ,Ψj)

⎧⎪⎨
⎪
⎩

{Pi ∪ Pj ,Ui ,Di ,Ci ∪Cj ,Ai } if Ai = Aj

{Pi ∪ Pj ,Ui ,Di ,Ci ∪ ¬Cj ,Ai } otherwise
, if SPC (Ψi ,Ψj)

⎧⎪⎨
⎪
⎩

majority_vote (Ψi ,Ψj) if binary (Di)

arbitrate (Ψi ,Ψj) otherwise
, if HCC (Ψi ,Ψj)

⎧⎪⎨
⎪
⎩

{Pi ∪ Pj ,Ui ,Di ,Ci ∪Cj ,Ai } if Ai = Aj

{Pi ∪ Pj ,Ui ,Di ,Ci ∪ ¬Cj ,Ai } otherwise
, if SCC (Ψi ,Ψj)

(9)

In the case of a hard priority conflict (HPC), (e.g., mother vs. a child with contradicting
clauses) Kratos+ prioritizes the clause of the user with the higher priority (e.g., mother). For hard

competition conflict (HCC), both users with overlapping conditions are notified, and Kratos+

offers a common operating condition to both. This common condition is enforced as a policy to
the device upon users’ agreement. On the other hand, in the case of both soft priority (SPC) and
soft competition conflicts (SCC), the negotiation result is a new clause with a common set of
conditions. For restriction conflict, both restricted user and policy assigner is notified, and if the
policy satisfies conditions in Equation (9), the restriction policy is enforced in the device.

Policy Generation Module. The policy generation module’s goal is to construct valid policies
that reflect the demands and restrictions of all authorized users based on the device policies gener-
ated in the user interaction module. The generated policies are passed to the back-end module and
stored in a database (final policy table). Thereafter, these policies are enforced in smart devices.

Access Control Rule Generation. The negotiated policies computed by the policy negotia-
tion algorithm are converted into enforceable access control rules. The negotiated policy clause,
Ψ = {P ,U ,D,C,A}, has a 5-tuple format and is indeed well suited for existing attribute-based ac-
cess control (ABAC) systems. Thus, Kratos+ uses ABAC-like enforcement for the final generated
rules. Here, the policy, B, is the set of {action, subject, resource, constraints} tuples for a negotiated
smart home policy. As an example, Figure 7 illustrates a simple example where ABAC (Ψi) holds a
direct translation of actions, subjects, resources, and constraints. We develop an ABAC-like rule

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

Who’s Controlling My Device? 27:19

generator that enforces the rules in a control device. The generator is integrated into the hub device
as a unified enforcement point.

4.4 Policy Execution Module

The policy execution module enforces the final policies generated from the policy negotiation
process and verifies any user commands with enforced policies before execution. This module has
two sub-modules: the policy enforcement module and the policy verification module.

Policy Enforcement Module. Smart home devices can be controlled in two different ways - (1) by
sending user commands using a controller device (smartphone or smart tablet) and (2) by installing
customized apps in targeted smart home devices. Hence, any access control mechanism should
consider both control options to ensure fine-grained access control.

In a smart home environment, devices are connected via a common access point such as a hub or
router. Smart home devices are also connected to the Internet via a router to provide remote access
to the users. Any user command coming from the controller device has to go through the hub or
router to reach the targeted smart device. The policy enforcement module of Kratos+ considers this
property of the smart home environment and enforces the generated policies at the common access
point (hub/router). The policy enforcement module creates a user-policy table that comprises the
final generated policies in the policy manager module. Based on this user-policy table, Kratos+

builds a customized filter to control user access to the installed smart home devices. For instance,
in Figure 4, Alice restricts the smart lock access after 12 A.M. while Gary tries to access the lock at 3
A.M. As Alice has a higher priority than Gary, the final policy generated by Kratos+ restricts Gary
to access the smart lock after 12 A.M. The user-policy table generated by policy execution module
creates a filter in the hub/router to block any incoming command from Gary via controller device
(smartphone/tablet). Here, the policy enforcement module uses the device ID to detect incoming
commands from targeted users and allow or drop the commands based on final generated policies.

Smart home devices can also be controlled using vendor-specific controller apps installed on
smartphones or tablets. Users can also install customized smart apps to control smart home devices
(e.g., Samsung SmartThings). Kratos+ offers policy enforcement at the app level (both controller
apps and customized apps) to provide fine-grained access control. The policy enforcement module
generates conditional statements that represent the final policies. Kratos+ uses the existing static
analysis technique to append these conditional statements in the controller app or customized
apps [8] and enforces final policies at the application level. An example of Kratos+-modified app
is presented in Appendix A.

Policy Verification Module. The policy verification module matches and verifies each user com-
mand with the generated policies before executing them. The matching process ensures fine-
grained access control in a smart home environment. The policy verification module uses Kratos+

modified apps or user-policy table enforced in the hub/router to verify users’ commands. When
a user tries to change the device’s state, the app asks the policy verification module to check in
the final policy table generated by the policy generator. If an acceptable condition is matched, the
policy verification module returns the policy to the app. It creates a binary decision (true for the
accepted policy and false for the restricted policy) in the conditional branches. Based on the deci-
sion enforced by the policy verification engine, the user command in a smart home app is executed.
For a multi-platform smart home environment, the policy verification module verifies the policies
based on the user-policy table enforced in the common access point (hub/router). Here, each in-
coming user command is cross-referenced with the final policy table and device ID to identify the
controller device and targeted smart device. Upon matching with an acceptable condition, the pol-
icy verification module generates a filter to allow (for accepted policy) or block (restricted policy)

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

27:20 A. K. Sikder et al.

the user command. Kratos+ creates customized filters in the access point for each installed smart
device based on the generated policies.

5 KRATOS+ IMPLEMENTATION

We implemented Kratos+ as a platform-independent access control system for smart home plat-
forms and devices. To implement and test the efficacy of Kratos+, we choose several smart home
platforms including Samsung SmartThings, Philips Hue, LIFX smart bulb, and Amazon Alexa. We
next provide details of our implementation.

5.1 Implementation

The implementation of Kratos+ has three basic integration phases: user interface, cloud integra-
tion, and policy enforcement. Kratos+ provides a user interface (user interaction module) to assign
policies and priorities to the smart home users. The cloud integration includes the backend mod-
ule and policy negotiation module, which capture the user priorities and policies and generate
final policies. Finally, Kratos+ enforces the generated policies in smart home systems via append-
ing conditional statements in installed apps or creating filters in the access point (hub/router) to
supervise users’ commands. The details of Kratos+’s implementation are given below:

User Interface. We built a customized smart app (Kratos+ app) that represents the user interac-
tion module described in Section 4. The Kratos+ app has two main modules - user management
and policy management. The user management module allows users to add new users and assign
priorities. Additionally, users can configure Kratos+ as a role-based access control system by as-
signing roles to the users. For the implementation purposes, we define five different roles and
priority levels in Kratos+ (i.e., father/owner - priority 0, mother/owner - priority 0, adult - priority
1, child - priority 3, and a guest - priority 4). These roles and priorities can be assigned by the smart
homeowner or by authorized users with the same or higher priority than the one being assigned.
Upon creating a new role/priority, the information is sent and stored in the cloud-integrated part
of Kratos+. In the policy management module, users select installed smart devices and assign new
policies to control them. As mentioned in Section 4, Kratos+ provides options to add three types of
policies - demand policy, restriction policy, and location-based policies. Users can assign different
device conditions (time-based, value-based, etc.) in the policies. As most of the smart home devices
only allow time-based and value-based conditions, we classified the policies into three different
possible categories: (1) time-based device policy, (2) value-based device policy, and (3) time-value-
based policy. The policies for different devices in our implementation can be represented by the
following device policy array:

Device Policy, P = {U ,D,C1,C2,R,L}. (10)

The elements of the policy array are explained below.

• User ID (U): The first element of the policy array is to identify the policy assignee. We utilized
the user email as a personal identifier in our implementation.
• Device ID (D): To identify the intended device for the policies, we use the device ID assigned

by the smart home system. Here, we use the unique device ID assigned by the hub-connected
smart home system (e.g., Samsung SmartThings) or MAC ID of the smart device as the device
ID in the policies.
• Time conditions (C1): In a device policy, users could assign a specific time to control device

actions. Here, users can assign a time range or a specific time for instantaneous action. For
example, a smart light can be accessed from sunset to sunrise only by assigning a time range.
Similarly, a smart camera can be programmed to take pictures at a specific time.

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

Who’s Controlling My Device? 27:21

Fig. 8. User interfaces of Kratos+.

• Value conditions (C2): As smart home devices offer value-specific operations, users could
assign a maximum and minimum value to specify an acceptable range to control a device
functionality. For example, a user can set the operational range of a thermostat from 68◦F to
70◦F.
• Restricted User (R): High-priority users could define the restriction policy for a specific lower-

priority user by adding the user ID to the restricted user’s list. This is an optional parameter
for assigning policies in Kratos+.
• Location (L): Users could define location-specific operations for smart home devices by as-

signing “yes” or “no”. Kratos+ interprets “yes” and “no” as binary numbers (“1” and “0”,
respectively) for policy negotiation and generation.

Figure 8 shows the user interface of Kratos+ implemented in the Samsung SmartThings plat-
form. The information on new users and device policies is forwarded to the cloud-integrated back-
end server and policy generation module. After performing policy negotiation and generation, the
policy generator’s outcome is sent back to the user interface in the form of push notifications in
the controller device (smartphone or tablet). The notifications inform the user when a policy is suc-
cessfully generated or why the policy generator failed to create a new policy. Figure 8(d) shows
the notification system of Kratos+ integrated into the Samsung SmartThings platform.

Cloud Integration. The majority of the smart home devices are resource-constrained devices and
do not have the capability to run customized apps within the device [43]. Some smart home plat-
forms, such as Samsung SmartThings, offer customized app installation. However, these apps run
in the smart home hub or cloud to get the necessary processing capacity. Hence, we implemented
the backend and policy manager module of Kratos+ as a cloud-integrated solution to minimize the
overhead in resource-constrained smart home devices. As Kratos+ supports multiple smart home
platforms in the same physical environment, the backend server collects and merges user-defined
policies from different platforms and builds a device policy list. Additionally, the backend server
builds the user priority list by collecting user priorities assigned via the Kratos+ app. The policy
manager uses the user priority and device policy list to identify conflicting policies and starts the
policy negotiation process between targeted users. Upon successful negotiation, the policy man-
ager generates the final policies for installed smart devices and forwards the policies to the policy
enforcement module.

Policy Enforcement. The final step during implementation is to enforce the generated policies
by Kratos+ in the smart home system. As mentioned earlier, Kratos+ can enforce policies both

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

27:22 A. K. Sikder et al.

Fig. 9. Kratos+ implementation in a multi-platform smart home environment.

at the app level and access point level. Here, we explain how app-level and access point-level
implementation work.

App-level Implementation. We implemented a tool similar to the available static analysis tool
to modify the apps to connect with the backend server and capture the generated policies from
the policy generator [7, 8]. The static tool also appends the policies in the form of conditional
statements to execute the policies. A sample modified app is given in Appendix A to illustrate
the steps to enforce policies in smart home apps. While sending commands from an app, Kratos+

verifies the conditional statements appended in the app before executing the command.

Access Point Level Implementation. To enforce policies in the access point (router/hub),
Kratos+ builds a user-policy table from the generated policies and creates a firewall filter to
control incoming commands to the smart home devices. The user policy table consists of: (1)
user ID, (2) controlling device MAC ID, (3) targeted device MAC ID, (4) generated policy, and
(5) decision (accept/reject). Any incoming commands from the controlling app are checked
and matched with the user policy table at the access point. Here, Kratos+ scans the incoming
traffic to extract source MAC ID, destination MAC ID, and time to validate the command. The
customized firewall filter checks the MAC ID to detect incoming commands from the targeted
users and it allows or drops the commands based on final generated policies. As the incoming
traffic either from local device or cloud includes destination MAC ID which can be extracted
even if encrypted [1, 58, 64], access-point level implementation can successfully allow or drop
user commands. However, due to encrypted payload, access point level implementation cannot
identify the value-based operation of smart home devices (details in Section 8.2). Figure 9 shows
the implementation of Kratos+ in a multi-platform SHS.

5.2 Data Collection

To test the effectiveness of Kratos+ in a real-life smart home system, we implemented a smart
home environment where users can interact with the smart home devices and assigned desired
device policies via Kratos+ app. We considered both a single platform and multi-platform smart
home environments for testing Kratos+.

Single platform SHS: A single-platform SHS offers a hub-connected multi-device environment
where all the installed smart devices are connected via a hub. We chose the Samsung SmartThings
platform to design the single platform smart home environment because of its large app market

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

Who’s Controlling My Device? 27:23

Table 3. Devices and Sensors Used in Our Smart

Home Setup to Evaluate Kratos+

Device Type Model Quantity

Smart Home Hub Samsung SmartThings Hub 1

Smart Light
Philips Hue Light Bulb 4

LIFX Smart Bulb 2

Smart Lock Yale B1L Lock with Z-Wave Push

Button Deadbolt

1

Smart Camera Arlo by NETGEAR Security System 2

Smart Thermostat Ecobee 4 Smart Thermostat 1

Motion Sensor Fibaro FGMS-001 ZW5 Motion Sen-

sor with Z-Wave Plus Multisensor

6

Temperature Sensor Fibaro FGMS-001 ZW5 Motion Sen-

sor with Z-Wave Plus Multisensor

1

Door Sensor Samsung Multipurpose Sensor 2

and compatibility with other smart devices [18]. We implemented the Kratos+ app as a third-party
app to collect user priorities and device policies assigned by the users. For policy enforcement,
we selected 10 different official Samsung SmartThings apps that control 17 different devices and
installed them in the system. We modified the apps to append generated device policies and test
the efficacy of Kratos+ in a multi-user multi-device environment.

Multi-platform SHS: For multi-platform SHS, we considered three different smart home plat-
forms and devices in a single physical environment. We chose Samsung SmartThings, Philips HUE,
and LIFX smart bulbs as smart home platforms. We specifically chose these platforms for third-
party app integration and app customization capabilities [22, 28, 41]. Here, the multi-platform
SHS has both hub connected (Samsung SmartThings) and independent entity (Philips HUE and
LIFX Bulb). All the installed smart home devices from different platforms share the same network
access point to perform different tasks. We customized and implemented Kratos+ app in each of
these smart home platforms to collect user priorities and device policies assigned by the users. For
Kratos+ app customization, we used SmartThings API for Samsung SmartThings, LIFX API for
LIFX smart lights, and HUE API for Philips Hue. All the customized versions of Kratos+ app for-
ward the device policies assigned by the users to the cloud-integrated backend server and policy
manager to start policy generation and generate final device policies. In the multi-platform SHS,
we implemented a customized firewall filter in the network access point (Wi-Fi router) to enforce
the generated policies by Kratos+.

The complete list of devices in our smart home environment is provided in Table 3. The setup
included four different types of devices: smart light, smart lock, smart thermostat, and smart cam-
era, which are some of the most common smart home devices used in smart home settings [53].
We also used three different types of sensors: motion, temperature, and contact sensors to provide
autonomous control.

In our implementation phase, we collected data from 43 different smart home users. We obtained
the necessary Institutional Review Board (IRB) approval to collect access control data from real-life
smart home users. We selected current smart home users who live in a shared home environment
to participate in our study by circulating university-wide open calls and community outreach via
emails and flyers. We grouped our participants into 14 different groups and asked them to choose
different roles in a smart home system. We investigated several multi-user scenarios for the policy
generation and negotiation processes as detailed below:

Scenario 1: Multiple policies for the same device. We selected common devices (e.g., smart thermostat)
and enforced different policies set by multiple users. Users assigned demand and restriction policies
in the system for the same device. We collected 44 sets of policies (a set of policies that include at
least two policies from multiple users), including 13 hard, 17 soft, and 8 restriction conflicts.

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

27:24 A. K. Sikder et al.

Scenario 2: Multiple policies for different devices. We used multiple devices from the same device
category (e.g., smart light, smart lock, smart thermostat) to enforce different policies over the same
type of devices. Here, we collected 48 sets of policies from 43 users, which resulted in 15 hard, 22
soft, and five restriction conflicts.

Scenario 3: Multiple apps for the same device. In the SHS, we allowed users to install different apps
to control the same device (e.g., smart light). For example, multiple users can configure a smart
light with both motion and door sensors using different apps. We chose three different smart light
apps in the SmartThings marketplace (light control with motion sensor, door sensor, and lumi-
nance level, respectively). We asked the users to install preferable apps and assign device policies
accordingly. Here, we collected 35 sets of policies, including 8 hard, 18 soft, and five restriction
conflicts.

Scenario 4: Single app for multiple devices. We considered an individual app controlling multiple
same types of devices in the SHS. We chose a single light controlling app to control four different
lights and asked users to enforce device policies on different devices using one single app. We
collected 32 sets of policies in this scenario, including 12 hard, 15 soft, and 3 restriction conflicts.

Scenario 5: Multiple smart platforms in a same physical environment. We considered smart home
devices from different platforms in the same smart home environment. We chose 17 devices from
three different smart home platforms (Samsung SmartThings, Philips HUE, LIFX) installed in the
same physical environment. We asked users to enforce device policies on different devices using
the corresponding Kratos+ app. We collected 28 sets of policies in this scenario, including 10 hard,
8 soft, and 4 restriction conflicts.

Scenario 6: Temporary users in the system. We considered a temporary user is added to the system
and trying to access a smart light and smart lock after the access is expired for that specific user.
We collected 30 sets of policies in this scenario.

Scenario 7: Location-based access in the system. In the location-based access control, we allowed
multiple users to set location-based policies for a smart thermostat. Here, users are allowed to
define both location-based restrictions and demand policies. We collected 30 sets of policies in this
scenario.

Malicious scenarios. We also implemented five real-life threats in our SHS to generate malicious
data and further evaluate the effectiveness of Kratos+ (more details in Section 6) . For Threat-1
(Over privileged controls), we asked the users to add restriction clauses to the smart thermostat
and asked the restricted users to change the temperature. For Threat-2 (Privilege abuse), we asked
a newly added user with lower priority to install a new app in the smart home and trigger a
smart camera. Threat-3 (Privilege escalation) is presented by a scenario where a new user changed
the lock code of a smart lock and removed the smart lock from the environment. For Threat-4
(Unauthorized access), we added a temporary authorized user with limited priority and asked the
users to control a smart thermostat outside their accepted time range. For Threat-5 (Transitive
privilege), we asked the user with lower priority to add a new user with higher priority in the
system.

6 PERFORMANCE EVALUATION

We evaluate Kratos+ by focusing on the following research questions:

RQ1. How effective is Kratos+ in enforcing access control in multi-user scenarios while handling
different threat models? (Section 6.1)

RQ2. What is the overhead introduced by Kratos+ on the normal operations of the SHS?
(Section 6.2)

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

Who’s Controlling My Device? 27:25

Table 4. Different Usage Scenarios and Outcomes of Kratos+

Conflict type Policy example Kratos+ outcome

Hard priority

conflict

Alice (priority-1) and Bob (priority-2) set up the tem-

perature range 60–70 and 75–80, respectively, in the

smart thermostat.

As Alice has higher priority, Kratos+ sets the ther-

mostat to 60–70 and notifies the users with the

decision.

Soft priority

conflict

Alice (priority-1) and Bob (priority-2) set up the tem-

perature range 60–70 and 65–75, respectively, in the

smart thermostat.

• As Alice has the higher priority, Kratos+ sets the

thermostat to 60–70 and notifies Alice with common

range (65–70).

• If Alice agrees with common range, Kratos+ sets

the temperature range 65–70.

Hard

competition

conflict

Alice (priority-2) and Bob (priority-2) set up the tem-

perature range 60–70 and 75–80, respectively, in the

smart thermostat.

• Kratos+ starts the negotiation with average

range (67–75) and upon mutual agreement from the

users set the range.

• If the users fail to agree, Kratos+ notifies higher

level user/admin to decide the policies.

Soft

competition

conflict

Alice (priority-2) and Bob (priority-2) set up the tem-

perature range 60–70 and 65–75, respectively, in the

smart thermostat.

Kratos+ sets the temperature range 65–70 and no-

tifies the users with updated policy.

Restriction

conflict

Alice (priority-1) set the temperature range 60–70

and restricts Bob (priority-2) to change the thermo-

stat. Bob sets the temperature range 75–80.

Kratos+ sets the temperature range 60–70 and no-

tifies Bob regarding restriction.

Temporary

access

Alice (priority-1) added Gary (priority-4) as a tempo-

rary user for two days. After two days, Gary tries to

unlock the smart lock.

Kratos+ automatically detects the expired validity

for smart home access and deletes Gary from autho-

rized user list to prevent any undesired access.

Location-based

access

Alice (priority-1) set up the temperature range 70–

72 and restricts Kyle (priority-3) from using the smart

thermostat remotely. Kyle sets the temperature range

74–76.

• If Kyle is not in the home network, Kratos+ dis-

regards Kyle’s access policy.

• Kratos+ checks the location of both Kyle and Al-

ice. If only Kyle is home, Kratos+ sets the temper-

ature range 74–76. If both Kyle and Alice are home,

Kratos+ sets the temperature range 70–72.

6.1 Effectiveness

In this sub-section, we present the experimental results of Kratos+ while enforcing access control
in different multi-user smart home scenarios and threat models. We first considered a use case
scenario to explain the results of Kratos+ in different smart home operations. Then, we considered
six different utilization scenarios (explained in Section 5) to evaluate the effectiveness of Kratos+.

To understand the performance of Kratos+, we assume two users Alice and Bob, using the same
smart thermostat and assigning different policies according to their needs. This usage scenario may
lead to conflicts, in which case Kratos+ uses the policy negotiation module to solve the conflicts.
For instance, let us assume Alice and Bob have the same priority level: 2, and assign temperature
ranges 60–70 and 75–80, respectively. Kratos+ considers this as a hard competition conflict and
starts the negotiation process with an average range of 67–75. If Alice and Bob both agree with
the range, Kratos+ generates a new policy for the thermostat with the temperature range 67–75
and enforces this in the device. On the other hand, if Alice and Bob cannot agree, Kratos+ notifies
a higher-level user/admin to resolve this conflict by assigning a new policy for the device. We also
consider a temporary user scenario in evaluating Kratos+ where Alice (priority-1) adds a tempo-
rary user Gary (priority-4) to the system for two days. After the validity period (two days), Gary
tries to access the smart home devices. However, Kratos+ automatically detects any expired valid-
ity of the users in the system and restricts the temporary users from accessing the system. Table 4
summarizes the outcome of Kratos+ in different usage scenarios. Additionally, Table 5 shows the
summary of policy conflicts and negotiations between smart home users in different multi-user
scenarios explained in Section 5. In Scenario-1, Kratos+ successfully negotiated 44 sets of policies
collected from 43 users and executed the generated policies in the SHS. The average policy gen-
eration time, including the policy negotiation, was 0.68 seconds. In Scenario-2, Kratos+ evaluated
48 sets of policies in total with an average policy generation time of 1.2 seconds. In Scenario-3
and 4, Kratos+ manages 35 and 32 sets of policies with an average generation time of 0.86 and 0.48
seconds, respectively. For the multi-platform smart home environment in Scenario-5, Kratos+ eval-
uated 28 sets of policies in three different smart home platforms. Here, Kratos+ resolves 10 hard
conflicts and 8 soft conflicts in an average policy generation time of 0.53 seconds. In Scenario-6,
Kratos+ successfully manages 30 sets of policies and automatically detects unauthorized access for
expired temporary access. For location-based access in Scenario-7, Kratos+ successfully manages

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

27:26 A. K. Sikder et al.

Table 5. Kratos+’s Performance in Different Scenarios

Usage

Scenario

No. of

policies

No. of hard

conflicts

No. of soft

conflicts

Restriction

policies
No conflicts

Average

time (s)

Success

rate (s)

Scenario-1 44 13 17 8 6 0.68 100%

Scenario-2 48 15 22 5 6 1.2 100%

Scenario-3 35 8 18 5 4 0.86 100%

Scenario-4 32 12 15 3 2 0.48 100%

Scenario-5 28 10 8 4 6 0.53 100%

Scenario-6 30 6 9 6 9 0.2 100%

Scenario-7 30 10 8 8 4 0.32 100%

Table 6. Performance of Kratos+ Against Different Threats

Threat

model

No. of

occurances

Success

rate

Average Detection

time (s)

Average Notification

time (s)

Threat-1 10 100% 0.25 0.4

Threat-2 10 100% 0.4 0.6

Threat-3 10 100% 0.47 0.6

Threat-4 10 100% 0.35 0.52

Threat-5 10 100% 0.28 0.45

30 sets of policies and provides location-based access to multiple users. Kratos+ also successfully re-
solves all the conflicts generated in different scenarios. In summary, Kratos+ successfully resolved
the policy conflicts and created optimized final policies that could be executed within different
smart home apps.

We also evaluated the effectiveness of Kratos+ in preventing different threats in the SHS. We
considered five different threats presented in Section 5. We collected data from 50 malicious occur-
rences in total to evaluate Kratos+ against these threats. Table 6 summarizes the performance of
Kratos+ in identifying different threats. In each of these scenarios, Kratos+ detected the policy vio-
lation with 100% accuracy and effectively notified the smart homeowner/policy assigner via push
notifications. For Threat-1, Kratos+ achieves the lowest average detection and notification time
0.25 and 0.4 seconds, respectively. To identify Threat-2 and 3, Kratos+ takes 0.4 and 0.47 seconds
on average with an average notification time of 0.6 seconds. For Threat-4 and 5, the average detec-
tion time is 0.35 and 0.28 seconds, respectively. In summary, Kratos+ can detect different threats
with 100% accuracy and notify users with minimum delay.

6.2 Performance Overhead

We considered the following research questions to measure the performance overhead of Kratos+:

RQ3. What is the impact of Kratos+ in normal operations of the SHS? (Table 7)
RQ4. What is the impact of Kratos+ in executing a user command in the SHS via the smart home

apps? (Table 8)
RQ5. How does the impact of Kratos+ change with different parameters in the SHS? (Figure 10)

For different multi-user scenarios, we considered four different scenarios as explained in Section 5.

Latency Introduced by Kratos+. Kratos+ considers three different types of conflicts (hard con-
flicts, soft conflicts, and restriction policy) during policy generation and negotiation based on user
priorities and policy types. These policy generation and negotiation processes normally introduce
latency in the normal operations of an SHS and the smart apps to analyze given policies and solve
conflicts. Table 7 illustrates the delay introduced by Kratos+ while handling policy conflicts and
negotiations. We note that the average negotiation time increases with the number of policies for
all types of policy conflicts. For hard conflicts, the average negotiation time is 0.403 seconds for
ten policies, which increases to 1.21 seconds for 30 policies. Because the hard conflicts require all
the conflicted users to interact with the system to resolve the conflicts, it takes more time than soft

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

Who’s Controlling My Device? 27:27

Table 7. Overhead of Kratos+ in Handling Policy Negotiations

Conflict types No. of Policies Average negotiation time (s)

Hard conflict

10 0.403

20 0.715

30 1.21

Soft conflict

10 0.27

20 0.53

30 0.73

Restriction Policy

10 0.102

20 0.117

30 0.25

Table 8. Overhead of Kratos+ in Policy Executions

Type of policy Avg. time (s) Avg. CPU usage Avg. RAM usage

No policy 1.3 1.75% 1.6%

Time constraint 1.72 2.2% 2.6%

Value constraint 1.46 2.1% 2.25%

Time and Value constraint 1.92 2.5% 2.82%

conflict and restriction policies. For soft conflicts, the average negotiation time is 0.27 seconds for
ten policies, which increases to 0.73 seconds for 30 policies. For the restriction policies, the latency
is introduced only when a low-priority user tries to assign policies to high-priority users. In this
case, average negotiation times vary from 0.102 seconds to 0.25 seconds from 10 to 30 policies.

Impact of Kratos+ on Executing User Commands. As the policies in Kratos+ are enforced in
the smart apps installed via the controller device (e.g., smartphone and smart tablet), it introduces
overhead in the controller devices while installing the apps and executing users’ command.
Table 8 depicts the impact of Kratos+ on executing user commands based on generated policy.
Here, we used eight different apps to measure the performance overhead of Kratos+. We also
considered three types of constraints on the policies: time constraint, value constraint, and both
time and value constraints. Time constraint refers to the specific time range for the desired action
of a smart device (e.g., turning on lights at sunset). In contrast, value constraint refers to the
specific range of inputs to a smart device (e.g., the temperature of the smart thermostat). With
no policy enforced on a device, the average time to install an app and execute user command is
1.3 seconds with 1.75% and 1.6% of CPU and RAM utilization, respectively. For time constraints
and value constraints, the average time is 1.72 and 1.46 seconds, respectively. Average CPU and
RAM utilization are almost similar for both time and value constraints (2.1–2.2% and 2.25–2.6%,
respectively). For both time and value constraints, the average execution time increases to 1.92
seconds. The CPU and RAM utilization also increases to 2.5% and 2.82%, respectively. Considering
the CPU and RAM available in modern smartphones and tablets, the overhead introduced by
Kratos+ can be considered negligible [46–48].

Impact of Different Parameters on Performance Overhead. Kratos+ considers different pa-
rameters in SHSs to define and execute device policies reflecting diverse user demands. Here, we
observed the performance overhead of Kratos+ by changing various parameters. As policy gener-
ation and negotiation are executed at the backend server, Kratos+ does not pose any performance
overhead to computational parameters (CPU and RAM utilization). The only noticeable change
is observed in the delay imposed by Kratos+ in the SHS’s normal operation. In Figure 10, the de-
lay introduced by Kratos+ is shown based on the number of policies, conflicts, users, and devices.
One can notice from Figure 10(a), the delay introduced by Kratos+ increases with the number of

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

27:28 A. K. Sikder et al.

Fig. 10. Impact of different evaluation parameters on Kratos+’s performance: (a) number of policies,

(b) number of conflicts, (c) number of users, (d) number of devices in single platform SHS, and (e) number of

devices in multi-platform SHS.

policies generated by the users. Kratos+ introduces 90 ms delay in the SHS for five policies to exe-
cute a user command, which increases to 280 ms delay for 60 policies. The delay increases linearly
with the number of conflicts and users in the system (Figures 10(b) and 10(c)). The highest delay
to execute a user command is 368 ms, which occurs when the system includes 30 different policy
conflicts. Kratos+ also takes 310 ms to execute a command with six different users present in the
system. This delay is the result of the overhead introduced by notifying different users about ex-
ecuting the command. For the number of devices in a single platform SHS, the delay introduced
by Kratos+ becomes steady after adding 12 different devices in the SHS (Figure 10(d)). For multi-
platform SHS, the delay becomes higher as Kratos+ takes a slightly higher time to execute and
verify user policies in a multi-platform environment. However, the delay is still low (343 ms for
SHS with three different platforms and 16 devices), which indicates efficiency in multi-platform
SHSs.

7 USABILITY STUDY

To understand the usability of Kratos+ among users, we also performed a usability study with 43
smart home users. Although it is not the primary goal of this work, it is important to understand
the users’ perspectives on the usability effectiveness of Kratos+. Again, we obtained Institutional
Review Board (IRB) approval, and we gave monetary compensation to the users to test our pro-
posed access control system. For selecting participants, we focused on recruiting existing smart
home users with - (1) basic understanding of app installation from online marketplaces, (2) mini-
mum knowledge of controlling smart home devices via controller apps/smartphones, and (3) aware
of access control needs in the smart home system. We selected users from our user study partic-
ipants (Section 2.2) experience of using and sharing smart home devices with multiple users in
their households. In this study, users experienced the proposed access control system in a real-
life smart home environment supported by Samsung SmartThings. We created Kratos+ app for

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

Who’s Controlling My Device? 27:29

Table 9. Summary of the Usability Study of Kratos+

Samsung SmartThings and made it available to the users to install and use it to add new users, add
demand policies, add restriction policies for specific users, and experience policy conflict resolution
provided by Kratos+. For testing conflict resolution, we have selected seven different multi-user
scenarios explained in Table 4. Users were asked to test each of the scenarios and provide feedback
regarding the usability of Kratos+. For selected scenarios (hard and soft competition conflicts), we
asked the users to test Kratos+ in pairs to evaluate the usability of Kratos+ in a multi-user smart
home environment. More details of the questions included in the usability survey are provided
in Appendix C. The questions included in the usability study were divided into three different
categories:

• Installation and tutorial: In this part, users were asked to install the Kratos+ app in the system
and learn how to use Kratos+ in the smart home systems.
• Policy enforcement and notification system: In the second part of the usability test, users were

asked to create different types of policies (demand and restrict policy) using Kratos+ and
experience the notification system implemented in Kratos+.
• Policy conflict and implementation: In the last part, users experience the conflict resolution

of Kratos+ and observe the implemented policies in the system.

In the following, we summarize the findings of the usability study and discuss how users took
Kratos+ in a smart home system. A summary of the study is given in Table 9.

Installation and tutorial. 95.3% of the users installed the app successfully using the instructions
provided in the app, and 97.7% of the users thought the provided tutorial was adequate to operate
the app and perform different functions successfully. In terms of device availability for policy
enforcement, Kratos+ scored 5 on a scale of 5.

Policy enforcement and notification system. In terms of priority assignment, 93% of users
understood and correctly added new users to the system. For assigning demand policies, 100% of
the users successfully enforced and understood the notifications correctly. 97.7% users understood
the notification messages clearly.

Policy conflict and implementation. In this part, users experience how Kratos+ implemented
the generated policies in the system and resolve conflicts between different user demands. Finally,
97.7% of users were satisfied with the demand policy decisions generated by Kratos+ while 100%
of the users were satisfied with the restriction policy decisions.

8 BENEFITS AND LIMITATIONS OF KRATOS+

8.1 Benefits of KRATOS+

Consider a user, Bob, who defines himself as a technology-savvy person and owns a smart home.
The home is set with devices such as a smart lock, thermostat, fire alarm, and smart coffeemaker.
Bob is the head of a family of three members, including his wife Alice, and his teenage son Matt.
Finally, Bob is an enthusiastic entrepreneur that offers high-quality vacation rentals to Airbnb
users.

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

27:30 A. K. Sikder et al.

Efficient Conflict Resolution. With several devices shared among all household members (in-
cluding the Airbnb tenant), Bob feels an immediate need for some control mechanism that defines
how all the smart devices are being set up and managed among the different users. However, de-
spite trying devices and smart apps from different platforms (e.g., Samsung SmartThings, Google
Home, etc.), Bob cannot find a feasible and user-friendly solution that considers the needs of the
different users (e.g., Bob and Alice’s priority is to keep the thermostat temperature as high as possi-
ble while Matt’s idea is to have a cooler temperature). Kratos+ offers an access control mechanism
for the SHS that allows Bob to provide access control based on the users’ needs and priorities.

Multi-users/Multi-devices. As mentioned before, Bob’s setup comprises several different devices
with different usability levels based on their impact on the quality of life of users and their contri-
bution to the general protection and security of the household. Additionally, different users may
have different access levels based on Bob’s and the household’s best interests. Bob expects a smart
home access control system capable of managing multi-user and multi-device environments based
on these scenarios. Kratos+ realizes and offers an access control system where the administrator
(i.e., Bob) can assign priority levels to the different devices and users. This allows control mecha-
nisms that consider the importance of the various devices and the needs of the users based on the
admin’s pre-defined priorities.

Suitability for Complex User Demands. Users’ demands can be very complex at times. For
instance, in addition to the demands and interests of Bob, Alice, and Matt, new access control poli-
cies can be generated in case Bob decides to give some control to his Airbnb tenant Ed. Adding
new users and devices to an already configured system increases complexity due to new conflicts
between users and policies. To solve these issues, Kratos+ can actively analyze and solve pol-
icy conflicts through negotiations in an optimized fashion based on the different user and device
priorities.

Inherent Security. Bob has certain rules to protect his ecosystem. First, security-related devices
(e.g., smart locks) have the highest priority. Second, he desires to have strict and unique control
over these devices so that no other user can change their settings or expected behavior. Finally,
users with the lowest priority (e.g., Ed) should not be able to add new devices, change SHS set-
tings, etc. Our framework was designed to provide inherent security based on the specific user’s
needs. Specifically, Kratos+ offers the means to provide complex control and demands through
comprehensive policy negotiation and conflict resolution.

Intuitive and Easy User Interaction. Finally, Bob desires a user-friendly tool, especially because
some users with little technical knowledge may need to interact with the new access control sys-
tem. Kratos+ addresses all the steps from gathering users’ declared demands and policies to access
control enforcement with minimal user interaction. For this, our framework learns from the differ-
ent priorities of users and devices to create efficient and fully automated policy conflict resolution
mechanisms.

Platform-independent Implementation. As a technology enthusiast, Bob intends to try smart
home devices from different vendors. However, smart home devices come with different vendor-
specific associated smart apps to control the devices. Hence, Bob cannot find a common access
control system that allows centralized monitoring for all the installed smart devices regardless
of their vendors and platforms. Kratos+ offers a platform-independent access control system that
enables users to control installed smart devices from different vendors using a single app (Kratos+

app). Additionally, Kratos+ allows automatic conflict resolution and executes user-defined policies
in different devices in a smart home environment regardless of device vendors and platforms.

Encrypted Sensitive Data. Kratos+ accumulates user preferences, device usage, and connected
users’ credentials which can be considered as sensitive data. These data should be encrypted to

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

Who’s Controlling My Device? 27:31

ensure the privacy of the users. Kratos+ is implemented in Samsung SmartThings which uses en-
crypted communication channels between smart home devices and the controller devices (smart-
phones, tablets, etc.). Furthermore, we used an encrypted cloud space (Google Cloud) to store the
user priority list and generated device policies to ensure user privacy in Kratos+.

Cost vs. Users’ Needs. The initial design goals of Kratos+ are derived from the user study con-
ducted in Section 2.2. While the user study indicates the demand for fine-grained access control
among users, this raises a question of cost vs. users’ needs on the vendor side. As users always
want to have more flexibilities and options in the access control system, integrating a fine-grained
access control can introduce additional vendors’ costs such as operational, maintenance, and up-
grade costs. The current version of Kratos+ is built as a smart home app that users can easily
download and install on their controlling devices (e.g., smartphone, tablet) without introducing
any additional cost from the vendors. For policy execution and implementation, Kratos+ uses
static analysis technique [7] to append the generated policies in smart home apps. In our future
work, we plan to extend Kratos+ as an online web interface (similar to our prior work [23]) where
users can easily upload and automatically modify a smart home app to enable Kratos+. The only
additional cost for the vendors is integrating and maintaining the cloud backend of Kratos+ which
can be low due to the existing cloud-based architecture of smart home systems. One possible fu-
ture research direction is investigating cost vs. users’ needs study from both users’ and vendors’
perspectives to improve the operation of Kratos+.

8.2 Limitations

Closed-source Vendor Apps. Modern smart home devices offer users to control devices either
by customized or vendor-specific apps. While the customized smart home apps (e.g., apps from
the Samsung SmartThings app market) can be modified to enable Kratos+, vendor-specific smart-
phone apps (e.g., Philips Hue) are closed-source and cannot be amended [6]. In this, a rationale
way to implement Kratos+ with vendor-specific apps is to execute the policies in the access point.
Currently, vendors are offering open-source APIs [22, 28] to allow users to customize and build
their own rules which can be modified by Kratos+ (similar to Samsung SmartThings app in Appen-
dix A). Another solution can be the use of an open-source smart home hub (e.g., OpenHab, Home
Assistant, etc.) to control each user command coming from a vendor-specific app [6].

Dependencies on MAC ID. Kratos+ implements the generated policies at the app-level or access
point-level. While the app-level implementation does not raise any additional dependency in SHS,
implementing policies at the access point can introduce dependencies on MAC ID. Kratos+ uses
MAC ID to identify the source and destination of a user command and control access based on im-
plemented policies. However, prior works demonstrated MAC ID spoofing on smart home devices
can redirect policy-enforced commands to a fake device [29]. One solution is to use encrypted
traffic for each user [33] to ensure operational integrity. However, this will increase overhead in
resource-limited smart home devices. Again, encrypting traffic reduces the visibility of incoming
user commands at the access point level, affecting the fine-grain access control feature of Kratos+.
For example, with access-point policy execution, Kratos+ can match time and targeted device ID
with generated policies limiting access control to time-based operation only. These open problems
can be good candidates for future research.

9 RELATED WORK

Rather than providing fine-grained user access control, most of the prior works emphasize limiting
malicious activities via controlling app access [12, 13, 15]. Moreover, several works focus on device
access control and authentication on an IoT network for single-user scenarios [2, 11, 24, 34, 37, 39].

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

27:32 A. K. Sikder et al.

In recent work, He et al. present a detailed smart home user study that portrays users’ concerns of
fine-grained access control in multi-user smart environments [20]. Zeng et al. discuss their findings
related to security and privacy concerns among smart home users [62]. In both works, smart home
users clearly raise their concerns regarding the need for an SHS access control mechanism. In
addition, these studies also summarize several design specifications to reflect users’ needs in an
access control mechanism. Matthews et al. also point out relevant issues with smart home users
that share the same devices and accounts [32]. In a recent user study, Garg et al. explored the
constraints of sharing smart home devices among users with different social relations and listed
future design requirements for smart home access control [16]. Dutta et al. proposed a context-
aware access control mechanism PALS that uses an ABAC to understand the context of a device’s
policies and enforce policies to the devices [14]. However, no explicit solution for multi-user access
and conflicting user needs is proposed in any of these works.

In other works, researchers explore different access control strategies when multiple users share
a single IoT device. Liu et al. suggested a user access framework for the mobile phone ecosystem
called xShare, which provides policy enforcement on file level accesses [30]. Ni et al. presented
DiffUser, a user access control model for the Android environment based on access privileges [36],
which is only effective for a single device. Tyagi et al. discussed several design specifications needed
for multi-party access control in a shared environment [57]. Aside from these works, there are few
prior works proposing access control systems for multi-user multi-device SHS. Gusmeroli et al.
suggested a capability-based access control for users in a multi-device environment [19]. How-
ever, this system is not flexible enough to express the real needs of the users. Jang et al. presented
a set of design specifications for access control mechanisms based on different use scenarios of
multi-user SHS [25]. Schuster et al. proposed a situation-based access control in the smart home
system, which considers different environmental parameters [42]. Here, the authors considered
the state of the device and the users’ location to determine a valid access request. However, this
work does not solve the conflicting demands of multiple users. Yahyazadeh et al. presented Ex-

pat, a policy language to define policies based on user demands [61]. However, Expat does not
consider a multi-user multi-device smart home environment in the design and can not solve con-
flicting user demands at run-time. As an extension to this work, researchers proposed PatrIoT,
which monitors app behavior at run-time to detect policy violations in smart home devices [60].
Alrumayh et al. proposed an audio-based access control system, CANVAS, which uses audio sig-
nals to identify the context of a user command and provides access to smart home devices based
on preset rules [3, 4]. Although CANVAS addresses the basic need for access control in multi-
user SHS, the dependency on voice assistants and voice training data minimizes the usability of
the proposed solution in multi-platform SHS and standalone smart home devices. Lee et al. pro-
posed an authorization scheme that ensures secure device access delegation for smart home users
and devices [27]. Tabassum et al. conducted a survey among smart home users to understand the
need for guest access policies in smart home devices and proposed a community-based access con-
trol scheme to ensure secure guest access in smart home environments [54]. However, both [27]
and [54] only considered secure guest policies. Xue et al. presented a block-chain based overlook-
ing the need for fine-grained access control within a multi-user smart home environment. Xue
et al. presented a blockchain-based access control to ensure data security from undesired access
or insider threats [59]. In recent work, Zeng et al. built an access control prototype with differ-
ent access control options for smart home users [63]. Here, the authors considered four different
access control mechanisms and assessed a very limited user study among seven households to un-
derstand the users’ needs and improve the design. However, that work does not have the capability
to handle real-life systems, is inflexible, not configurable, and did not consider user conflicts in a
multi-user smart environment.

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

Who’s Controlling My Device? 27:33

Table 10. Comparison Between Kratos+ and Other Access Control Mechanisms for

Multi User Environment

Prior
Work

Domain
Multi-user

Multi-device
environment

Multi-platform
environment

User
interface

User conflict
resolution

Overhead
analysis

Access control
language

Usability
study

User
study

xShare [30] Smartphone
DiffUser [36] Smartphone
Capability-based
access control [19]

IoT network

Situation-based
access control [42]

Smart home

Expat [61] Smart home
PALS [14] Smart home
PBAC [59] Smart home
PatrIoT [60] Smart home
Zeng et al. [63] Smart home
CANVAS [4] Smart home
Kratos+ Smart home

Differences from existing works. Traditional access control systems such as Attribute-Based

Access Control (ABAC), Role-Based Access Control (RBAC), or even classic Linux environ-
ment with multiple users sharing multiple I/O devices cannot address the complex and conflicting
demands of users with multiple devices in the burgeoning smart home systems. Moreover, smart
home devices come with limited computational resources (e.g., RAM, CPU); they are dynamic,
moving without static parts and configurations. As different smart devices have different attributes,
modes of operations, and dependencies, it is nontrivial to simply adapt ABAC/RBAC/Linux in
a smart environment. Again, users in a smart environment can have diverse roles, time depen-
dencies, and complex social relations and demands which complicates the efficient adaptation of
earlier traditional mechanisms in a multi-user smart environment. Kratos+ was built upon con-
sidering the user study conducted among real-life smart home users and results from prior user
studies [20, 63] to address the access control needs and shortcomings of existing smart home plat-
forms. In summary, Kratos+ presents an access control system that differs from the existing works
in the following ways: (1) Kratos+ considers multi-device multi-user smart home environment and
supports multiple smart home platforms; (2) Kratos+ considers the conflicting desires of the users
and provides a fine-grained mechanism to express complex demands from the users and devices;
(3) Kratos+ offers easy new user addition with priority levels and a policy language to assign device
policies to the smart home devices via users’ smartphone/tablet; (4) Instead of relying on vendor-
specified guest policies, Kratos+ offers an automated policy control mechanism that updates user
policies and remove/revoke undesired/expired guest access policies from the smart home systems;
(5) Kratos+ introduces an automatic policy negotiation engine that detects and resolves policy
conflicts among users; (6) Kratos+ considers a realistic threat model arising from over-privileged
users and system implementation flaws; (7) We implemented Kratos+ in a real-life smart home
environment with different smart home devices and platforms and tested with smart home users.
Our evaluation shows that Kratos+ can effectively address diverse access control needs with min-
imum overhead. Moreover, our usability study indicates efficacy in real-life deployment. Table 10
summarizes the differences of Kratos+ from other existing solutions.

10 CONCLUSION

In a smart home system (SHS), multiple users have access to multiple devices simultaneously. In
these settings, multiple users may want to control and configure the devices with different pref-
erences, giving rise to complex and conflicting demands. In this paper, we explored the need for
a fine-grained access control mechanism in smart home systems based on real users’ demands
and developed Kratos+, an access control system that addresses the diverse and conflicting de-
mands of different users in a shared multi-user smart home system. Kratos+ is the first work

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

27:34 A. K. Sikder et al.

implementing a priority-based access-policy negotiation technique based on real-users’ needs to
resolve conflicting user demands in a shared smart home system with multiple users and devices
in an automated and configurable fashion. We implemented Kratos+ in real-life settings and eval-
uated its performance through real devices in a multi-user setting. Kratos+ successfully covers
the users’ needs, and our extensive evaluations showed that Kratos+ effectively resolves the con-
flicting requests and enforces the policies without significant overhead. Also, we tested Kratos+

against five different threats and found that Kratos+ effectively identifies the threats with high
accuracy.

APPENDICES

A KRATOS+ ENFORCED IN A SAMSUNG SMARTTHINGS APP

We evaluated the effectiveness of Kratos+ by enforcing policies in Samsung SmartThings Apps.
We selected eight Apps to enforce Kratos+ generated user policies and appended the policies inside
the App. Here, we give an example of Kratos+-enabled official SmartThings App.

1 import groovy.time.∗
2 definition(
3 name: "Big Turn ON modified",
4 namespace: "smartthings",
5 author: "Anonymous",
6 description: "Turn your lights on when the SmartApp is tapped or activated.",
7 category: "Convenience",
8 iconUrl: "https://s3.amazonaws.com/smartapp-icons/Meta/light_outlet.png",
9 iconX2Url: "https://s3.amazonaws.com/smartapp-icons/Meta/light_outlet@2x.png"

10)
11 preferences {
12 section("When I touch the app, turn on...") {
13 input "switches", "capability.switch", multiple: false
14
15 input name: "email", type: "email", title: "Email", description: "Enter Email Address", required: true,
16 displayDuringSetup: true
17 }}
18 def installed()
19 {
20 atomicState.SmartLightTimes = [:]
21 atomicState.SmartLightAdmins = [:]
22 atomicState.SmartLightUsers = [:]
23 atomicState.SmartLightDevID = [:]
24 atomicState.SmartLightTimeStart = [:]
25 atomicState.SmartLightTimeEnd = [:]
26 log.debug "${new Date()}"
27
28 getSmartLightJsonData()
29 def item = atomicState.SmartLightUsers.indexOf(email)
30 if (item>=0){
31 int index = atomicState.SmartLightUsers.indexOf(email)
32 def between = timeBetween (atomicState.SmartLightTimeStart[index], atomicState.SmartLightTimeEnd[

index])
33 if (between == true){
34 subscribe(location, changedLocationMode)
35 subscribe(app, appTouch)
36 log.info app.getAccountId()}
37 }}
38 def updated()
39 {
40 atomicState.SmartLightTimes = [:]
41 atomicState.SmartLightAdmins = [:]
42 atomicState.SmartLightUsers = [:]
43 atomicState.SmartLightDevID = [:]
44 atomicState.SmartLightTimeStart = [:]
45 atomicState.SmartLightTimeEnd = [:]
46
47 getSmartLightJsonData()
48 def item = atomicState.SmartLightUsers.indexOf(email)
49 if (item>=0){
50 int index = atomicState.SmartLightUsers.indexOf(email)
51 def between = timeBetween (atomicState.SmartLightTimeStart[index], atomicState.SmartLightTimeEnd[

index])
52 if (between == true){
53 unsubscribe()
54 subscribe(location, changedLocationMode)
55 subscribe(app, appTouch)
56 }}}

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

Who’s Controlling My Device? 27:35

57 def changedLocationMode(evt) {
58 log.debug "changedLocationMode: $evt"
59 switches?.on()
60 }
61 def appTouch(evt) {
62 log.debug "appTouch: $evt"
63 switches?.on()
64 }
65 def getSmartLightJsonData(){
66 def listTimes = []
67 def listAdmins = []
68 def listUsers = []
69 def listIDs = []
70 def listTimeStarts = []
71 def listTimeEnds = []
72 def params = [uri: "https://mywebserver/xxxyyyzzz/2/public/values?alt=json",]
73 try {
74 httpGet(params) { resp −>
75 //log.debug "${resp.data}"
76
77 for (object in resp.data.feed.entry){
78 listTimes.add (object.gsx$time.$t)
79 listAdmins.add (object.gsx$adminemail.$t)
80 listUsers.add (object.gsx$restricteduseremail.$t)
81 listIDs.add (object.gsx$deviceid.$t)
82 listTimeStarts.add (object.gsx$timerangestart.$t)
83 listTimeEnds.add (object.gsx$timerangeend.$t)
84 }
85 atomicState.SmartLightTimes = (listTimes)
86 atomicState.SmartLightAdmins = (listAdmins)
87 atomicState.SmartLightUsers = (listUsers)
88 atomicState.SmartLightDevID = (listIDs)
89 atomicState.SmartLightTimeStart = (listTimeStarts)
90 atomicState.SmartLightTimeEnd = (listTimeEnds)
91 /∗for (listtime in atomicState.SmartLightTimes){
92 log.debug "${listtime}"
93 }∗/
94 }
95 } catch (e) {
96 log.error "something went wrong: $e"
97 }
98 }
99 def timeBetween(String start, String end){

100 long timeDiff
101 def now = new Date()
102 def timeStart = Date.parse("yyy-MM-dd'T'HH:mm:ss","${start}".replace(".000-0400",""))
103 def timeEnd = Date.parse("yyy-MM-dd'T'HH:mm:ss","${end}".replace(".000-0400",""))
104 long unxNow = now.getTime()
105 long unxEnd = timeEnd.getTime()
106 long unxStart = timeStart.getTime()
107
108 if (unxNow >= unxStart && unxNow <= unxEnd)
109 return true
110 else
111 return false
112 }

Listing 1. Policy enforced at install time

B USER STUDY EXAMPLE QUESTIONS

We presented a representative set of questions from all the categories. We will make the full set of
questions publicly available at https://github.com/Amitksik/KRATOS-Access-control-for-smart-
home.

B.1 User Characterization

(1) While using/ installing a smart home device, did you have to consider suitable settings for
other users in your home?
() Yes
() No

(2) While using a smart home device, do you have to change device settings each time other
users change the setting?
() Yes
() No

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

https://github.com/Amitksik/KRATOS-Access-control-for-smart-home

27:36 A. K. Sikder et al.

B.2 Smart Home Setting Preferences

(1) Do you think current smart home platforms should provide an integrated access control
system?
() Yes
() No
() Maybe

(2) In order to provide access control, would you be willing to install and use a separate app in
addition to the traditional app controlling the devices?
() Yes and I am willing to use and pay for the service, if there is a fee
() Yes if the app is free and trusted
() Maybe
() No, because it is too much hassle
() No, because I don’t need access control

B.3 Multi-user Multi-device Scenarios

(1) In your smart home, you and your parent/partner/roommate has the same level of priorities.
Both of you want to change the setting of a device in different ways. Do you think an auto-
matic negotiation system would help you to solve this?
() Yes
() No

(2) You already have a policy for a device in the access control system. You want to modify the
previous policy and enforce a new policy. Do you think an access control system should
have this function?
() Yes
() No
() Maybe

C USABILITY INSTRUMENT

We present a representative set of questions from all the categories. The full set of questions can
be found at https://github.com/Amitksik/KRATOS-Access-control-for-smart-home.

C.1 Installation and Tutorial

(1) Does the app provide an organized and easy-to-follow user interface?
() Yes
() No

(2) On a scale of 1 to 5 (1 being too hard to follow), how easy is it to understand the information
provided via the notification(s) in Kratos+?

() 1 () 2 () 3 () 4 () 5

C.2 Policy Enforcement and Notifications

(1) Does Kratos+ detect any invalid user in the system with no assigned priority and provide
feedback via notifications?
() Yes
() No

(2) On a scale of 1 to 5 (1 being too slow), how quick does Kratos+ notify users upon successful
transaction?

() 1 () 2 () 3 () 4 () 5

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

https://github.com/Amitksik/KRATOS-Access-control-for-smart-home

Who’s Controlling My Device? 27:37

C.3 Policy Conflict and Implementation

(1) In a smart home system, an admin might need to restrict the use of a specific device for some
users. Does Kratos+ provide this option in policy enforcement?
() Yes
() No

(2) On a scale of 1 to 5 (1 being really hard to use and 5 being user-friendly), how easy is it to
install and use Kratos+?

() 1 () 2 () 3 () 4 () 5

REFERENCES

[1] Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder, Markus Miettinen, Hidayet Aksu, Mauro Conti,

Ahmad-Reza Sadeghi, and Selcuk Uluagac. 2020. Peek-a-boo: I see your smart home activities, even encrypted!. In

Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks. 207–218.

[2] Ioannis Agadakos, Per Hallgren, Dimitrios Damopoulos, Andrei Sabelfeld, and Georgios Portokalidis. 2016. Location-

enhanced authentication using the IoT: Because you cannot be in two places at once. In Proceedings of the 32nd Annual

Conference on Computer Security Applications. ACM.

[3] Abrar S. Alrumayh, Sarah M. Lehman, and Chiu C. Tan. 2019. ABACUS: Audio based access control utility for

smarthomes. In Proceedings of the 4th ACM/IEEE Symposium on Edge Computing. 395–400.

[4] Abrar S. Alrumayh, Sarah M. Lehman, and Chiu C. Tan. 2020. Context aware access control for home voice assistant

in multi-occupant homes. Pervasive and Mobile Computing 67 (2020), 101196.

[5] Leonardo Babun, Z. Berkay Celik, Patrick McDaniel, and A. Selcuk Uluagac. 2021. Real-time analysis of privacy-(un)

aware IoT applications. In Privacy Enhancing Technologies Symposium (PETS).

[6] Leonardo Babun, Kyle Denney, Z. Berkay Celik, Patrick McDaniel, and A. Selcuk Uluagac. 2021. A survey on IoT

platforms: Communication, security, and privacy perspectives. Computer Networks 192 (2021), 108040.

[7] Leonardo Babun, Amit Kumar Sikder, Abbas Acar, and A. Selcuk Uluagac. 2022. The truth shall set thee free: Enabling

practical forensic capabilities in smart environments. In Proceedings of the 29th Network and Distributed System Security

(NDSS) Symposium.

[8] Z. Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu, Gang Tan, Patrick McDaniel, and A. Selcuk

Uluagac. 2018. Sensitive information tracking in commodity IoT. In 27th USENIX Security Symposium. Baltimore, MD.

[9] Z. Berkay Celik, Patrick McDaniel, and Gang Tan. 2018. Soteria: Automated IoT safety and security analysis. In USENIX

Annual Technical Conference (USENIX ATC).

[10] Z. B. Celik, P. McDaniel, G. Tan, L. Babun, and A. S. Uluagac. 2019. Verifying Internet of Things safety and security

in physical spaces. IEEE Security Privacy 17, 5 (Sep. 2019), 30–37.

[11] S. Cirani, M. Picone, P. Gonizzi, L. Veltri, and G. Ferrari. 2015. IoT-OAS: An OAuth-based authorization service archi-

tecture for secure services in IoT scenarios. IEEE Sensors Journal 15, 2 (Feb. 2015), 1224–1234.

[12] Adrien Cosson, Amit Kumar Sikder, Leonardo Babun, Z. Berkay Celik, Patrick McDaniel, and A. Selcuk Uluagac. 2021.

Sentinel: A robust intrusion detection system for IoT networks using kernel-level system information. In Proceedings

of the International Conference on Internet-of-Things Design and Implementation. 53–66.

[13] Soteris Demetriou, Nan Zhang, Yeonjoon Lee, XiaoFeng Wang, Carl A. Gunter, Xiaoyong Zhou, and Michael Grace.

2017. HanGuard: SDN-driven protection of smart home WiFi devices from malicious mobile apps. In Proceedings of

the 10th ACM Conference on Security and Privacy in Wireless and Mobile Networks.

[14] Sofia Dutta, Sai Sree Laya Chukkapalli, Madhura Sulgekar, Swathi Krithivasan, Prajit Kumar Das, and Anupam Joshi.

2020. Context sensitive access control in smart home environments. In 2020 IEEE 6th Intl Conference on Big Data

Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing,(HPSC) and IEEE

Intl Conference on Intelligent Data and Security (IDS). 35–41.

[15] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro Conti, and Atul Prakash. 2016.

Flowfence: Practical data protection for emerging IoT application frameworks. In 25th USENIX Security Symposium.

[16] Radhika Garg and Christopher Moreno. 2019. Understanding motivators, constraints, and practices of sharing Internet

of Things. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3, 2 (2019), 1–21.

[17] Christine Geeng and Franziska Roesner. 2019. Who’s in control? Interactions in multi-user smart homes. In Proceedings

of the 2019 CHI Conference on Human Factors in Computing Systems. 1–13.

[18] Rachel Gunter. 2017. Making Sense of Samsung’s SmartThings Initiative. https://marketrealist.com/2017/12/making-

sense-samsungs-smartthings-initiative.

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

https://marketrealist.com/2017/12/making-sense-samsungs-smartthings-initiative

27:38 A. K. Sikder et al.

[19] Sergio Gusmeroli, Salvatore Piccione, and Domenico Rotondi. 2013. A capability-based security approach to manage

access control in the Internet of Things. Mathematical and Computer Modelling 58, 5 (2013), 1189–1205.

[20] Weijia He, Maximilian Golla, Roshni Padhi, Jordan Ofek, Markus Dürmuth, Earlence Fernandes, and Blase Ur. 2018. Re-

thinking access control and authentication for the home Internet of Things (IoT). In 27th USENIX Security Symposium.

Baltimore, MD.

[21] Weijia He, Valerie Zhao, Olivia Morkved, Sabeeka Siddiqui, Earlence Fernandes, Josiah Hester, and Blase Ur. 2021.

SoK: Context sensing for access control in the adversarial home IoT. In IEEE European Symposium on Security and

Privacy (EuroS&P). 37–53.

[22] Philips Hue. 2018. How to Develop for Hue: Hue API. https://developers.meethue.com/develop/hue-api/.

[23] IoTDots. 2021. IoTDots Modifier. https://iotdots-modifier.appspot.com/.

[24] Maia Jacobs, Henriette Cramer, and Louise Barkhuus. 2016. Caring about sharing: Couples’ practices in single user

device access. In Proceedings of the 19th International Conference on Supporting Group Work. ACM.

[25] William Jang, Adil Chhabra, and Aarathi Prasad. 2017. Enabling multi-user controls in smart home devices. In Pro-

ceedings of the Workshop on Internet of Things Security and Privacy. ACM.

[26] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fernandes, Z. Morley Mao, Atul Prakash, and

Shanghai JiaoTong University. 2017. ContexIoT: Towards providing contextual integrity to appified IoT platforms. In

Proceedings of The Network and Distributed System Security Symposium.

[27] Tam Le and Matt W. Mutka. 2019. Access control with delegation for smart home applications. In Proceedings of the

International Conference on Internet of Things Design and Implementation. 142–147.

[28] LIFX. 2018. LIFX http API. https://api.developer.lifx.com/.

[29] Zhen Ling, Junzhou Luo, Yiling Xu, Chao Gao, Kui Wu, and Xinwen Fu. 2017. Security vulnerabilities of Internet of

Things: A case study of the smart plug system. IEEE Internet of Things Journal 4, 6 (2017), 1899–1909.

[30] Yunxin Liu, Ahmad Rahmati, Yuanhe Huang, Hyukjae Jang, Lin Zhong, Yongguang Zhang, and Shensheng Zhang.

2009. xShare: Supporting impromptu sharing of mobile phones. In Proceedings of the 7th International Conference on

Mobile Systems, Applications, and Services. ACM.

[31] August Smart Lock. 2018. How August Smart Lock Works? https://august.com/pages/how-it-works.

[32] Tara Matthews, Kerwell Liao, Anna Turner, Marianne Berkovich, Robert Reeder, and Sunny Consolvo. 2016. “She’ll

just grab any device that’s closer”: A study of everyday device & account sharing in households. In Proceedings of the

CHI Conference on Human Factors in Computing Systems. ACM.

[33] Abhishek Mishra and Abhishek Dixit. 2018. Resolving threats in IoT: Id spoofing to DDOS. In 2018 9th International

Conference on Computing, Communication and Networking Technologies (ICCCNT). IEEE, 1–7.

[34] A. K. M. Iqtidar Newaz, Amit Kumar Sikder, Leonardo Babun, and A. Selcuk Uluagac. 2020. HEKA: A novel intrusion

detection system for attacks to personal medical devices. In IEEE Conference on Communications and Network Security

(CNS). 1–9.

[35] A. K. M. Iqtidar Newaz, Amit Kumar Sikder, Mohammad Ashiqur Rahman, and A. Selcuk Uluagac. 2021. A survey on

security and privacy issues in modern healthcare systems: Attacks and defenses. ACM Transactions on Computing for

Healthcare 2, 3 (2021), 1–44.

[36] Xudong Ni, Zhimin Yang, Xiaole Bai, Adam C. Champion, and Dong Xuan. 2009. DiffUser: Differentiated user access

control on smartphones. In 6th International Conference on Mobile Adhoc and Sensor Systems. IEEE.

[37] Sarah Rajtmajer, Anna Squicciarini, Jose M. Such, Justin Semonsen, and Andrew Belmonte. 2017. An ultimatum game

model for the evolution of privacy in jointly managed content. In International Conference on Decision and Game

Theory for Security. Springer, 112–130.

[38] RemoteLock. 2018. Smart Locks by RemoteLock. https://www.remotelock.com/smart-locks.

[39] H. Ren, Y. Song, S. Yang, and F. Situ. 2016. Secure smart home: A voiceprint and internet based authentication system

for remote accessing. In 2016 11th International Conference on Computer Science Education (ICCSE). 247–251.

[40] Samsung. 2018. How do I share my location and manage users in SmartThings Classic? https://tinyurl.com/y86unolb

[41] Samsung. 2018. Samsung SmartTings Development Guide. https://developers.smartthings.com/.

[42] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. [n.d.]. Situational access control in the Internet of Things. In

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. 1056–1073.

[43] Anuj Sehgal, Vladislav Perelman, Siarhei Kuryla, and Jurgen Schonwalder. 2012. Management of resource constrained

devices in the Internet of Things. IEEE Communications Magazine 50, 12 (2012), 144–149.

[44] Nicholas Shields. 2017. The US Smart Home Market Report: Systems, apps, and devices leading to home

automation. http://www.businessinsider.com/the-us-smart-home-market-report-systems-apps-and-devices-leading-

to-home-automation-2017-4. [Online; accessed 9-November-2017].

[45] Amit Kumar Sikder. 2020. A Comprehensive Security Framework for Securing Sensors in Smart Devices and Applications.

Ph.D. Dissertation. Miami, FL, USA.

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

https://developers.meethue.com/develop/hue-api/
https://iotdots-modifier.appspot.com/
https://api.developer.lifx.com/
https://august.com/pages/how-it-works
https://www.remotelock.com/smart-locks
https://tinyurl.com/y86unolb
https://developers.smartthings.com/
http://www.businessinsider.com/the-us-smart-home-market-report-systems-apps-and-devices-leading-to-home-automation-2017-4

Who’s Controlling My Device? 27:39

[46] Amit Kumar Sikder, Hidayet Aksu, and A. Selcuk Uluagac. 2017. 6thSense: A context-aware sensor-based attack de-

tector for smart devices. In 26th USENIX Security Symposium. Vancouver, BC.

[47] Amit Kumar Sikder, Hidayet Aksu, and A. Selcuk Uluagac. 2019. A context-aware framework for detecting sensor-

based threats on smart devices. IEEE Transactions on Mobile Computing (2019).

[48] Amit Kumar Sikder, Hidayet Aksu, and A. Selcuk Uluagac. 2019. Context-aware intrusion detection method for smart

devices with sensors. US Patent 10,417,413.

[49] Amit Kumar Sikder, Leonardo Babun, Hidayet Aksu, and A. Selcuk Uluagac. 2019. Aegis: A context-aware security

framework for smart home systems. In Proceedings of the 35th Annual Computer Security Applications Conference.

28–41.

[50] Amit Kumar Sikder, Leonardo Babun, Z. Berkay Celik, Abbas Acar, Hidayet Aksu, Patrick McDaniel, Engin Kirda,

and A. Selcuk Uluagac. 2020. Kratos: Multi-user multi-device-aware access control system for the smart home. In

Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks. 1–12.

[51] Amit Kumar Sikder, Leonardo Babun, and A. Selcuk Uluagac. 2021. Aegis+ a context-aware platform-independent

security framework for smart home systems. Digital Threats: Research and Practice 2, 1 (2021), 1–33.

[52] Amit Kumar Sikder, Giuseppe Petracca, Hidayet Aksu, Trent Jaeger, and A. Selcuk Uluagac. 2021. A survey on sensor-

based threats and attacks to smart devices and applications. IEEE Communications Surveys & Tutorials 23, 2 (2021),

1125–1159.

[53] Statista. 2017. Ownership of Smart Home Technology Products in the United States in 2017 (in Million Households/Units

in Use), by Category. https://www.statista.com/statistics/757684/smart-home-technology-product-ownership-in-the-

us-by-category/.

[54] Madiha Tabassum, Jess Kropczynski, Pamela Wisniewski, and Heather Richter Lipford. 2020. Smart home beyond the

home: A case for community-based access control. In Proceedings of the 2020 CHI Conference on Human Factors in

Computing Systems. 1–12.

[55] Trefis Team. [n.d.]. Why Smart Home Devices are a Strong Growth Opportunity for Best Buy. https:

//www.forbes.com/sites/greatspeculations/2017/07/05/why-smart-home-devices-are-a-strong-growth-opportunity-

for-best-buy/#2bbe77114984. [Online: accessed 9-November-2017].

[56] Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase Ur, Xianzheng Guo, and Patrick Tague. 2017. Smar-

tAuth: User-centered authorization for the Internet of Things. In 26th USENIX Security Symposium. Vancouver, BC.

[57] Alpana Tyagi, Anna Squicciarini, Sarah Rajtmajer, and Christopher Griffin. 2016. An in-depth study of peer influence

on collective decision making for multi-party access control. In 17th International Conference on Information Reuse

and Integration (IRI). IEEE, 305–314.

[58] Yinxin Wan, Kuai Xu, Guoliang Xue, and Feng Wang. 2020. IoTArgos: A multi-layer security monitoring system for

Internet-of-Things in smart homes. In IEEE International Conference on Computer Communications. 874–883.

[59] Jingting Xue, Chunxiang Xu, and Yuan Zhang. 2018. Private blockchain-based secure access control for smart home

systems. KSII Transactions on Internet and Information Systems (TIIS) 12, 12 (2018), 6057–6078.

[60] Moosa Yahyazadeh, Syed Rafiul Hussain, Endadul Hoque, and Omar Chowdhury. 2020. PatrIoT: Policy assisted re-

silient programmable IoT system. In International Conference on Runtime Verification. Springer, 151–171.

[61] Moosa Yahyazadeh, Proyash Podder, Endadul Hoque, and Omar Chowdhury. 2019. Expat: Expectation-based policy

analysis and enforcement for appified smart-home platforms. In Proceedings of the 24th ACM Symposium on Access

Control Models and Technologies. 61–72.

[62] Eric Zeng, Shrirang Mare, and Franziska Roesner. 2017. End user security and privacy concerns with smart homes. In

Thirteenth Symposium on Usable Privacy and Security. Santa Clara, CA.

[63] Eric Zeng and Franziska Roesner. 2019. Understanding and improving security and privacy in multi-user smart homes:

A design exploration and in-home user study. In 28th USENIX Security Symposium.

[64] Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang, Yinqian Zhang, and Haojin Zhu. 2018. HoMonit: Monitoring

smart home apps from encrypted traffic. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-

munications Security. 1074–1088.

Received March 2021; revised September 2021; accepted May 2022

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 27. Publication date: September 2022.

https://www.statista.com/statistics/757684/smart-home-technology-product-ownership-in-the-us-by-category/
https://www.forbes.com/sites/greatspeculations/2017/07/05/why-smart-home-devices-are-a-strong-growth-opportunity-for-best-buy/#2bbe77114984

