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I. ABSTRACT

Abstract—In addition to traditional networking devices (e.g.,
gateways, firewalls), current corporate and industrial networks
integrate resource-limited Internet of Things (IoT) devices like
smart outlets and smart sensors. In these settings, cyber attackers
can bypass traditional security solutions and spoof legitimate
IoT devices to gain illegal access to the systems. Thus, IoT
device-class identification is crucial to protect critical networks
from unauthorized access. In this paper, we propose Z-IoT, the
first fingerprinting framework used to identify IoT device classes
that utilize ZigBee and Z-Wave protocols. Z-IoT monitors idle
network traffic among IoT devices to implement signature-based
device-class fingerprinting mechanisms. Utilizing passive packet
capturing techniques and optimal selection of filtering criteria
and machine learning algorithms, Z-IoT identifies different types
of IoT devices while guaranteeing the anonymity of the network
data. To test Z-IoT’s efficacy, we implemented several testbeds,
including a total of 39 commodity IoT devices that communicate
over ZigBee and Z-Wave protocols. Our experimental results
showed an excellent performance in identifying different classes
of IoT devices with average precision and recall of over 91%.
Finally, the proposed framework yields no overhead to the IoT
devices or the network traffic.

Index Terms—Internet of Things, device-class fingerprinting,
ZigBee, Z-Wave.

II. INTRODUCTION

A survey from the McKinsey Global Institute estimates

investments in the Internet of Things (IoT) to be over $11

trillion by 2025 [1]. Indeed, the use of IoT devices in corpo-

rate and industrial environments is currently skyrocketing. In

most cases, these IoT devices, which have limited computing

resources and diverse communication capabilities [2], share

access to sensitive information with other networking devices

(e.g., servers and gateways) present in corporate networks

and critical systems [3]–[8]. In these settings, hackers can

impersonate legitimate IoT devices via spoofing attacks and

gain unauthorized access to the networks. For instance, using

a spoofed device, the attackers can steal sensitive information,

inject illegitimate data to the system, or implement targeted

attacks over other devices, while mimicking legitimate device

operations [9]–[12]. The high diversity of devices and com-

munication protocols (e.g., Internet Protocol (IP), ZigBee, Z-

Wave) present in IoT devices makes defending against spoofing

attacks extremely difficult.

Passive device-class fingerprinting techniques can be used

to identify the type of resource-limited devices present in the

network and detect unauthorized devices. Although there is

a substantial amount of research in fingerprinting techniques

for IP- and Bluetooth-enabled IoT devices, there exist no

solutions to identify IoT devices that communicate via ZigBee

or Z-Wave, which are very popular in current smart office

and home settings [13], [14]. Since different communication

protocols typically implement a unique protocol stack and

network architecture, IP- and Bluetooth-based identification

solutions would not effectively fingerprint ZigBee- or Z-Wave-

enabled devices.

Contributions. To solve these limitations, in this paper, we

propose Z-IoT, the first fingerprinting framework that per-

forms device-class identification of IoT devices that specifically

communicate via ZigBee or Z-Wave (i.e., Z-based devices)

protocols. Utilizing passive packet capturing techniques and

inter-arrival time (IAT) of network packets sent during idle IoT

communications, Z-IoT successfully identifies different types

of Z-based IoT devices. To achieve this, Z-IoT implements an

optimal filtering and ML selection approach that guarantees

the highest accuracy. We evaluated Z-IoT on a realistic testbed

using a total of 39 popular ZigBee-, and Z-Wave IoT devices.

Z-IoT exhibits a superior performance in identifying different

types of ZigBee IoT devices with an average precision of

91.2% and a recall of 91.1%. Also, it identifies Z-Wave devices

with an average precision of 93.6% and 93.3% recall. Finally,

since Z-IoT performs passive fingerprinting, it does not impose

an extra overhead to the IoT devices or the network traffic.

Organization. Section III provides background information

on ZigBee, and Z-Wave communication protocols. Then, we

review the related work in Section IV. Section V discusses the

problem scope and the threat model. Then, in Section VI, we

introduce the architecture and main components of Z-IoT. In

Section VII, we evaluate the performance of Z-IoT. Finally,

Section VIII concludes the paper.
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Fig. 1: Stack representation of (a) ZigBee and (b) Z-Wave

protocols.

III. BACKGROUND

In this section, we discuss the Z-based (i.e., ZigBee and Z-

Wave) communication protocols used in modern IoT devices

and network architectures.

A. Z-based Network Protocols

We present details of ZigBee and Z-Wave network protocols

that are used to further develop Z-IoT

1) ZigBee: Figure 1(a) details the stack representation of

the ZigBee protocol. In this work, we focus on the specific

characteristics of the ZigBee Network and MAC layers to

build signatures and fingerprinting mechanisms capable of

identifying different types of ZigBee IoT devices. Although

ZigBee adopted the IEEE 802.15.4-2006 standard for Physical

(PHY) and Medium Access Control (MAC) Layers for personal

area networks (PAN), it implements a specific Network (NWK)

Layer and provides an application framework for developing

for the Application Layer.The MAC layer in IEEE 802.15.4-

2006 allows for devices to either be a Full Function Devices

(FFD) or a Reduced Function Devices (RFD).ZigBee builds

upon the MAC layer with its network layer and defines three

device types and network topologies: (1) end device, (2)

ZigBee router, and (3) ZigBee coordinator.

2) Z-Wave: Figure 1(b) shows that Z-Wave’s protocol stack

consists of five different layers. Z-Wave implements a specific

Transfer layer responsible for managing the communications

between different network nodes. This layer implements four

different frame types: Singlecast, ACK, Broadcast, and Mul-

ticast.Singlecast frames are for transmitting data to a specific

node. Then, destination nodes use ACKs to notify the received

the data. A Broadcast frame sends the data to every node on

the network. Finally, in cases where a node sends data to

multiple nodes, a Multicast frame is used. In this work, we

focus on the specific characteristics of the Z-Wave Transport

layer to build signatures and fingerprinting mechanisms capable

of identifying different types of Z-Wave IoT devices.

IV. RELATED WORK

In this section, we discuss the related work and highlight

how our work is different from other works.

Network-based Fingerprinting. Earlier works propose tech-

niques to remotely fingerprint devices using TCP protocol

features such as microscopic differences in clock skews in-

ferred from TCP packet timestamps. Also, the authors in [15]

propose a similar approach to fingerprint network access points

using 802.11 beacon frame timestamps. Furthermore, the work

in [16] exploits Universal Serial Bus (USB) timing informa-

tion of the device’s responses to the fingerprinting host for

identification purposes. On the other hand, technical surveys

like [17] provide a comprehensive analysis of the physical layer

in the network for the identification of wireless devices. Among

other features, electromagnetic characteristics of devices are

exploited for Radio Frequency (RF) emitter fingerprinting.

Similarly, Bluetooth [18] and Wi-Fi [19] emitter fingerprinting

utilize the variations of electromagnetic characteristics of radio

frequency emitters; however, these techniques require expen-

sive hardware to be effective. Other works propose passive

methods to fingerprint the devices connected to a WLAN [20],

[21]. Also, Kurtz et al. [22] study the feasibility of mobile

device fingerprinting based on the user’s personalized config-

urations, including Wi-Fi. Their technique requires the active

involvement of users and does not apply to the devices that do

not support user-customized configurations like Fitbit [23].

Fingerprinting IoT Devices. In [24], researchers present IoT

Sentinel, one of the first device-type fingerprinting frameworks

for IoT devices that are communicating over IP. IoT Sentinel

monitors network traffic of IP connected devices to generate

signatures based on IP header fields and the communication

protocols. In addition, Miettinen et al. [25] propose a dif-

ferent device-type fingerprinting framework, Dı̈ot. Building

off from IoT Sentinel, Dı̈ot continuously monitors network

traffic to check if devices’ network behavior still matches their

corresponding signature. Also, the work in [26] proposes a

Bluetooth-based fingerprinting framework to identify wearable

device types. Some specific works focus on fingerprinting Z-

based IoT devices. In [27], the authors propose the use of non-

parametric RF signals to extract features to fingerprint ZigBee

specific devices. Similarly, the authors in [28] fingerprint

ZigBee hosts using multiple discriminant analysis (MDA). RF

signals are also utilized in [29], [30] to authenticate ZigBee

devices. Here, characteristics of the ZigBee physical layer

are combined with statistical analysis and ML techniques to

improve precious authentication mechanisms. Finally, the work

proposed in [31] reduces the number of physical layer’s

features used to fingerprint ZigBee and Z-Wave devices while

keeping good classification performance.

Differences from Existing Works. Although Z-IoT also mon-

itors network traffic for fingerprinting purposes, the proposed

framework does not analyze packet header or payload infor-

mation, so the sensitive network information and the privacy

of the users is preserved. Also, while other IoT fingerprinting

frameworks run on the gateway devices, Z-IoT operates on

an independent device outside the network, so no overhead

is imposed on the critical network traffic. Furthermore, while

other discussed frameworks focus on identifying IP/Bluetooth-
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enabled devices, or specific Z-based hosts, Z-IoT is the first

fingerprinting framework that passively uses network dynamics

to fingerprint different types of ZigBee and Z-Wave based IoT

devices.

V. PROBLEM DEFINITION AND THREAT MODEL

In this section, we define the problem as well as the type of

threats Z-IoT attempts to solve.

Problem Definition. We consider an IoT network containing

various types of devices (e.g., Smart Locks, Motion Sensors,

Water Sensors). However, an attacker has gained physical

unauthorized access to the network and has placed an unknown

device to the network. The unauthorized device is capable of

remaining hidden in the network by impersonating a legitimate

device via spoofing while performing malicious activities. Z-

IoT allows network administrators to detect unknown device-

types hiding in the network by identifying the legitimate

device-types using network-based fingerprinting mechanisms.

Threat Model. In this work, we consider an attacker that adds

unauthorized IoT devices into a network. We only consider

unauthorized devices that can mimic authorized devices’ func-

tionalities. We assume that unauthorized devices try to perform

malicious activities while remaining undetected. To do so, the

malicious devices spoof legitimate devices in a network. These

spoofing devices may steal sensitive information, inject false

data, attack other devices, or place back-doors in a system

for future attacks [32]. Z-IoT does not consider devices that

are clones or counterfeits of authorized devices, as well as

authorized devices that have been compromised.

VI. Z-IOT FINGERPRINTING FRAMEWORK

We provide an overview of the proposed IoT device-type

identification framework and detail its main modules.

A. Overview

Figure 2 provides a general overview of the proposed IoT

device-type identification framework. First, the Packet Cap-

ture module of Z-IoT performs passive IoT network traffic

monitoring during IoT-to-IoT and IoT-to-Gateway idle com-

munications of an unknown IoT device ( 1 ). Following, the

Packet Filtering module filters the captured data to remove

packets that do not match the selected filter settings (e.g.,

wrong packet type/size) or packets with missing information

(e.g., source, destination, packet type, length) ( 2 ). Once the

data is ready to be processed, the Feature Extractor module

calculates the inter-arrival-time (IAT) elapsed between every

consecutive packet of the same type received by the packet

capture module ( 3 ). The use of inter-arrival-time has proven

to be a useful feature for the identification of different device-

types via passive fingerprinting [26]. The Signature Generator

module then uses the collection of IAT values to create a

signature of the unknown analyzed device ( 4 ). Finally, the

unknown signature is fed to the Classifier ( 5 ). This module

uses a set of Z-IoT models generated from different known de-

vices, filtering criteria, and machine learning (ML) algorithms

during training. The classifier decides, based on a set of pre-

defined known signatures, if the unknown device corresponds

to an expected network-authorized IoT device type.

B. Z-IoT Modules

As shown in Figure 2, the main modules of Z-IoT are (1)

Packet Capture, (2) Packet Filtering, (3) Feature Extractor, (4)

Signature Generator, and (5) Classifier. We detail these modules

below.
1) Packet Capture: Z-IoT performs passive device-type fin-

gerprinting with minimal overhead to the IoT devices and the

network traffic. To achieve these goals, the Packet Capture

module monitors and captures the communication among IoT

devices and IoT devices and IoT gateways during idle state

only. With this, the proposed framework guarantees the identi-

fication of unknown device types with the use of the minimal

amount of data and while protecting the sensitive information

transmitted during the active state of the IoT devices (e.g.,

device states, sensor measurements, user information). Once

the Packet Capture finishes the collection process, it sends

the collected data to the Packet Filtering module for further

processing.
2) Packet Filtering: The Packet Filter module of Z-IoT

removes unnecessary data to improve performance and increase

accuracy. We design this module to be configurable so that

the filter settings can be changed anytime, depending on the

type of data being processed. New filter settings added to

the module may improve performance by removing network

packets that do impact the final decision. Also, Z-IoT may

add/remove filtering settings to improve the fingerprinting

results. For instance, some specific type of network packet

that adds randomness to the analysis and reduces the accuracy

of the model can be removed from the data. The current

implementation of Z-IoT considers packet type and packet

length as filtering features. In Section VII, we evaluate the

performance of the proposed fingerprinting framework based

on these filter settings. Finally, since ZigBee and Z-Wave

implement different protocol stacks, we select specific packet

types to be included in the analysis. For instance, in the case

of ZigBee, we include packets of type IEEE 802.15.4 and

ZigBee’s Network Layer packets. On the other hand, for Z-

Wave, we include packets of type Singlecast, Broadcast, and

Multicast.
3) Feature Extractor: The Feature Extractor module is re-

sponsible for extracting the inter-arrival-time (IAT) values from

the captured packets. IAT measures the time delay between

a device’s successive network packets of a certain type (see

3
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Equation 1). The proposed fingerprinting framework assumes

that different types of Z-based IoT devices incur in values

of IAT different enough that can be used for classification

purposes. It is possible, however, to find IAT variations between

similar types of devices. These variations are generally due

to small differences in circuit design and imperfections in

circuit modules (e.g., clock). We assume these IAT differences

between the similar type of devices to be small enough so

our classifier may be able to still achieve high accuracy in

classifying different device-types.

IAT = ∆tarr = tpki
− tpki−1

(1)

The use of IAT provides specific advantages over other

features used in the literature to fingerprint devices. First,

as explained before, IAT values are specific to the different

classes of devices and should not vary significantly among

devices from the same type group, making the device-class

fingerprinting possible. Second, the use of network dynamics

such as IAT permits the generation of device-type signatures

without the need to analyze network packet content, preserving

the sensitive network information and the privacy of users.

Finally, we measure the ITA to an external monitor Z-IoT

device that is independent of the ZigBee or Z-Wave networks.

Keeping Z-IoT outside of the Z-based network allows for

a passive approach that does not impose additional traffic

overhead to critical Z-based networks.

4) Signature Generator: The Signature Generator module

utilizes a device’s IAT values to generate a specific signature

for the device type. First, it builds a density distribution from a

device’s IAT values, representing the probability that a network

packet received at some specific time t was generated by some

specific device. Next, the Signature Generator splits the density

distribution into n bins and calculates the area under the curve

for each bin. The collection of n area values ai constitutes the

final feature values included in every device’s signature (see

Equation 2).

stype = {a0, a1, ..., an} (2)

As we monitor the Z-based devices in idle state, we guaran-

tee generating the signature from data collected during periods

of low network traffic. Lower traffic allows for signature

features that are less impacted by random network dynamics

and for higher classification performance.

5) Classifier: We design Z-IoT, assuming multiple different

classes of Z-based IoT devices. Moreover, we use a multi-class

classification approach in our analysis. The Classifier module

is responsible for classifying unknown devices by their type.

It takes an unknown device’s signature as an input and runs

it against a collection of multi-class models generated during

training. Z-IoT applies an efficient approach that allows using

the best model for every specific communication protocol.

For instance, for ZigBee-based devices, Z-IoT selects a model

capable of handling ZigBee-generated network packets that

guarantees the best filtering criteria and ML algorithm for

the highest accuracy results. We trained the classifier via a

supervised approach, using labeled signatures from pre-selected

known devices. In addition to unique filtering settings for

ZigBee and Z-Wave, a multi-class classifier was created for

each of the communication protocols and trained only with

their associated network traffic.

C. Best ML-Filter Settings Approach of Z-IoT

Figure 3 details the main steps followed by the Z-IoT

fingerprinting framework during both training and processing

phases. During training, the network packets as a result of idle

communications from known Z-based IoT devices are captured

and properly labeled. Then, for effective and efficient classi-

fication, Z-IoT implements a best ML-Filter settings approach

that automatically selects the best classification algorithm and

filter settings for every specific type of network packet. This

information is then used to create specific Z-IoT models that

guarantee the best classifier results. These models are then

stored in the Z-IoT database for future use. Later, at processing-

time, the right model (depending on the type of network packet

analyzed) are selected from the database.

To find which combination of filter settings (e.g., packet type

and length) and ML algorithm results in the best performance

for Z-IoT, we propose the following logical steps. First, we

group and label the set of collected network packets, and

define the list of supported ML algorithm and filter setting

combinations (the list of specific ML algorithm tested during

Z-IoT evaluation is provided in Section VII). In general the

process of selecting the best filter-ML combination has to be

flexible so new filtering settings and ML algorithms can be

included in the analysis anytime. Second, we calculate the

accuracy of Z-IoT for every filter-ML combination for the

specific network packet type analyzed. Third, the best filter-

ML combination is selected using the top 15 percentile (i.e.,

top15) of accuracy values approach.

VII. PERFORMANCE EVALUATION

In this section, we evaluate-IoT based on the following

research questions:

• RQ1 What is the effectiveness of Z-IoT in correctly

selecting the best (i.e., top15) filtering settings and ML

algorithms for the analysis? (Section VII-C).

• RQ2 What is the effectiveness of Z-IoT in fingerprinting

different Z-based IoT device types? (Section VII-D).
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TABLE I: List of Z-based IoT devices, their type, and how

many were included on each testbed for evaluation.

Zigbee

Device Device Type Quantity

SmartThings Arrival Sensor Arrival Sensor 1
Peanut Outlet Outlet 2
SmartThings Outlet Outlet 2
SmartThings Button Button 3
SmartThings Water Leak Sensor Water Sensor 2
SmartThings Motion Sensor Motion Sensor 2
SmartThings Multipurpose Sensor Multipurpose Sensor 3
Schlage Smart Lock Lock 2

Z-wave

Device Device Type Quantity

Aeon Multisensor 6 Multipurpose Sensor 3
Fibaro Flood Sensor Water Sensor 2
Fibaro Motion Sensor Motion Sensor 3
Fibaro Door/Window Sensor Door/Window Sensor 2
NEO Coolcam Door/Window Sensor 2
GE Dimmer Dimmer 2
GE Switch Switch 2
Honeywell Switch Switch 2
Aeotec Water Sensor 6 Water Sensor 1
Strips Water Drip Sensor Water Sensor 2
August Smart Lock Lock 1
Total Number of Devices 39

A. Implementation of Z-IoT

To test the efficacy of Z-IoT in fingerprint specific device-

types by using network packets extracted from idle ZigBee

and Z-Wave communications, we built two different testbeds,

one for ZigBee devices and one for Z-Wave-enabled devices.

In total, we included 39 Z-based devices from 15 different

classes. In Table I, we summarize all the devices considered

and specify their type label. In the following subsections, we

provide details of both testbeds.

1) ZigBee-type Testbed: We implemented a testbed con-

sisting of 17 ZigBee devices. We also included a Samsung

SmartThing hub as the IoT Gateway to capture the idle IoT-

to-Gateway idle network communications. We decided to use

Samsung’s SmartThings platform because it supports a wide

range of devices, it is simple to configure, and extremely

popular. Our ZigBee network included devices found in a

smart office environment like smart locks, smart outlets, motion

sensors, and water sensors (see Table I). We first added the

SmartThing hub device to our local IP network so it could

connect to the SmartThings cloud services. Next, we used

the SmartThing Android app to add every device to the

ZigBee-based network. Once finished, we started passively

capturing network traffic between the 18 edge devices and the

SmartThing’s hub (IoT Gateway) in an idle state for seven

consecutive hours using an AVR RS UZB USB sniffer [33],

the killerbee ZigBee framework [34], and Wireshark.

2) Z-Wave-type Testbed: We also built a testbed with IoT

devices that communicate via Z-Wave. Our Z-Wave testbed

consisted of a total of 22 devices of different types (e.g., smart

switch, smart lock, and water sensor). Table I also includes

the full list of Z-Wave devices included in the testbed. Since

TABLE II: Summary of best classifiers per network protocol

used during Z-IoT evaluation.

Z-type Protocol No. Times in top15 Classifier

Zigbee
4 Bayes Net
1 Random Forest
1 LibSVM

Z-wave
2 Random Forest
1 Bayes Net
1 Naive Bayes

the Samsung SmartThings hub possess both ZigBee and Z-

Wave capabilities, we also use the IoT Gateway in our Z-

Wave testbed. We then use the SmartThings Android app to add

every Z-Wave device into the SmartThing’s Z-Wave network.

Using the USB Z-Wave 500 Zniffer [35], we captured network

packets generated during idle communications between the 22

devices and the SmartThings hub for 24 hours.

B. Data Collection and Processing

Before we train the Z-IoT models from the captured network

packets, we cleaned and processed the data. Wireshark and

Zniffer [36] allowed us to export captured packets to a multi-

column CSV file. From there, we selected the packet features

considered to build the models. In this specific implementation,

we considered the following features: (1) capture time, (2)

source address, (3) destination address, (4) protocol type, (5)

packet length, and (5) the time elapsed from the previously

captured frame. Next, we calculated the inter-arrival-times

(IATs) from packets to generate signatures for device-types.

IAT measures the time delay between a device’s successive

packets. Using the IATs, we created a density distribution

representing the probability that a specific device generated

a packet at the time instant t. Next, we divided the density

distributions into 300 bins of equal time duration and calculated

their geometric area. These 300 area values are used to build the

signature vector of every device type. We then used Weka [37]

to train and test the Z-IoT models. In addition to the classifier

models provided by Weka, we also imported an external neural

network implementation with a plugin for Weka [38]. The

following ML algorithms were included and considered by Z-

IoT’s best filter-ML approach explained in Section VI.

• Functions: LibSVM, MultilayerPerceptron, NeuralNet-

work, SMO, SimpleLogistic

• Bayes: BayesNet, NaiveBayes, NaiveBayesUpdateable,

NaiveBayesMultinomialUpdateable

• Rules: DecisionTable, JRip, OneR, PART

• Trees: DecisionStump, HoeffdingTree, J48, LMT, REP-

Tree, RandomForest, RandomTree

Finally, we applied a 10-fold validation approach to train

the classifier models for both ZigBee and Z-Wave devices and

evaluate their performance.

C. Selecting the Optimal Filtering and Classifier Options

In this section, we evaluate the effectiveness of Z-IoT

framework in selecting the best combination of filtering settings

and ML algorithm that guarantees the highest accuracy during

classification.
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(a) ZigBee-type devices (b) Z-Wave-type devices

Fig. 4: Inter-arrival time density distributions of the different

(a) ZigBee and (b) Z-Wave enabled device types.

ZigBee. In the case of ZigBee idle communications, Z-IoT

collects MAC frames (IEEE 802.15.4) and Network Layer

(ZigBee) packets. We first evaluated Z-IoT by filtering MAC

frames or Network packets separately. However, we obtained

low classification scores for devices of types Lock, Water

Sensor, and Outlet. We solved this issues after combining both

MAC frames and Network Layer packets as part of the filter

settings. Next, we attempted to filter packets based on their

length; however, we ran into similar classification issues. With

ZigBee devices transmitting small-size packets, roughly 75% of

the captured packets were either 5 or 12 bytes long. Moreover,

any attempt to filter based on packet length only also resulted

in different types of devices not being correctly identified.

Thus, for ZigBee IoT devices, Z-IoT applies filter settings

that combine both packet type and the packet length. Figure

4(a) shows the IAT density distribution curves for each device-

type included in the Zigbee testbed after applying the selected

filtering settings. Further, Z-IoT builds a classifier specifically

for identifying different types of IoT devices that transmit

data over a ZigBee network. Table II shows the top three

classifiers as a result of applying the best filter-ML algorithm

approach (see Section VI) with the selected filter settings. As

observed, Bayes Net classifier performed the best over the other

classifiers. As a result, we used Bayes Net to evaluate the

performance of Z-IoT in fingerprinting different IoT device

classes using ZigBee packets.

TABLE III: Performance metrics of Z-IoT for different Z-based

IoT device classes.

Z-type TPR FPR Prec. Recall ROC PRC Device Class

Zigbee

1.000 0.000 1.000 1.000 1.000 1.000 Arrival
0.860 0.033 0.811 0.860 0.978 0.798 Button
0.880 0.007 0.957 0.880 0.990 0.961 Door/Window
0.960 0.010 0.941 0.960 0.999 0.996 Hub
0.740 0.030 0.804 0.740 0.958 0.847 Lock
1.000 0.003 0.980 1.000 1.000 1.000 Multi-sensor
0.940 0.020 0.887 0.940 0.990 0.891 Outlet
0.911 0.015 0.912 0.911 0.988 0.928 Average

Z-wave

0.900 0.000 1.000 0.900 1.000 0.998 Dimmer
0.900 0.037 0.776 0.900 0.963 0.934 Door/Window
1.000 0.000 1.000 1.000 1.000 1.000 Hub
0.940 0.003 0.979 0.940 0.997 0.986 Motion
1.000 0.000 1.000 1.000 1.000 1.000 Multi-sensor
1.000 0.000 1.000 1.000 1.000 1.000 Lock
1.000 0.020 0.877 1.000 0.998 0.986 Switch
0.720 0.017 0.857 0.720 0.983 0.827 Water sensor
0.933 0.010 0.936 0.933 0.993 0.966 Average
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(b) Z-Wave-type devices

Fig. 5: Confusion matrices obtained as a result of the classifi-

cation of different types of (a) ZigBee and (b) Z-Wave enabled

device.

Z-Wave. As for Z-Wave enabled devices, we designed Z-IoT to

capture and process Singlecast, Multicast, and Broadcast type

packets. Because no device included in our Z-Wave testbed

generated Multicast packets, we removed this specific filter

setting from the analysis. Next, we evaluated the performance

of Z-IoT after filtering Z-Wave packets based on packet length

only. With about 95% of Z-Wave captured packets between 10

and 20 bytes and nearly no variations in packet size between

different types of devices, we found that packet length only

cannot be effectively used as filtering criteria. Finally, as in

the ZigBee case, we obtained the best performance results after

combining both type and packet length as filtering criteria. The

IAT density distributions curves for each type of device in the

Z-Wave testbed is shown in Figure 4(b). Next, we evaluated

which classifier performs the best for the Z-Wave case. Results

from Table II list Random Forest as the best classifier for

identifying Z-Wave enabled devices.

D. Classification Performance

We also evaluated the effectiveness of Z-IoT in fingerprinting

different Z-based IoT device types. Table III details Z-IoT’s

performance for the models combining the best filtering criteria

and ML algorithms.

In the case of ZigBee IoT devices, Z-IoT identifies different

types of devices with an average accuracy, precision, and

recall of of 91.0%, 91.2% and 91.1%, respectively. During the

evaluation analysis, we also noticed that out of all different

device-types considered, the smart locks and the smart buttons

were the ones more susceptible to errors of type false positives.

That is, a higher amount of devices were misclassified as locks

and buttons compared to the other types. Figure 5(a) depicts

the confusion matrix after applying the selected filtering criteria

and the Bayes Net algorithm to classify the different types of

IoT devices included in the ZigBee testbed.

Finally, for the case of Z-Wave devices, Z-IoT achieved an

average accuracy, precision, and recall of 93.25, 93.6%, and

93.3%, respectively. This time, the device types that prompted

the highest false-positive rate were the one of type smart

windows/door sensor and smart switch. Figure 5(b) depicts the

confusion matrix after applying the selected filtering criteria

and the Random Forrest algorithm to classify the different types

of IoT devices included in the Z-Wave testbed.
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VIII. CONCLUSION

Modern corporate and industrial networks integrate a variety

of IoT devices which can be spoofed by attackers.Although

there exist mechanisms to identify unauthorized IoT device

communicating via IP networks, there are none for ZigBee

or Z-Wave networks. Therefore, in this paper, we introduced

Z-IoT, the first device-class fingerprinting framework for IoT

devices utilizing ZigBee and Z-Wave protocols. Leveraging

passive packet capturing tools, optimal filtering, and machine

learning algorithms, Z-IoT passively monitors idle network

traffic and uses packets’ inter-arrival-times to classify different

IoT device types. We tested the efficacy and robustness of Z-

IoT with a total of 39 ZigBee and Z-Wave IoT devices. Our

results demonstrate that Z-IoT exhibits a superior performance,

identifying different types of ZigBee and Z-Wave IoT devices

with an average precision and recall of over 91%. Finally, Z-

IoT yielded no overhead to the IoT devices and the network.
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