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Abstract—Emerging blockchain and cryptocurrency-based
technologies are redefining the way we conduct business
in cyberspace. Today, a myriad of blockchain and cryp-
tocurrency systems, applications, and technologies are widely
available to companies, end-users, and even malicious ac-
tors who want to exploit the computational resources of
regular users through cryptojacking malware. Especially
with ready-to-use mining scripts easily provided by service
providers (e.g., Coinhive) and untraceable cryptocurrencies
(e.g., Monero), cryptojacking malware has become an in-
dispensable tool for attackers. Indeed, the banking indus-
try, major commercial websites, government and military
servers (e.g., US Dept. of Defense), online video sharing
platforms (e.g., Youtube), gaming platforms (e.g., Nintendo),
critical infrastructure resources (e.g., routers), and even
recently widely popular remote video conferencing/meeting
programs (e.g., Zoom during the Covid-19 pandemic) have
all been the victims of powerful cryptojacking malware
campaigns. Nonetheless, existing detection methods such as
browser extensions that protect users with blacklist methods
or antivirus programs with different analysis methods can
only provide a partial panacea to this emerging crypto-
jacking issue as the attackers can easily bypass them by
using obfuscation techniques or changing their domains or
scripts frequently. Therefore, many studies in the literature
proposed cryptojacking malware detection methods using
various dynamic/behavioral features. However, the litera-
ture lacks a systemic study with a deep understanding of
the emerging cryptojacking malware and a comprehensive
review of studies in the literature. To fill this gap in the litera-
ture, in this SoK paper, we present a systematic overview of
cryptojacking malware based on the information obtained
from the combination of academic research papers, two
large cryptojacking datasets of samples, and 45 major attack
instances. Finally, we also present lessons learned and new
research directions to help the research community in this
emerging area.

Index Terms—cryptojacking, cryptomining, malware, bit-
coin, blockchain, in-browser, host-based, detection

1. Introduction

Since the day Bitcoin was released in 2009,
blockchain-based cryptocurrencies have seen an increas-
ing interest beyond specific communities such as banking
and commercial entities. It has become so trivial and
ubiquitous to conduct business with cryptocurrencies for
any end-user as most financial institutions have already
started to support them as a valid monetary system. To-
day, there are more than 2000 cryptocurrencies in exis-
tence. Especially in 2017, the interest for cryptocurrencies
peaked with a total market value close to $1 trillion [1].
According to a recent Kaspersky report [2], 19% of
the world’s population have bought some cryptocurrency
before. However, buying cryptocurrency is not the only

way of investing. Investors can also build mining pools to
generate new coins to make a profit. Profitability in mining
operations also attracted attackers to this swiftly-emerging
ecosystem.

Cryptojacking is the act of using the victim’s com-
putational power without consent to mine cryptocurrency.
This unauthorized mining operation costs extra electricity
consumption and decreases the victim host’s computa-
tional efficiency dramatically. As a result, the attacker
transforms that unauthorized computational power into
cryptocurrency. In the literature, the malware used for
this purpose is known as cryptojacking. Especially after
the emergence of service providers (e.g., Coinhive [3],
CryptoLoot [4]) offering ready-to-use implementations of
in-browser mining scripts, attackers can easily reach a
large number of users through popular websites.

In-browser cryptojacking examples. In a major attack,
cryptojacking malware was merged with Google’s adver-
tisement packages on Youtube [5]. The infected ads pack-
age compiled by victims’ host performed unauthorized
mining as long as victims stayed at the related page.
Youtube and similar media content providers are ideal
for the attackers because of their relative trustworthiness,
popularity, and average time spent on those webpages by
the users. In another incident, cryptojacking malware was
found in a plugin provided by the UK government [0]. At
the time, this plugin was in use by several thousands of
governmental and non-governmental webpages.

Cryptojacking examples found on critical servers. In
addition to cryptojacking malware embedded into web-
pages, cryptojacking malware has also been found in well-
protected governmental and military servers. The USA
Department of Defense discovered cryptojacking malware
in their servers during a bug-bounty challenge [7]. The
cryptojacking malware found in the DOD servers was
created by the famous service provider Coinhive [8] and
mined 35.4 Monero coin during its existence. Similarly,
another governmental case came up from the Russian
Nuclear Weapon Research Center [9]. Several scientists
working at this institution were arrested for uploading
cryptocurrency miners into the facility servers. Moreover,
attackers do not only use the scripts provided by the
service providers but also modified the non-malicious, le-
gitimate, open-source cryptominers. For example, a cyber-
security company detected an irregular data transmission
to a well-known European-based botnet from the corpo-
rate network of an Italian bank [10]. Further investigation
identified that this malware was, in fact, a Bitcoin miner.

Cryptojacking examples utilizing advanced techniques.
There have also been many incidents where the attack-
ers used advanced techniques to spread cryptojacking
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malware. For example, in an incident, a known botnet,
Vollgar, attacked all MySQL servers in the world [11] to
take over the admin accounts and inject cryptocurrency
miners into those servers. Another recent incident was
reported for the Zoom video conferencing program [12]
during the peak of the Covid-19 pandemic, in which
the attacker(s) merged the main Zoom application and
cryptojacking malware and published it via different file-
sharing platforms. In other similar incidents, attackers
used gaming platforms such as Steam [I3] and game
consoles such as Nintendo Switch [14] to embed and
distribute cryptojacking malware. Last but not least, in
a recent study [I5], researchers discovered a firmware
exploit in Mikrotik routers that were used to embed cryp-
tomining code into every outgoing web connection, where
1.4 million MikroTik routers were exploited.

Challenges of cryptojacking detection. Given the preva-
lent emerging nature of the cryptojacking malware, it is
vital to detect and prevent unauthorized mining operations
from abusing any computing platform’s computational
resources without the users’ consent or permission. How-
ever, though it is critical, detecting cryptojacking is chal-
lenging because it is different from traditional malware
in several ways. First, they abuse their victims’ computa-
tional power instead of harming or controlling them as in
the case of traditional malware. Traditional malware de-
tection and prevention systems are optimized for detecting
the harmful behaviors of the malware, but cryptojacking
malware only uses computing resources and sends back
the calculated hash values to the attacker; so the malware
detection systems commonly consider cryptojacking mal-
ware as a heavy application that needs high-performance
usage. Second, they can also be used or embedded in
legitimate websites, which makes them harder to notice
because those websites are often trustworthy, and users do
not expect any nonconsensual mining on their computers.
Third, while in traditional malware attacks, the attacker
may ultimately target to exfiltrate sensitive information
(i.e., Advanced Persistent Threat (APT)), to make the
machine unavailable (i.e., Distributed Denial of Service
(DDoS)) or to take control of the victim’s machine (i.e.,
Botnet), in cryptojacking malware attacks, the attacker’s
goal is to stay stealthy on the system as long as possible
since the attack’s revenue is directly proportional to the
time a cryptojacking malware goes undetected. Therefore,
attackers use filtering and obfuscation techniques that
make their malware harder for detection systems and
harder to be noticed by the users.

Our contributions. Due to the seriousness of this emerg-
ing threat and the challenges presented above, many cryp-
tojacking studies have been published before. However,
these studies are either proposing a detection or prevention
mechanism against cryptojacking malware or analyzing
the cryptojacking threat landscape. And, the literature
lacks a systemic study covering both different cryptojack-
ing malware types, techniques used by the cryptojacking
malware, and a review of the cryptojacking studies in the
literature. In this paper, to fill this gap in the literature, we
present a systematic overview of cryptojacking malware
based on the information obtained from the combination
of 42 cryptojacking research papers, ~ 26 K cryptojacking
samples with two unique datasets, and 45 major attacks
instances. Given the widespread usage of cryptojacking,
it is important to systematize the cryptojacking malware
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knowledge for the security community to accelerate fur-
ther practical defense solutions against this ever-evolving
threat.

Key takeaways. In addition to the systematization of
cryptojacking knowledge and review of the literature,
some of the key takeaways from this study are as follows:

o Recently, security reports [16]-[18] spotted some in-
crease in the number of cryptojacking attacks targeting
more powerful platforms such as cloud servers [7], [19],
Docker engines [20], IoT devices on large-scale Kuber-
netes clusters [18]. To hijack and gain initial access [21],
[22] to spread the cryptojacking malware, the attackers
utilize:

1) hardware vulnerabilities [

2) recent CVEs [22],

3) poorly configured IoT devices [24],

4) Docker engines and Kubernetes clusters [20] with
poor security,

5) popular DDoS botnets for the side-profit [24].

This new trend of cryptojacking malware has not been
investigated in detail by researchers.

o We identified several issues in the studies proposing
cryptojacking detection mechanisms in literature. First,
we found that as the websites containing cryptomining
scripts are updated frequently, it is important for the
proposed detection studies to report the dataset dates,
which is not very common in the studies in the literature.
Second, it is important to report if the proposed detection
is online or offline, which is missing in most studies.
Third, we also note that the studies in the literature do
not measure the overhead on the user side of the pro-
posed solutions, which is critical, especially for browser-
based solutions.

o We see that although cryptomining could be an alterna-
tive funding mechanism for legitimate website owners
such as publishers or non-profit organizations, this usage
with the in-browser cryptomining has diminished due to
the keyword-based automatic detection systems.

Other surveys. In the literature, a number of blockchain
or Bitcoin-related surveys have been published. However,
these surveys only focus on consensus protocols and min-
ing strategies in blockchain [25]-[28], challenges, security
and privacy issues of Bitcoin and blockchain technol-
ogy [29]-[34], and the implementation of blockchain in
different industries [35] such as IoT [36], [37]. The closest
work to ours is Jayasinghe et al. [38], where the authors
only present a survey of attack instances of cryptojacking
targeting cloud infrastructure. Hence, this SoK paper is
the most comprehensive work focusing on cryptojacking
malware made with the observations and analysis of two
large datasets.

Organization. The rest of this systematization paper is or-
ganized as follows: In Section 2, we provide the necessary
background information on blockchain and cryptocurrency
mining. Then, in Section 3, we explain the methodology
we used in this paper. After that, in Section 4, we cate-
gorize cryptojacking malware types and give their lifecy-
cles. In Section 5, we give broad information about the
source of cryptojacking malware, infection methods, vic-
tim platform types, target cryptocurrencies, detection and
prevention methods, and finally, evasion and obfuscation
techniques used by the cryptojacking malware. Section 6
presents an overview of the cryptojacking-related studies
and their salient features in the literature. Finally, in Sec-
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tion 7, we summarize the lessons learned and present some
potential research directions in the domain and conclude
the paper in Section 8.

2. Background

In this section, we briefly explain the blockchain
concept and cryptocurrency mining process in blockchain
networks. Note that cryptocurrency mining is a legitimate
operation, and it can be used for profit. To see how cryp-
tojacking malware exploits this process, we first explain
how this process works.

2.1. Blockchain

Blockchain is a distributed digital ledger technol-
ogy storing the peer-to-peer (P2P) transactions conducted
by the parties in the network in an immutable way.
Blockchain structure consists of a chain of blocks. As an
example, in Bitcoin [39], each block has two parts: block
header and transactions. A block header consists of the
following information: 1) Hash of the previous block, 2)
Version, 3) Timestamp, 4) Difficulty target, 5) Nonce, and
6) The root of a Merkle tree. By inclusion of the hash of
the previous block, every block is mathematically bound
to the previous one. This binding makes it impossible to
change data from any block in the chain. On the other
hand, the second part of each block includes a set of
individually confirmed transactions.

2.2. Cryptocurrency Mining

The immutability of a blockchain is provided by a
consensus mechanism, which is commonly realized by
a “Proof of Work” (PoW) protocol. The immutability of
each block and the immutability of the entire blockchain
are preserved thanks to the chain of block structure. In
PoW, some nodes in the network solve a hash puzzle to
find a unique hash value and broadcast it to all other
nodes in the network. The first node broadcasting the
valid hash value is rewarded with a block reward and
collects transaction fees. A valid hash value is verified
according to a difficulty target, i.e., if it satisfies the
difficulty target, it is accepted by all other nodes, and the
node that found the valid hash value is rewarded. Different
PoW implementations usually have different methods for
the difficulty target.

The miners try to find a valid hash value by trial-and-
error by incrementing the nonce value for every trial. Once
a valid hash value is found, the entire block is broadcast
to the network, and the block is added to the end of
the last block. This process is known as cryptocurrency
mining (i.e., cryptomining), and it is the only way to create
new cryptocurrencies. The chance of finding of valid hash
value by a miner is directly proportional to the miner’s
hash power, which is related to the computational power of
the underlying hardware. However, more hardware also in-
creases electricity consumption. Therefore, attackers have
an incentive to find new ways of increasing computational
power without increasing their own electricity consump-
tion.

Following the invention of Bitcoin, many other al-
ternative cryptocurrencies (i.e., altcoins) have emerged
and are still emerging. These new cryptocurrencies either
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claim to address some issues in Bitcoin (i.e., scalabil-
ity [40], privacy) or offer new applications (i.e., smart
contracts [41]).

In the early days of Bitcoin, the mining was per-
formed with the ordinary Central Processing Unit (CPU),
and the users could easily utilize their regular CPUs for
Bitcoin mining. Over time, Graphical Processing Unit
(GPU)-based miners gained significant advantages over
CPU miners as GPUs were specifically designed for high
computational performance for heavy applications. Later,
Field Programmable Gate Array (FPGA) have changed the
cryptocurrency mining landscape as they were customiz-
able hardware and provided significantly more profit than
the CPU or GPU-based mining. Finally, the use of the
Application-Specific Integrated Circuit (ASIC) based min-
ing has recently dominated the mining industry as they are
specially manufactured and configured for cryptocurrency
mining.

The alternative cryptocurrencies also used different
hash functions in their blockchain structure, which led
to variances in the mining process. For example, Mon-
ero [42] uses the CryptoNight algorithm as the hash
function. CryptoNight is specifically designed for CPU
and GPU mining. It uses L3 caches to prevent ASIC
miners. With the use of RandomX [42] algorithm, Mon-
ero blockchain fully eliminated the ASIC miners and
increased the advantage of the CPUs significantly. This
feature makes Monero the only major cryptocurrency plat-
form that was designed specifically to favor CPU mining
to increase its spread. Moreover, Monero is also known as
a private cryptocurrency, and it provides untraceability and
unlinkability features through mixers and ring signatures.
Monero’s both ASIC-miner preventing characteristics and
privacy features make it desirable for attackers.

3. SoK Methodology

In this section, we explain the sources of information
and the methodology used throughout this SoK paper. Par-
ticularly, we benefit from the papers, recent cryptojacking
samples we collected, and publicly known major attack
instances.

3.1. Papers

Cryptomining and cryptojacking have recently become
popular topics among researchers after the price surge of
cryptocurrencies and the release of Coinhive cryptomining
script in 2017. For our work, we scanned the top computer
security conferences (e.g., USENIX) and journals (e.g.,
IEEE TIFS) given in [43] as well as the digital libraries
(e.g., IEEEXplore, ACM DL) with the keywords such as
cryptojacking, bitcoin, blockchain, etc. and a variety of
combinations of these keywords. In total, we found 43
cryptojacking-related papers in the literature. While one
of the papers [38] is a survey paper, the rest are focusing
on two separate topics: 1) Cryptojacking detection papers,
2) Cryptojacking analysis papers. We found that there
are 15 cryptojacking analysis papers, while there are 27
cryptojacking detection papers in the literature. We further
present a literature review of these 42 studies in Section 6.
Figure 5 in Appendix A shows the distribution of research
cryptojacking-related research papers per year. As seen in
the figure, there is an increasing effort in the academia in
the last three years with many research papers. Therefore,
there is a need for a systematization of this knowledge for
cultivating better solutions.
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3.2. Samples

Each research paper in the literature focuses only on
one aspect of the cryptojacking malware. For a com-
prehensive understanding of the cryptojacking malware,
we also benefited from the real cryptojacking malware
samples. For this purpose, we collected two datasets: 1)
VirusTotal (VT) Dataset and 2) PublicWWW Dataset. The
VT dataset consists of 20200 cryptocurrency “miner” sam-
ples uploaded to the VT [44] and their VT scan reports.
On the other hand, we created the PublicWWW dataset
using the website source search engine PublicWWW [45].
We found 6269 unique domain containing cryptomining
script in their source code. We used these two datasets for
the following purposes and in the noted sections:

o To understand the lifecycle of in-browser and host-
based cryptojacking (Section 4.1 & 4.2)

e To verify the service provider list given in other
studies and as a source of cryptojacking malware
(Section 5.1.1)

o To verify the use of mobile filtering methods used
in the in-browser cryptojacking malware. (Section
5.3.6)

o To verify that Monero is the main target currency
used by cryptojackings (Section 5.4.1)

o To find the other cryptocurrencies used by crypto-
jacking malware (Section 5.4)

o To verify that the existence of CPU limiting tech-
nique for the obfuscation (Section 5.6.1)

o To verify and understand the use of code encoding
for the obfuscation (Section 5.6.3)

We note that even though these two datasets were useful
for these purposes, they also have some limitations that
may affect the findings in this paper. For the VT dataset,
we are given ~ 437K unique samples (cryptojacking and
non-cryptojacking) by the VT [44] using our Academic
API privileges and their scan reports. Therefore, the VT
dataset is not an exhaustive list of cryptojacking samples
on the VT because API accesses with more extended
privileges exist. For example, we observed that 85% of all
cryptojacking samples in the VT dataset are from 2018,
showing that 2018 samples are over-represented in the VT
dataset. Figure 6 in Appendix B.1 shows the distribution
of all samples by the submission date. Therefore, any
conclusion in terms of the representation of the samples
in real-life may have a bias. However, we also note that
such a large-scale measurement study is outside the scope
of this work. For example, the study in [46] presents
such a study with 1.2M malicious cryptocurrency miners
collected over a period of twelve years. In our paper,
we focused on understanding the behavioral characteris-
tics of cryptojacking malware and reviewing the studies
in the literature. e give a more detailed explanation of
the datasets, their limitations, and perform distribution
analysis of these datasets in Appendix. Finally, we also
published our datasets'to further accelerate the research
in this field.

3.3. Major Attack Instances

Our third source of information is the major attack
instances that appeared on the security reports released by
the security companies such as Kaspersky, Trend Micro,

1. https://github.com/sokcryptojacking/SoK
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Palo Alto Network, IBM, and others, as well as the major
security instances that appeared on the news. The major
attack instances that appeared on the news may be used
to identify unique and interesting cases, while the security
reports may shed light on the trends due to the real-time
and large-scale reach of the security companies. Particu-
larly, we used these instances in Section | for motivational
purposes; in Section 5 to find out different techniques used
by cryptojacking malware; in Section 7 in order to find out
potential new trends in the cryptojacking malware attacks.
Since the collection of these resources may be valuable to
other researchers and due to the space limitation here, we
also release them in a detailed and organized way together
with the blacklists and service providers’ documentation
links in our dataset link'. Table 10 in Appendix A shows
the yearly distribution of the attack instances we used in
this paper.

4. Cryptojacking Malware Types

Cryptojacking malware, also known as cryptocur-
rency mining malware, compromises the computational
resources of the victim’s device (i.e., computers, mobile
devices) without the authorization of its user to mine
cryptocurrencies and receive rewards. A cryptojacking
malware’s lifecycle consists of three main phases: 1) script
preparation, 2) script injection, and 3) the attack. The
script preparation and attack phases are the same for all
cryptojacking malware types. In contrast, the script injec-
tion phase is conducted either by injecting the malicious
script into the websites or locally embedding the malware
into other applications. Based on this, we classify the
cryptojacking malware into two categories: 1) In-browser
cryptojacking and 2) Host-based cryptojacking. In the
following sub-sections, we explain the lifecycle of both
in-browser and host-based cryptojacking malware.

4.1. Type-I: In-browser Cryptojacking

The development of web technologies such as
JavaScript (JS) and WebAssembly (Wasm) enabled inter-
active web content, which can access the several com-
putational resources (e.g., CPU) of the victim’s device
(e.g., computer or mobile device). In-browser cryptojack-
ing malware uses these web technologies to create unau-
thorized access to the victim’s system for cryptocurrency
mining via web page interactions on the victim’s CPU.

Service Provider Script Owner Infected Web Page
i =
(1) Register k 5 m
< ﬁ (3) Inject WWW
H Script
> - W
(2) Receive _H;
Credentials

Figure 1. Script preparation and injection phases of a in-browser cryp-
tojacking malware.

Figure 1 shows the script preparation and injection
phases of in-browser cryptojacking malware. The script
owner’ first registers (Step 1) and receives its service
credentials and ready-to-use mining scripts from the ser-
vice provider (Step 2). The service provider separates
the mining tasks among its users and collects all the
revenue from the mining pool later to be shared among

2. We call it script owner rather than an attacker because the script
can also be used for legitimate purposes.
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its users. After receiving the service credentials, the script
owner injects the malicious cryptojacking script into the
website’s HTML source code (Step 3). We explain this
and other cryptojacking infection methods in Section 5.2
in detail.

In the attack phase, as shown in Figure 2, victims first
reach the website source code from their devices (Step
1,2). The web browser loads the website and automatically
calls the cryptojacking mining script (Step 3). Once the
script is executed, it requests a mining task from the
service provider (Step 4). The service provider transfers
the task request to the mining pool (Step 5). Then, the
mining pool assigns the mining task (Step 6). The service
provider returns the task to the mining script (Step 7). The
mining script returns this new mining assignment to the
victim’s computer (Step 8), and the victim’s device starts
the mining process (Step 9). As long as the mining script
and service provider remain online, the script continues
the mining process on the victim’s computer (Step 9) and
then returns the mining results to the service provider
(Step 10) directly. The service provider collects all the
data from different sources and sends the results to the
mining pool (Step 11). Finally, the mining pool sends
the reward back to the service provider in the form of
a mined currency (Step 12). The script owner receives
its share from the service providers using its service
credentials after the service provider cuts its service fee.
In this ecosystem, the attackers use the CPU power of
their victims, and the victims do not receive any payment
nor benefit from any other entity.

4.2. Type-II: Host-based Cryptojacking

Host-based cryptojacking is a silent malware that at-
tackers employ to access the victim host’s resources and
to make it a zombie computer for the malware owner.
Compared to in-browser cryptojacking malware, host-
based malware does not access the victim’s computation
power through a web script; instead, they need to be
installed on the host system. Therefore, they are generally
delivered to the host system through methods such as
embedded into third-party applications [12], [47], using
vulnerabilities [22], or social engineering techniques [48],
or as a payload in the drive-by-download technique [49].
We explain these methods in more detail in Section 5.2.

Figure 3 shows the lifecycle of a host-based cryp-
tojacking malware. The script preparation phase starts
with the creation of unauthorized cryptocurrency mining
malware (1). Then, the attacker merges this malware with
a legitimate application to trick the victim (2). After the
malware preparation, the malware injection process starts
with uploading this malicious application to online data-
sharing platforms (e.g., torrent, public clouds) (3). When
the victim downloads any of the infected applications
and installs them on their host machines (e.g., Personal
Computer, IoT device, Server)(4), the malware injection
phase of the lifecycle is completed.

In the attack phase, the host-based cryptojacking mal-
ware is connected to the mining pool via web socket or
API and receives the hash puzzle tasks to calculate hash
values (5). The calculated hash values are sent back to
the mining pool (6). Finally, the attacker receives all of
the revenue without any energy consumption (7) and not
sharing anything with the victim.

After receiving all its revenue in the form of cryp-
tocurrency from the service provider, the attacker has three

124

options to use its revenue: 1) Converting to fiat currency
via exchanges or p2p transactions, 2) Using it as a cryp-
tocurrency for a service [50], or 3) Using cryptocurrency
mixing services [51], [52] to cover its traces. Further end-
to-end analysis of the cryptojacking economy/payments is
out of this study’s scope, and similar studies can be found
in the ransomware domain [53]-[56].

5. Cryptojacking Malware Techniques

In this section, we explain the techniques used by
cryptojacking malware. Particularly, we articulate on the
following:

o Source of cryptojacking malware

« Infection methods

e Victim platform types
Target cryptocurrencies
« Evasion and obfuscation techniques

5.1. Source of Cryptojacking Malware

This sub-section explains whom the scripts are created
by and how they are distributed to attackers.

5.1.1. Service Providers. The service providers are the
leading creators and distributors of cryptojacking scripts.
The service providers give every user a unique ID to
distinguish them in terms of the hash power. The service
provider generates the script for the user regardless of the
user is malicious or not. All the user needs to do is copy
and paste the script to create a malicious sample for the
attack.

Coinhive [8] was the first service provider to offer a
ready-to-use in-browser mining script in 2017 to create
an alternative income for web site and content owners.
Even though the initial idea of Coinhive was to provide
an alternative revenue to webpage owners, it rapidly be-
came popular among attackers. During the operation of
Coinhive, they were holding a significant share of the
total hash rate of Monero. After the sharp decrease in
Monero’s price [57], Coinhive was shut down by their
owners in March 2019 due to the business’ being no
longer profitable.

Some of the alternative service providers which had
continued/continuing their operations are Authedmine [3],
Browsermine [58], Coinhave [59], Coinimp [60], Coin
nebula [61], Cryptoloot [4], DeepMiner [62], JSECoin
[63], Monerise [64], Nerohut [65], Webmine [66], Web-
minerPool [67], and Webminepool [68]. Some of these
service providers also came up with several new func-
tionalities, such as offering a user notification method or
a GUI for the user to adjust the cryptomining parameters.
Note that, we also verified these service providers using
the samples in the PublicWWW dataset. In order to find
the corresponding service providers of each sample, we
performed a keyword search on the HTML source code of
all samples. We found that 5328 samples use one of these
14 aforementioned service providers, while 941 samples
with unknown service providers. Moreover, we also found
out that 144 samples are using scripts from multiple
service providers in their source codes. More details on
the PublicWWW dataset can be found in Appendix.

5.1.2. Cryptominer Software. Blockchain networks rely
on several network protocols and cryptographic authenti-
cation methods. Miners must be part of these protocols
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Figure 2. The lifecycle of a in-browser cryptojacking malware.
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Figure 3. The lifecycle of a host-based cryptojacking malware.
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and follow the rules provided and developed by the com-
munities. PoW-based cryptocurrencies also have specific
rules for their blockchain networks. Due to blockchain
technology’s public and open nature, the source code
of these miners are published by the communities via
code sharing and communal development platforms. At-
tackers can easily obtain and modify these miners and
adopt them to perform mining inside their victims’ host
machines. Moreover, there are also several plug-and-play
style mining applications provided by several mining
pools. Attackers are also modifying these applications for
cryptojacking. For example, XMRig [69] is a legitimate
high-performance Monero miner implementation, and it
is open-source. Its signature is found in several highly
impactful attacks affecting millions of end devices around
the world [70], [71], which are also reported by Palo Alto
Networks and IBM. Moreover, we also found 139 unique
samples that are labeled with the signature of “xmrig” in
our VT dataset.

5.2. Infection Methods

In this section, we explain the infection methods used
by cryptojacking malware in detail.

5.2.1. Website Owners. Website owners, who have ad-
min access to the website’s servers, may employ in-
browser mining scripts to gain extra revenue or provide
in exchange of an alternative option to premium content
they provide. Only with this method, webpage owners
may receive the revenue of the script in their webpage.
While some website owners inform their visitors about
the cryptomining script they employ, some others do not
inform their visitors, and this behavior can be considered
as crime [72] in several countries.

5.2.2. Compromised Websites. Attackers may inject
their cryptojacking malware into random web pages that
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have several vulnerabilities. Indeed the name cryptojack-
ing itself is the combination of “cryptomining” and hi-
jacking.” Ruth et al. [73] state that ten different users
created 85% of all Coinhive scripts they found. The
owners of these webpages do not have any information
about these scripts; additionally, they do not profit from
them.

Several works claim that the attackers generally use
the same ID for all the infected web pages, making them
more traceable. For example, the authors in [74] reveals
the cryptojacking campaigns through this method and
discover that most of these campaigns utilize the vul-
nerabilities such as remote code execution vulnerabilities.
When we investigated the common instances related to
this domain, one security company found cryptojacking
malware inside of the Indian government webpages [75],
which affect all ap.gov.in domains and sub-domains.

5.2.3. Malicious Ads. Some attackers embed their cryp-
tojacking malware into JavaScript-based ads and distribute
them via mining scripts. With this method, the attackers
can reach random users without any extra effort. To make
this attack, they do not need to infect any webpage or
application. YouTube [5] and Google ad [76] services
were also infected and the users of these websites and
their services became the victims of the cryptojacking
attacks. The attackers successfully mined Monero with
their visitors. The attackers successfully mined Monero
with their visitors. The advantage of this method is that it
allows attackers to reach a large number of visitors when it
is embedded into popular websites without getting access
to the website’s servers.

5.2.4. Malicious Browser Extensions. Browser exten-
sions can also reach the computer’s CPU sources and act
like cryptojacking malware located into a webpage. These
extensions have a major distinctive difference; they can
stay online and perform mining as long as the infected
browser remains open independent from the websites ac-
cessed by the victim. However, major browser operators
like Google announced that they would ban all the cryp-
tomining extensions on their platform regardless of their
intention as it is mostly being abused in practice [77].

5.2.5. Third-party Software. Merging malware with any
market application and publishing it via several sharing
platforms is a well-known method among the attackers
to spread the malware. Attackers modify the cryptominer
software to run cryptojacking in the background and
merge it with legitimate applications. The attackers tend
to use computation-intensive applications (e.g., animation
applications, games with high hardware needs, engineer-
ing programs) because the use of those applications means
that the victims’ system has computationally powerful
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hardware and the application that host-based cryptojack-
ing malware embedded, have access permission to the
needed hardware components of the victim’s host system.

Several major instances have already happened, such
as, one attacker merged Zoom [12] video calling appli-
cation with a regular bitcoin miner and distributed it via
several sharing platforms. In another attack, the attackers
used a popular video game Fortnite to spread the virus
[78] to mine Bitcoin. Unlike the in-browser mining, which
became popular in 2017, we found the attack instances
using this method even in 2013, where the Bitcoin mining
script found as part of the game’s code itself [79].

5.2.6. Exploited Vulnerabilities. In several cases, at-
tackers exploit several zero-day vulnerabilities that they
found in hardware and software. Attackers inject their
mining malware into several devices and make them mine
cryptocurrency. There are several important instances hap-
pened in the last several years. The most remarkable
example directly affects 1.4 Million Mikrotik [15] routers
globally, and a vulnerability in the hardware operating
system causes this instance. The researchers claim that
a major percentage of Remote Code Execution (RCE)
attacks [80] aims to locate mining scripts inside the host
systems.

5.2.7. Social Engineering Techniques. Social engineer-
ing is a commonly used technique among malware at-
tackers to bypass security practices. Similarly, attackers
also use social engineering attacks to manipulate human
psychology and navigate the victims’ access or install ma-
licious software on their computers. The researchers have
observed that attackers are still using old techniques such
as social engineering to install cryptojacking malware on
their victims’ computers [21].

5.2.8. Drive-by Download. A drive-by download is an-
other technique used by malware attackers to deliver and
install malicious files to victims’ devices without their
knowledge. Victims may face this attack while visiting
a web page, opening a pop-up window, or checking an
email attachment. In one case [49], the attackers used this
method to inject their cryptojacking malware into their
victims’ devices. They exploited shell execution vulnera-
bility to download their cryptojacking malware to victims’
computers directly.

5.3. Victim Platform Types

5.3.1. Browser. Browsers are the most commonly used
victim platforms as the attackers do not need to deliver any
malicious payload to the victim to use the computational
resources of the victim. In other words, when the victim
reaches the infected webpage, the malware automatically
starts mining and do not leave any data behind. The
second significant advantage of the browser environment
is, thanks to service providers, ready-to-use mining scripts
can be applied to any webpage very easily and quickly.
The studies in the literature that we also present in Section
6 mostly focus on in-browser cryptojacking. However,
the attackers can access only the CPUs of the victims
through the browsers, which makes them infeasible for the
currencies allowing ASIC miners such as Bitcoin. There-
fore, cryptojacking malware samples utilizing browsers
mostly mine Monero or other cryptocurrencies, which
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allow cryptomining by personal computers on non-ASIC
CPU architectures.

5.3.2. Personal Computers. Personal computers are gen-
erally designed to allow end-users to perform their daily
tasks. Personal computers are recently modified to over-
come high-level computations to allow their users to
use heavy-computation applications (e.g., video-games,
video rendering applications). Attackers targeting personal
computers aim to reach many victims because a limited
number of victims would not be profitable. In-browser
cryptojacking embedded into popular websites is ideal for
this type of cryptojacking attack. In addition, they can also
instantiate such an attack through large-scale campaigns.
For example, in [81], Cisco researchers document their
findings of a two-year campaign delivering XMRig in their
payload. They also observed that the malware “makes
a minimal effort to hide their actions” and posting the
malware “on online forms and social media” to increase
the victim pool.

5.3.3. On-premise Server. On-premise (i.e., in-house)
servers are the servers where the data is stored and pro-
tected on-site. It is preferred by highly critical organi-
zations such as governmental organizations as it offers
greater security and full control over the hardware and
data. However, on-premise servers are also another victim
platform type attacked by the host-based cryptojacking
malware samples. Compared to personal computers, on-
premise servers are more computationally powerful and
host numerous services accessed by many connections.
This allows attackers to the broader attack surface. Still,
the attackers have to find a way to deliver and install the
cryptomining script on the on-premise server to access
this platform. In several instances, the attackers used
system vulnerabilities [10], third party infected software
[6], and several social engineering methods [21] to install
cryptojacking malware to the victims’ on-premise server.

5.3.4. Cloud Server. Cryptojacking malware also exploits
cloud resources to mine cryptocurrencies. Cloud-based
cryptojacking attack is a fast-spreading problem in the last
two years, where it became popular, especially after the
shutdown of the Coinhive when the attackers were look-
ing for new platforms to infect. Attackers target several
vulnerabilities to hijack victims’ cloud servers and locate
cryptocurrency miners into their systems. Clouds servers,
especially Infrastructure-as-a-service platforms such as
Amazon Web Services (AWS), are being targeted by the
attackers because of their:

« Virtually infinite resources,

o Large attack surface due to server structure,

o Malware spreading capabilities,

o Reliable Internet connection,

o Longer mining/profit period due to host-based capa-

bilities

Several instances of this type of cryptojacking mal-
ware have been found on cloud servers [19], [20], [22],
[82]-[84]. In these attacks, attackers used different tech-
niques to hijack the cloud server to inject cryptojacking
malware. For example, in their 2020 annual report, Check
Point Research [82] observed that attackers integrate the
cryptominer to the popular DDoS botnets such as King-
Miner targeting Linux and Windows servers for side-
profits. In another attacker instance [20], the researchers
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found an open directory containing malicious files. Fur-
ther analysis revealed that the file contains a DDoS bot
targeting open Docker daemon ports of Docket servers
and ultimately installing and running the cryptojacking
malware after the execution of its infection chain. In
a similar attack instance [22], the researchers noted a
cryptojacking malware delivered using a CVE exploitation
targeting WebLogic servers. Tesla-owned Amazon [19]
and the clients of Azure Kubernetes clusters [84] were
exposed to cryptojacking attacks due to poorly configured
cloud servers. Indeed, Jayasinghe et al. [38] showed that
the count of cryptojacking malware targeting cloud-based
infrastructure is increasing every year and affects more
prominent domains such as enterprises.

5.3.5. IoT Botnet. IoT devices generally have small pro-
cessing powers to perform basic tasks. It is being expected
that there will be more than 21.5 billion IoT devices con-
nected to the internet [85] by 2025. Attackers aim to create
botnets with the collaboration of thousands of these IoT
devices and perform several attacks such as DDoS due to
their small processor, limited hardware, low-level security,
and weak credentials, which was also exploited in the
example of Mirai botnet’s DDoS attack [86]. Later, IBM
researchers also found that the modified version of the
Mirai Botnet also started to mine Bitcoin [24]. Bartino et
al. [87] states that there are several worms in IoT devices
that hijacked them for mining purposes, and Ahmad et al.
[88] proposes a lightweight IoT cryptojacking detection
system to detect any cryptojacking attack that focuses on
ToT devices.

5.3.6. Mobile. Cryptojacking malware samples targeting
mobile devices inject cryptojacking script into their appli-
cation and list the application in the application markets.
Like every other type of cryptojacking attack, the mobile-
based cryptojacking samples also have seen a great in-
crease in the number of attacks. Because of this, both
Google [89] and Apple [90] removed the cryptomining
applications from their platforms. However, they still exist
in alternative markets [91]. The study by Dashevskyi et
al. [91] focuses on Android-based cryptojacking malware.

Moreover, mobile devices are generally not considered
powerful enough for cryptocurrency mining because they
generally use more restricted hardware and optimized
operating systems (e.g., iOS and Android). Besides, the
cryptocurrency mining process consumes extra battery and
processing power, which may cause hardware problems
such as overheating and apps to freeze or crash on mobile
devices. Due to these reasons, cryptojacking attacks on
mobile devices are not preferred by attackers, and they
generally apply a mobile filtering method to opt-out mo-
bile devices.

1 <script>

2 var miner=new CoinHive.Anonymous('Key', {

3 Threads:4, autoThreads:false, throttle:0.8);

4 if (!miner.isMobile()) &&!miner.didOptOut(14400)
5 { miner.start(); } }

6 </script>

Listing 1: The mobile device filtering method used in a cryptojacking sample.

Listing 1 is a recent cryptojacking sample with the
mobile device filtering method found in a sample in our
dataset. In line 4, the script automatically calls a mobile
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device detection function and starts the cryptocurrency
mining process only if it is not a mobile device.

5.4. Target Cryptocurrencies

In this section, we give brief information about the
most preferred cryptocurrencies by the attackers.

5.4.1. Monero. Monero has several advantages over other
cryptocurrencies, making it favorable to attackers. First
of all, Monero successfully implements and modifies the
RandomX mining algorithm and CryptoNight hashing
algorithm to prevent ASIC miners and give a compet-
itive advantage to the CPU miners over GPUs via L3
caches [92]. The Monero community aims to keep their
network decentralized and allows even small miners to
mine Monero. As in-browser cryptojacking malware can
only access the CPUs of the personal computers through
the browsers, Monero is ideal as a target cryptocurrency
instead of other cryptocurrencies that are mined dom-
inantly by other computationally more powerful ASIC
and GPU miners. Second, Monero provides anonymity
features through cryptographic ring signatures [93], [94],
which makes the attackers untraceable. Thanks to these
features of the Monero, attackers tend to mine Monero
with their in-browser cryptojacking malware.

When we analyze the samples’ cryptomining scripts in
the PublicWWW dataset and their service providers’ doc-
umentation, we found that all eleven service providers ex-
cept Browsermine, CoinNebula, JSEcoin either use Mon-
ero or have the option to choose Monero in their scripts as
a target cryptocurrency. This shows to 91% of the samples
in the PublicWWW dataset use Monero to mine.

5.4.2. Bitcoin. In recent years, Bitcoin mining has seen
enormous attention, which led to a dramatic increase in
the difficulty target. ASIC and FPGA miners are the
main reason behind this dramatic increase because the
mining structure of the Bitcoin allows to build and use of
specified mining hardware which is much more powerful
and profitable than the CPUs and GPUs. The increase in
difficulty target and disadvantages of CPU made the CPU
mining infeasible and not profitable. Therefore, attackers
who perform in-browser cryptojacking attack donot prefer
Bitcoin mining. We also see that none of the service
providers of the in-browser cryptojacking samples in our
PublicWWW dataset supports Bitcoin mining. However,
host-based cryptojacking malware can reach all the com-
ponents of the victims’ computer system and make Bitcoin
mining on GPU and other high-performance computa-
tional resources of the computers. We also observe this
in our VT dataset. We performed a keyword search for
“bitcoin” on the AV labels of 20200 samples of both in-
browser and host-based cryptojacking malware. We found
that 7111 of 20200 samples are marked with a label
containing the keyword “bitcoin”. Even though this does
not show that those samples are absolutely using bitcoin
as a target cryptocurrency, but it is a potential indicator
for the host-based cryptojacking samples mining Bitcoin
based on the assumption of AV vendors are labeling the
correct currency for the AV labels.

5.4.3. Other Cryptocurrencies. Cryptojacking is attrac-
tive for attackers as cryptomining can be parallelized
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among many victims. Therefore, it is possible for cryp-
tocurrencies to allow distributed cryptomining. Both Mon-
ero and Bitcoin use PoW as a consensus method. However,
instead of PoW, other cryptocurrencies utilize different
consensus models such as Proof of Stake [95], and Proof
of Masternode [96]. Most of these new consensus models
do not depend on distributed power-based mining algo-
rithms; therefore, cryptojacking is not an option for those
currencies. For the cryptocurrencies that can be mined
distributively [97], the mining pools provide collective
mining services to their participants. Other cryptocurren-
cies that are preferred by attackers are Bitcoin Cash [98],
Litecoin [99], and Ethereum [100].

There are also several cryptocurrencies developed
specifically for in-browser cryptomining activities. JSEc-
oin [63] is an example of them and offers also trans-
parency. Other cryptocurrencies created for this pur-
pose are BrowsermineCoin [58], Uplexa [101], Sumocoin
[102], and Electroneum [103].

5.5. Detection and Prevention Methods

In the traditional malware detection literature, there
are two main analysis methods: 1) static [104] and 2)
dynamic [105]. Both analysis methods have several pros
and cons in terms of accuracy and usability.

o Static Analysis: Static analysis is a widely used
method to examine the application without execut-
ing it. Static analysis tools generally seek specific
keywords, malware signatures, and hash values. In
the cryptojacking domain, mining-blocking browser
extensions [106], [107] workin this way, i.e., any do-
main given in the pre-determined blacklist is blocked.
However, due to the fix, pre-configured nature of the
static detection methods, these implementations are
usually easy to circumvent.

e Dynamic Analysis: In dynamic analysis, the malware
sample is executed in a controlled environment, and
its behavioral features are recorded for further anal-
ysis and detection. Malware analyzers generally use
automated [108] or non-automated sandboxes [105]
to run the code and observe the malware’s behavior.
In the literature, 24 machine learning-based proposed
detection mechanisms use dynamic analysis to detect
cryptojacking malware. These studies use various
datasets, features, classification algorithms and some
of them works for both in-browser and host-based
cryptojacking malware. We explain these studies in
Section 6.1.

As the execution of in-browser cryptojacking malware
depends on running the JavaScript code, another way to
stop it is to disable the use of JavaScript, but this would
also decrease the usability of the browser significantly. Fi-
nally, there are antivirus programs with the cryptojacking
detection capability [109], [110]. However, their detection
algorithms are proprietary.

5.6. Evasion and Obfuscation Techniques

The purpose of the cryptojacking malware is to ex-
ploit the resources of the victim as long as possible;
therefore, staying on the system without being detected
is of paramount importance. For this purpose, they utilize
several obfuscation methods.
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5.6.1. CPU Limiting. High CPU utilization is still the
most important common point of all kinds of cryptojack-
ing malware because CPU usage is the main requirement
of the cryptocurrency mining process. Therefore, CPU
limiting is a highly preferred method by the attackers to
obfuscate the mining script. With this method, the script
owners can bypass the high CPU usage-based detection
systems and avoid being put on the blacklist. Moreover,
the CPU limiting is also used by legitimate website owners
performing cryptocurrency mining as an alternative rev-
enue because it provides a better user experience. Line 3
in Listing 1 shows an example of a CPU limiting method
used by a cryptojacking malware, where the attacker sets
throttle to 0.8, e.g., the attacker wants to use only 20%
of the CPU load for cryptocurrency mining. In our Pub-
licWWW dataset, we searched for the keyword throttle:
0.9” and we found that 1384 samples out of all 6269
cryptomining scripts set the throttle to 90%, which shows
that CPU is limiting is a very common practice among
the in-browser cryptomining scripts.

5.6.2. Hidden Library Calls. Library calling [111] is a
well-known technique used by programmers to make the
code more efficient, systematic, and readable. However, it
can also be used by the attackers to obfuscate their scripts.
Particularly, in order to hide the mining code from the
detection methods, the attackers create new scripts that
do not have specific keywords. The malicious part of the
script is moved to an external library, which is called
during the script’s execution, and only the code snippet
to call this library is included in the main code.

5.6.3. Code Encoding. Encoding the malware source
code with several encoding algorithms provides invisibil-
ity against keyword-based static analysis detection meth-
ods such as blacklists. This method transforms the text
data into another form, such as Base64, and after this
process, the data can only be read by the computers. Some
examples of this we found in our PublicWWW dataset are
the cryptomining scripts provided by the service providers
Authedmine [8] and Cryptoloot [4].

5.6.4. Binary Obfuscation. Similar to code encoding
technique, binary obfuscation is a practice among mal-
ware authors to hide malicious code from standard string
matching algorithms and make it harder to recover by the
sandboxes and other dynamic malware detection methods.
However, they differ in the cryptojacking type that is
used to hiding, i.e., binary obfuscation is used by the
host-based cryptojacking malware while code encoding
is used by the in-browser cryptojacking malware. For
binary obfuscation, attackers generally use well-known
packers such as UPX. The authors of [40] observe that
30% of 1.2M binary cryptojacking malware samples are
obfuscated, which shows that it is a common practice
among the cryptojacking malware attackers, too.

6. Literature Review

The surge of cryptojacking malware, especially after
2017, also drew the attention of academia and resulted in
many publications. We found these studies focus on three
topics: 1) Cryptojacking detection studies, 2) Crypto-
jacking prevention studies, and 3) Cryptojacking analysis
studies. Among 42 academic research papers, we found
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that 15 of them focus on the experimental analysis of
the cryptojacking dataset. At the same time, 3 of them
proposes a method for the detection and prevention of
cryptojacking malware together, and 24 of them proposes
only a method for the detection of the cryptojacking
malware. In the next sub-sections, we give a review of
these studies.

6.1. Cryptojacking Detection Studies

In this section, we survey the cryptojacking malware
detection studies. Table 1 shows the list of the proposed
cryptojacking detection mechanisms in the literature. The
following sub-section gives a detailed overview of the
dataset, platform, analysis method, features, and classifiers
used in these detection mechanisms.

6.1.1. Dataset. A dataset is generally used to evaluate the
effectiveness of the proposed detection method. Several
datasets are commonly used in the cryptojacking mal-
ware detection literature. The most common one is Alexa
top webpages [113], [116], [117], [119], [120], [122].
Alexa sorts the most visited websites on the Internet;
however, it does not provide the source code for these
websites. Therefore, these studies also used Chrome De-
bugging Protocol to instrument the browser and collect
the necessary information from the websites, except the
study [122], which works with a limited number (500) of
websites. Moreover, the study in [116] also used known
and frequently updated blacklists [106], [107], [136] to
build a ground truth for their training dataset, and then
they performed an analysis using Alexa top 1M websites.
In addition to the Alexa top websites, the study in [97]
used a cryptojacking dataset obtained from VirusTotal.
They collected 1500 active Windows Portable Executable
(PE32) cryptocurrency mining malware samples registered
in 2018 and used the Cuckoo Sandbox [137] to obtain
detailed behavioral reports on those samples. Furthermore,
the studies in [114], [115], [118], [132] performed their
analysis by installing the legitimate mining scripts, and
the studies in [117], [121] manually injected miners to
the websites to test their detection mechanisms.

6.1.2. Platform. Most of the cryptojacking detection
mechanisms in the literature [112], [113], [115]-[119],
[121], [122], [132], [138] are proposed for the detection
of in-browser cryptojacking malware. There are only a
few studies [97], [128] proposed for host-based crypto-
jacking malware. In addition, Conti et al. [132], propose
a hardware-level detection mechanism, which can be used
to detect both host-based and in-browser cryptojacking
malware.

6.1.3. Analysis Features. As can be seen from Table 1,
in the cryptojacking domain, the majority of the proposed
detection methods are using dynamic analysis. The main
reason for this is that mining scripts use a set of known
instructions, and they follow and repeat predefined min-
ing steps. For example, miners use cryptographic hash
libraries and increment the value of a static variable
(i.e., nonce) repeatedly or connect to some known service
providers to continue to upload some output results and re-
ceive new tasks. These typical behaviors of the cryptojack-
ing malware create a pattern and make them detectable
by dynamic analysis. In the literature, only a few studies
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use static features such as opcodes [97] and WebAssem-
bly (Wasm) instructions [112]. WebAssembly [139] is a
low-level instruction format that allows programs to run
closer to the machine-level language and provide higher
performance via stack-based virtual machines [140]. This
low-level instruction model lets the WebAssembly run
the codes more efficiently, and this feature provides more
profit because the cryptojacking script eliminates most of
the delay caused by the code execution process. All major
browsers in the market currently support WebAssembly.

Opcodes are machine language instructions that spec-
ify the operations to be performed and are used by system
calls. The proposed detection system in [97] uses opcodes
for static analysis, where opcodes are extracted using IDA
Pro. In the cryptojacking example, opcodes focus on re-
quests between mining scripts and the operating system’s
kernel. With this method, they achieve 95% accuracy with
the Random Forest classifier.

On the other hand, many detection mechanisms have
been proposed [113], [115]-[119], [121], [132], [138] us-
ing dynamics features. The most commonly used dynamic
features in these studies are as follows:

o CPU Events [1]3], [115]=[117], [125], [124], [150],
[133]-[135], [138]: CPU events are the most com-
monly used features among the dynamic analysis-based
detection mechanisms because in-browser cryptojacking
scripts have to fetch the CPU instructions to perform
the mining, independent of the used hardware. If an
in-browser operation uses cryptographic libraries too
frequently, which is abnormal for regular websites, it
can be directly detected by CPU instructions. Even
though CPU is the most crucial feature of cryptocur-
rency mining, using only CPU events as features may
cause high false-positive rates (FPR) because flash gam-
ing or online rendering websites also use the CPU of
the system heavily for their operations. To keep FPR as
low as possible, most detection methods use more than

one features simultaneously [112], [113], [115], [117],
[123], [124], [134], [135].
o Memory activities [113], [115], [117], [132]: Memory

activity is another commonly used feature among the

dynamic detection methods listed in Table 1.
o Network package [113]-[115], [117], [118], [128]:
Network packages are also a handy and useful method
to detect cryptojacking activity because of the massive
network traffic generated while uploading the calculated
hash values to the service provider. The studies [113]-
[115], [117] utilized network traffic rate as an additional
feature along with other features such as memory and
CPU-related features. On the other hand, the studies
in [118], [128] used only network packages for crypto-
jacking malware detection. Particularly, Neto et al. [1 18]
use the network flow as a feature, while Caprolu et
al. [128] use interarrival times and packet sizes as
features in their detection algorithm.
JavaScript (JS) compilation and execution time []16],
[124]: In [116], [124], it has been shown that JS engine
execution time and JS compilation time is significantly
affected by cryptojacking malware. However, online
games and other online rendering platforms can also
cause the same behavior causing false positives in the
detection mechanism. Therefore, the study in [116] also
uses CPU usage, garbage collector, and iframe resource
loads as secondary features to obtain more accurate
results and decrease false positives. The garbage col-
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TABLE 1. CRYPTOJACKING MALWARE DETECTION MECHANISMS IN THE LITERATURE.

scripts and 3 daily user applications

Interarrival times

Ref Dataset Type Method Features Classifier Performance
Riith et al. [73] Th'ef“]:;i_“l‘b};ws In-browser Static Wasm signatures SRSE N/A
. _— . ‘Wasm code .
Minesweeper [112] Alexa 1 Million In-browser Static CPU cache events Matching N/A
Benign (best):
Precision: 99.99%
Resource consumption Recall: 99.99%
- N B (memory, network, F1: up to 99.99%
RAPID [113] Alexa: 330.500 In-browser Dynamic and processor) and SVM Mining (best):
JavaScript API Events Precision: 96.54%
Recall: 95.48%
F1: up to 96.0%
- Best:
Mutios et al If’e“l”"fk raffic of six b Dynamic Metadata of inbound bT Accuracy: 99.9%
ufioz et al. [114] Lrysp‘;);zrnien:ge‘zcl.;mg n-browser ynamic and outbound network traffic Precision: 98.2%
P Recall: 90.7%
87% Instant
CPU utilization, 99% After 11 seconds
. Five user applications L Memmory, 98% Mobile Single
Caplack [115] and a Coinhive miner In-browser Dynamic Disk read/write rate, CNN 86% Mobile Cross
Network interface) 97% AWS single
89% AWS Cross
Js Execution Time,
JS compilation Time, SVM (best):
OUTGUARD [116] Alexa 1M and 600K In-browser Dynamic Garbage Collector, SVM, RF TPR: 97.9%
Iframe resource loads, FPR: 1.1%
CPU usage
100k websites from
. Alexa IM and 50 . CPU, .
CoinSpy [117] I o In-browser Dynamic Memory, CNN Accuracy:97%
manipulated cryptojacking N X behavi
websites etwork behaviors
The network traffic captured Accuracy: 98%,
. L . Precision: 99%,
MineCap [118] from two mining and In-browser Dynamic Network packages IL Recall: 97%
streaming applications Specifity: 99.9%
CMTracker [119] Alexa 100k In-browser Dynamic Hé’:h and Sluc’( Thr-based 100% TPR
based profilers
Musch et al. [120] Alexa IM In-browser Dynamic CPU usage MA N/A
Accuracy: 99.35%,
. Manually created 320 non-mining : g Precision: 100%,
Tahir et al. [121] and 100 mining websites In-browser Dynamic HPC values RF Recall: 98%,
AUC: 99%
SEISMIC [122] 300 W?E)p;g/e\slcl::?:;n%;e]ecled In-browser Dynamic Wasm instructions Matching F1: 98%
MineThrotde [123] Alexa IM In-browser Dynamic Block-level features Matching FNR: 1.83%
CPU usage
CPU usage, HPC,
Coinpolice [124] 47k samples In-browser Dynamic JS/WASM execution time and features, CNN TPR:97.8 % FPR: 0.74%
Throttling-independent timeseries
S . Captured Opcode trace . . . TPR: 99.2 % FPR: 0.9,
Carlin et al. [125] packets Virusshare (296 Samples) In-browser Dynamic Opeodes RF Precision: 9.2 Recall: 99.2
. 1159 samples collected from | . Heap snapshots Precision: 95,
Liu et al. [126] browsers’ memory snapshot In-browser Dynamic Stack Features RNN Recall: 93
Rauchberger et al. [127] Alexa: IM In-browser Dynamic ‘Web socket traffic Matching N/A
Caprolu et al. [128] N/A In-browser Dynamic Network traffic REKFCV TPR=92% ,FPR=0.8%
WASM Samples collected via . Image frames of R
MINOS [129] PublicWWW In-browser Dynamic ma]igious samples CNN Accuracy: 98.97%
Yulianto et al. [130] PublicWWW and Blacklists In-browser Static and Dynamic CPU usage Matching TPR:100%
o o e . . L Blacklists
CMBIlock [131] In-browser cryptojacking samples In-browser Static and Dynamic Behaviour N/A N/A
Combination daily user hardware events (e.g., branch-misses), Recall: 97.84%
Gangwal et al. [132] tasks and m'n)frﬁ' Host-based and In-browser Dynamic software events (e.g., page-faults) RF, SVM Precision: 99.7%
SKS an ners hardware cache events (e.g., cache-misses) Accuracy:98.7%
Lachtar et al. [133] N/A Host-based and In-browser Dynamic CPU instructions Matching TPR:100 % FPR: | 2%
40 In-browser and ) . CPU utilization share X
Tanana et al. [134] 10 executable-type cryptojacking Host-based and In-browser Dynamic RAM usage N/A TPR: 81%
Ahmad et al. [55] Mixture of Benign Host-based and In-brows Dynamic Network traffic pCA N/A
mad et al. and Malicious Network Packages ost-based and In-browser ynamic
DeCrypto Pro [135] 1200 samples Host-based and In-browser Dynamic HPC, CPU usage k-NN, RF, LSTM EPR: 2.5,
P P T h Y ’ o T Precision: 96, Recall: 97
System calls (best):
S ; 1500 active cryptomining e i S System calls, LSTM: Accuracy:99%
Darabian et al. [7] collected from Virustotal in 2018 Host-based Static and Dynamic opeode sequences RNN, CNN F1: 98% MCC: 98%
FPR:0.6%
Crypto-Acgis [12¢] | Nework uaffic of 3 legitimate mining Host-based Dynamic Packet sizes RF TPR:80-84% FPR: 0.9 - 1.2%

! The dataset was not available as of writing this paper (November 1, 2020).
2 Support Vector Machine: SVM, Random Forest: RF, Decision Tree: DT, Convolutional Neural Network: CNN, Recurrent Neural Network: RNN, Incremental Learning: IL, Threshold-based: Thr-based, Manual Analysis: MA,
Dendritic Cell Algorithm: DCA, k-Nearest Neighbors: k-NN, Light-weight machine learning models: LSTM, Symantec RuleSpace Engine:SRSE, k-Fold Cross Validation:KFCV
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TABLE 2. THE LIST OF PUBLICLY AVAILABLE BLACKLISTS.

Ref Link
Nocoin [106] https://github.com/keraf/NoCoin
CoinBlocker [136] https://zerodot1.gitlab.io/CoinBlockerListsWeb/index.html
Minerblock [107] https://github.com/xd4rker/MinerBlock/blob/master/assets/filters.txt
Coinhive Blocker [141] https://raw.githubusercontent.com/Marfjeh/coinhive-block/master/domains
Andreas CH Blocker [142] | https://raw.githubusercontent.com/andreas0607/CoinHive-blocker/master/blacklist.json

TABLE 3. THE LIST OF OPEN-SOURCE CRYPTOJACKING MALWARE DETECTION IMPLEMENTATIONS.

Ref Implementation Link Description Last Update
CMTracker [119] https://github.com/deluser8/cmtracker code Sep 21, 2018
Minesweeper [112] https://github.com/vusec/minesweeper data and code | Mar 17, 2020
OUTGUARD [116] https://github.com/teamnsrg/outguard data and code Sep 6, 2019
SEISMIC [122] https://github.com/wenhao1006/SEISMIC code Sep 10, 2019
Retro Blacklist [143] https://github.com/retrocryptomining/ data and code | Jul 16, 2020

lector is a feature of the JS programming language
to optimize memory usage, and it deletes unnecessary
data from memory and prevents memory overloading.
The memory and CPU continuously interact with each
other during the mining operation, and the CPU sends
calculated data to the memory. The garbage collector
deletes all calculated hash values one by one after
being sent to the service provider; therefore, the mining
process causes irregular usage of the garbage collector.
Due to this behavior, the garbage collector can be
used as a feature for the dynamic detection mechanism.
Iframes are the HTML tags used for embedding another
program/function to an HTML source code. Mining
scripts are inserted into those tags and work under
HTML codes. Similar to previous features, cryptojack-
ing scripts cause irregular usage in iframe resource
loads. This feature cannot be used as a primary feature
because too many modern web applications use iframe
resources irregularly, and it may cause a high false-
positive rate.

o Hardware Performance Counter (HPC) [121], [124],
[135]: HPC values [144] are used on modern comput-
ers’ CPUs and keepthe record of internal CPU events
(e.g., Cycles, Cache misses). The values of the regis-
ters with CPU clock cycles and executed instructions
provide unique information about the behaviors of a
running application. Several studies check the hardware
activities and the related applications with HPC values
to detect the cryptocurrency mining operations on the
system.

o System calls [97]: System calls are the API structures
that enable the connection between applications and the
running system’s kernel. System calls run with level
0 privileges to invoke calls and request services from
the OS’s kernel. The proposed detection system in [97]
uses the system calls for dynamic analysis, and system
calls are recorded using the Cuckoo Sandbox. Then, the
system calls are used to train deep learning models, and
they achieve 99% accuracy.

6.1.4. Classifier and Performance. The collected fea-
tures are mostly used to train different machine learning
classifiers such as Support Vector Machine (SVM) [113],
[116], [132], Random Forest [121], [132], Neural Net-
work [97], [117], Decision Tree [114]. Moreover, Neto et
al. [118] proposed the use of incremental learning, which
takes the classification probabilities of an ensemble of
classifiers as a feature for an incremental learning process.

131

Moreover, Hong et al. [119], proposed a threshold-based
detection, and the studies in [112], [122] used a static
matching method to detect certain functions in the script.
Musch et al. [120] only report the number of detected
websites in the Top 1M Alexa websites. As can be
seen from Table 1, all classifiers achieve a near-perfect
(~100%) detection results.

6.1.5. Open Source Implementations. Finally, some of
the studies [112], [116], [119], [122], [145] published
their code to help the research community.Table 3 presents
the list of open-source cryptojacking malware implemen-
tations.

6.2. Cryptojacking Prevention Studies

A majority of the detection mechanisms do not focus
on preventing or interrupting of cryptojacking malware;
however, there are still several studies [123], [130], [131]
focusing on both the detection and prevention of crypto-
jacking malware. Using dynamic features to detect ongo-
ing cryptojacking is like other dynamic analysis studies,
but their prevention methods vary. While Yulianto et al.
[130] only raises a notification, Bian et al. [123] sleep the
mining process, and Razali et al. [131] directly kill the
related process.

Detection
Method

Checking

Add URLSs of
Infected Webpages

Webpages
\. Request URL i ‘ AR
[;\I eques f NotListed , W \WW
%‘;t Blacklist N

Requested URL

Figure 4. Blacklisting method.

For cryptojacking prevention, there are also several
tools in the market. Against host-based cryptojacking
malware, proprietary antivirus programs [110], [157]° are
commonly preferred. Against in-browser cryptojacking
malware, open-source browser extensions such as No-
Coin [106] and MinerBlock [107] are widely used. These
open-source browser extensions are based on blacklisting,
where the lists are updated as new malicious domains are
discovered. Table 2 shows the list of publicly available
blacklists that we identified during our research. Browser
extensions warn the user when the user wants to access a

3. As these programs are closed-source, their methods are not publicly
available.
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TABLE 4. CRYPTOJACKING MALWARE ANALYSIS STUDIES IN THE LITERATURE.

Ref Cryptojacking Dataset Sample Type | Focus of the Study

[146] | 2000 executable binary the practice of using compromised PCs to mine Bitcoin

[147] | 33282 websites script prevalence analysis

[148] | - - how cybercriminals are exploiting cryptomining

[74] 5190 websites script campaign and domain analysis

[149] | XMR-stak, cpuminer-multi binary attack impact on consumer devices and user annoyance

[150] | 5700 websites script static, dynamics and economic analysis

[151] | CoinHive cryptominer script sample characteristics and network traffic analysis

[46] 1.2 million miners binary currencies, actors , campaign and earning analysis, underground markets
[152] | 107511 websites script profitability and the imposed overheads

[15] 3.2 TB historical scan results | script investigation of a new type of attack that exploits Internet infrastructure for cryptomining
[153] - - business model, threat sources, implications, mitigations, legality and ethics
[154] | 53 websites script sample characteristics

[155] | 2770 websites script activeness analysis

[156] | XMRig miner binary sample characteristics

[143] | 156 domains, 25892 proxies script impact on the web users

website on the blacklist. Figure 4 shows the blacklisting
process, which is repeated as a continuous loop.

Pure blacklisting-based prevention is not an efficient
way for stopping cryptojacking malware because attackers
can easily change their domain by domain fluxing or other
methods to downshift the effects of blacklists. There are
also some new methods [158] proposed by researchers for
better and more optimized blacklisting, but even dynamic
blacklisting methods are not fully effective nor protec-
tive [159] against domain fluxing methods.

6.3. Cryptojacking Analysis Studies

In addition to the cryptojacking malware detection
and prevention studies, some researchers also performed
empirical measurement studies to understand the crypto-
jacking threat landscape better. Table 4 shows cryptojack-
ing malware analysis studies in the literature. In these
studies, cryptominers are either in the format of binary
[40], [146], [149], [156] or script [74], [143], [147], [150]-
[152], [154], [155] except [148], [153] where the findings
in these studies are based on the other studies and publicly
available documents.

Researchers analyzed several different perspectives of
cryptojacking. In the first study [146], the authors ana-
lyze the binary samples identified as engaged in mining
operations to characterize their scope, operations, and
revenue. This is the first and only study analyzing Bitcoin
miners, where the samples used in other studies are mining
Monero. The increase in the cryptojacking malware attack
instances in 2017 also drew researchers’ attention. [147]
is the first study analyzing the Monero cryptojacking
samples, where the authors used over 30000 websites
utilizing coinhive.min.js library for the prevalence analysis
of cryptojacking samples. Many follow-up studies are
published. For example, the studies [151], [154], [156]
also performed an analysis of the cryptojacking samples
to identify characteristics of the samples. In addition, the
studies in [143], [149] performed the impact analysis.
Particularly, [149] analyzed the attack impact on con-
sumer devices and user annoyance, and [143] analyzed
the impact of cryptojacking malware on web users, while
[152] analyzed the overhead of cryptojacking samples. In
an interesting study, the authors in [15] investigated a
new type of attack exploiting the Internet infrastructure
for cryptomining, which indeed has an impact on 1.4M
infected routers.

Moreover, there are also studies performing the eco-
nomic analysis of cryptojacking samples such as [46],
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[150], [152]. Other than that, the authors in [46], [74] per-
formed a campaign analysis of the cryptojacking samples
and [155] analyzed the activeness of cryptojacking threat
after the discontinuation of Coinhive. Finally, while [148]
gives an overview of how cybercriminals are exploiting
cryptomining, [153] presents a review of the business
model, threat sources, implications, mitigations, legality,
and ethics of cryptojacking malware.

7. Lessons Learned and Research Directions

This section covers lessons we learned during this
research and potential research directions that can further
be explored by other researchers:

A recent trend in cryptojacking attacks.

Some security reports published in 2020 [16], [82]
noted a trend in the cryptojacking attacks, in which the at-
tackers now target the devices with more processing power
rather than the personal computers as in the in-browser
cryptojacking attacks. With this, the attackers’ goal is to
obtain more profit in a lesser time. Some examples of
these targeted devices are enterprise cloud infrastructure
[19], [160], servers [161], a large number of inadequately
protected IoT devices [18] or Docker engines [83]. In
these attacks, the attackers did not only use the Coinhive’s
script but also modified a non-malicious and open-source
Monero miner called XMRig to perform the cryptomining
in the background [162]. Unlike in-browser cryptominers,
the client does not come to the attacker; therefore, the
attacker needs to deliver the malicious mining script to
the victims. For this purpose, the attackers used the vul-
nerabilities as in the case of Mikrotik routers [23] or a
recent CVE to deliver Monero cryptominer [22], poorly
configured IoT devices [18], or poor security [83]. It is
also seen that insiders may want to take advantage of the
servers [9].

However, despite the decrease in the number of in-
browser samples from active service providers and the po-
tential trend shift in the attackers’ behavior to host-based
cryptojacking malware and techniques used to deliver the
malware, host-based cryptojacking malware literature is
not as rich as in-browser cryptojacking malware literature.
As can be seen from Table | and 4, there are only several
studies on the detection [88], [97], [128], [132]-[135] and
the analysis [46], [146], [149], [156]. Therefore, there is
a need for more effort from the security researchers to
find better solutions to detect and mitigate this continually
evolving threat.
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Monero as a target cryptocurrency. In recent attacks,
Monero has become a de-facto cryptocurrency for the
cryptojacking attacks. Another pattern we spotted is that
in almost all of the attack instances in the previous section
[71, [20], [49], [83], [84], [160], [163], the attackers use
Monero as a target cryptocurrency instead of Bitcoin
or other cryptocurrencies. Even we are not sure about
their motive, Monero is the most popular privacy coin
hiding the track of the transactions. For example, if the
attackers would use Bitcoin, even though the attack has
been detected after a long time, it would be possible to
track down the Bitcoin transactions.

The evaluation of the proposed solutions. We identified
threes issues regarding to the evaluation of the proposed
solutions in the literature:

e Dataset dates. The effectiveness of an in-browser
cryptojacking malware detection mechanism is di-
rectly related to the number of websites detected.
However, the infected websites modify or move their
script to other domains frequently to avoid being
blacklisted. Moreover, many websites discontinued
mining after the Coinhive shutdown [164]. Therefore,
the accuracy of a detection method may significantly
vary depending on when the dataset was collected.
Only five of the proposed detection mechanism [112],
[116], [119], [122], [143] in Table 1 reports the
dataset date. Therefore, we do not know most of the
studies’ dataset collection date; which makes a fair
comparison difficult.

e Online vs. offline detection. The detection mecha-
nisms proposed in the literature usually focus on
accuracy as an evaluation metric, and they mostly
claim a near-perfect accuracy in detecting cryptojack-
ing malware. However, most of the time, they do not
report how their method was implemented, that is,
whether it was offline or online. In offline detection,
the sample is detected randomly and added to the
database (e.g., signature, blacklist). In the online de-
tection, the sample is detected in a real-time manner.
As it has been shown that detection ratio may vary
for online and offline detection [165], it is critical for
the detection studies to report if the proposed method
is implemented in an online or offline environment.

o Overhead analysis. Only the authors of the two [112],
[116] proposed dynamic analysis tools consider the
usability of their detection mechanisms on the end-
user side. But, especially for machine learning-based
detection methods, using behavioral features may in-
troduce a high overhead on the end-user side. This
should be taken into consideration by researchers in
future studies.

The legitimate use of in-browser cryptocurrency min-
ing. An issue we identified during our research is that the
in-browser cryptocurrency mining was initially started to
provide an alternative revenue to the legitimate website
owners such as new publishers [166] or non-profit organi-
zations like UNICEF [167]. Later, some service providers
such as Coinimp [60], WebMinePool [68] even provided
methods for explicit user consent in their implementations.
However, with the keyword-based automatic detection and
prevention methods such as browser extensions [106],
[107] or even browsers themselves [77], [168] blocking
the websites containing cryptomining script, this use of
web-based cryptomining scripts is not possible anymore.
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A practical solution to this issue would be asking for
the user’s explicit consent instead of directly blocking a
website trying to upload a mining script. Moreover, there
is a need for more effort by researchers to work on the
usage of legitimate cryptomining with user consent and
knowledge as a funding model.

The use of traditional malware attacks on Bitcoin
and blockchain infrastructure. There are two types of
Bitcoin- and blockchain-related malware seen in the wild:
those that use the Bitcoin and blockchain infrastructure to
exploit the victim; or those that use the traditional malware
attacks such as key stealing, social engineering, or fake
application attacks to exploit Bitcoin and blockchain users.
Cryptojacking attacks use the Bitcoin and blockchain in-
frastructure to exploit the victim’s computational power;
however, Bitcoin and blockchain users are also exposed
to many traditional malware attacks. These attacks specif-
ically aim to obtain Bitcoin and blockchain users’ private
keys through social engineering methods [169]-[171],
fake wallets [172], [173], and key-stealing trojan mal-
ware [174]-[176]. Although these attacks and their coun-
termeasures [177]-[179] have been studied extensively
in the literature [180], their impact in the Bitcoin and
blockchain domain has not been investigated yet and can
lead to new research directions.

8. Conclusion

The rapid rise of cryptocurrencies incentivized the at-
tackers to the lucrative blockchain and the Bitcoin ecosys-
tem. With ready-to-use mining scripts offered easily by
service providers (e.g., Coinhive [8], and CryptoLoot [4])
and untraceable cryptocurrencies (e.g., Monero), crypto-
jacking malware has become an essential tool for hackers.
The lack of mitigation techniques in the market led to
many cryptojacking malware detection studies proposed
in the literature. In this paper, we first explained the
cryptojacking malware types and how they work in a
systematic fashion. Then, we presented the techniques
used by cryptojacking malware based on the previous
research papers, cryptojacking samples, and major attack
instances. In particular, we presented sources of cryp-
tojacking malware, infection methods, victim platform
types, target cryptocurrencies, evasion, and obfuscation
techniques used by cryptojacking malware. Moreover,
we gave a detailed review of the existing detection and
prevention studies as well as the cryptojacking analysis
studies in the literature. Finally, we presented lessons
learned, and we noted several promising new research
directions. In doing so, this SoK study will facilitate not
only a deep understanding of the emerging cryptojacking
malware and the pertinent detection and prevention mech-
anisms but also a substantial additional research work
needed to provide adequate mitigations in the community.

Acknowledgment

We would like to thank VirusTotal for sharing the
samples. We also would like to thank the anonymous
reviewers, and our shepherd Dr. Christian Rossow for
their feedback and time. This work was partially supported
by the U.S. National Science Foundation (NSF) (Awards:
NSF-CAREER CNS-1453647, NSF-1663051, NSF-CNS-
1718116, NSF-CNS-1703454), and ONR under the “In
Situ Malware” project, and CyberFlorida Capacity Build-
ing Program. The views expressed are those of the authors
only.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on June 29,2023 at 17:18:04 UTC from IEEE Xplore. Restrictions apply.



References

(1]

(2]

(3]

(4]
(3]

(6]

(7]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on June 29,2023 at 17:18:04 UTC from IEEE Xplore. Restrictions apply.

A. Marshall, “Combined crypto market capitalization races past
$800 bln,” https://cointelegraph.com/news/combined-crypto-mar
ket-capitalization-races-past-800-bln, accessed: 2020-02-28.

Kaspersky, “Kaspersky global reports,” https://www.kaspersky.
com/about/press-releases/2019_fear-of-the-unknown, accessed:
2020-10-19.

“The official webpage of both coinhive and authedmine,” http:
/Iweb.archive.org/web/20190130232758/https://coinhive.com/doc
umentation, accessed: 2020-10-19.

“Cryptoloot,” https://crypto-loot.org/, accessed: 2020-06-20.

D. Goodin, “Miners in youtube ads,” https://arstechnica.com/in
formation-technology/2018/01/now-even-youtube-serves-ads- wit
h-cpu-draining-cryptocurrency-miners/, accessed: 2020-04-13.

K. Parrish, “Uk government plugin based mining,” https://www.
digitaltrends.com/computing/government- websites-plugin-coinh
ive-monero-miner/, accessed: 2020-04-13.

C. Cimpanu, “Miner found at usa department of defense,” https:
/Iwww.zdnet.com/article/bug-hunter-finds-cryptocurrency-mini
ng-botnet-on-dod-network/, accessed: 2020-04-13.

“Coinhive snapshots that taken from webarchive,” https://web.
archive.org/web/20181101000000*/coinhive.com, accessed:
2020-05-23.

A. Milano, “Russian scientists arrested crypto mining nuclear
lab,” https://www.coindesk.com/russian-scientists-arrested-c
rypto-mining-nuclear-lab, accessed: 2021-2-23.

J. I. Wong, “An italian bank’s server was hijacked to mine
bitcoin,” https://qz.com/1024930/bitcoin-malware-an-italian-
banks-server-was-hijacked-to-mine-bitcoin-says-darktrace/,
accessed: 2020-02-17.

C. Cimpanu, “A crypto-mining botnet has been hijacking mssql
servers for almost two years,” https://www.zdnet.com/article/a-cr
ypto-mining-botnet-has-been-hijacking-mssql-servers-for-almo
st-two-years/, accessed: 2020-02-17.

D. Olenick, “Miner into third party zoom,” https://www.trendm
icro.com/en_us/research/20/d/zoomed-in-a-look-into-a-coinmine
r-bundled-with-zoom-installer.html, accessed: 2020-04-13.

E. Kent, “Miner found in popular game in steam,” https://www.
eurogamer.net/articles/2018-07-30-steam- game-abstractism- tur
ns-pcs-into-cryptocurrency-miners, accessed: 2020-04-19.

T. Smith, “Miner found at nintendo switch console,” https://bitc
oinist.com/nintendo-switch- game-pulled-over-cryptojacking-co
ncerns/, accessed: 2020-04-13.

H. L. Bijmans, T. M. Booij, and C. Doerr, “Just the tip of the ice-
berg: Internet-scale exploitation of routers for cryptojacking,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2019, pp. 449—464.

IBM-Security, “X-force threat intelligence index 2020,” https:
/Isecurityintelligence.com/series/ibm-x-force-threat-intelligence-
index-2020, accessed: 2021-02-16.

Check-Point-Research, “Checkpoint 2020 cyber security report,”
https://research.checkpoint.com/2020/the-2020-cyber-security-r
eport/, accessed: 2021-2-23.

L. Greenemeier, “Crytojacking can corrupt the iot,” https://www.
scientificamerican.com/article/how-cryptojacking-can-corrupt-t
he-internet-of-things/, accessed: 2021-2-23.

R. Hackett, “Tesla hackers hacked aws cloud services to mine
monero,” https://fortune.com/2018/02/20/tesla-hack-amazon-clo
ud-cryptocurrency-mining/, accessed: 2020-10-19.

J. M. Augusto Remillano II, “Coinminer, ddos bot attack docker
daemon ports,” https://www.trendmicro.com/vinfo/hk-en/securit
y/mews/virtualization-and-cloud/coinminer-ddos-bot-attack-dock
er-daemon-ports, accessed: 2021-2-14.

M. J. Schwartz, “Social engineering attacks for cryptojacking,”
https://www.bankinfosecurity.com/cryptocurrency-theft-hackers-
repurpose-old-tricks-a- 10685, accessed: 2021-2-23.

B. G. Mark Vicente, Johnlery Triunfante, “Cve-2019-2725 ex-
ploited, used to deliver monero miner,” https://www.trendmicro
.com/en_ca/research/19/f/cve-2019-2725-exploited-and-certif
icate-files-used-for-obfuscation-to-deliver-monero-miner.html,
accessed: 2021-2-23.

134

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

C. Cimpanu, “Mikrotik router hack affect 200k routers in the
world,” https://www.bleepingcomputer.com/news/security/massi
ve-coinhive-cryptojacking-campaign-touches-over-200-000-mi
krotik-routers/, accessed: 2021-2-23.

D. McMillen and M. Alvarez, “Mirai iot botnet: Mining for
bitcoins?” https://securityintelligence.com/mirai-iot-botnet-
mining-for-bitcoins/, accessed: 2021-2-23.

W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang,
Y. Wen, and D. I. Kim, “A survey on consensus mechanisms
and mining strategy management in blockchain networks,” IEEE
Access, vol. 7, pp. 22328-22370, 2019.

I.-C. Lin and T.-C. Liao, “A survey of blockchain security issues
and challenges.” 1J Network Security, vol. 19, no. 5, pp. 653-659,
2017.

L. S. Sankar, M. Sindhu, and M. Sethumadhavan, “Survey of
consensus protocols on blockchain applications,” in 2017 4th
International Conference on Advanced Computing and Commu-
nication Systems (ICACCS). IEEE, 2017, pp. 1-5.

W. Wang, D. T. Hoang, Z. Xiong, D. Niyato, P. Wang, P. Hu,
and Y. Wen, “A survey on consensus mechanisms and mining
management in blockchain networks,” arXiv:1805.02707, pp. 1—
33, 2018.

J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll,
and E. W. Felten, “Sok: Research perspectives and challenges
for bitcoin and cryptocurrencies,” in 2015 IEEE symposium on
security and privacy (S&P). 1EEE, 2015, pp. 104-121.

X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, “A survey on
the security of blockchain systems,” Future Generation Computer
Systems, vol. 107, pp. 841-853, 2020.

Q. Feng, D. He, S. Zeadally, M. K. Khan, and N. Kumar, “A
survey on privacy protection in blockchain system,” Journal of
Network and Computer Applications, vol. 126, pp. 45-58, 2019.

E. F. Jesus, V. R. Chicarino, C. V. de Albuquerque, and A. A.
d. A. Rocha, “A survey of how to use blockchain to secure internet
of things and the stalker attack,” Security and Communication
Networks, vol. 2018, 2018.

M. Conti, E. S. Kumar, C. Lal, and S. Ruj, “A survey on security
and privacy issues of bitcoin,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 4, pp. 3416-3452, 2018.

R. Zhang, R. Xue, and L. Liu, “Security and privacy on
blockchain,” ACM Comput. Surv., vol. 52, no. 3, Jul. 2019.
[Online]. Available: https://doi.org/10.1145/3316481

J. Al-Jaroodi and N. Mohamed, “Blockchain in industries: A
survey,” IEEE Access, vol. 7, pp. 36 500-36 515, 2019.

H.-N. Dai, Z. Zheng, and Y. Zhang, “Blockchain for internet of
things: A survey,” IEEE Internet of Things Journal, vol. 6, no. 5,
pp- 8076-8094, 2019.

A. Panarello, N. Tapas, G. Merlino, F. Longo, and A. Puliafito,
“Blockchain and iot integration: A systematic survey,” Sensors,
vol. 18, no. 8, p. 2575, 2018.

K. Jayasinghe and G. Poravi, “A survey of attack instances of
cryptojacking targeting cloud infrastructure,” in Proceedings of
the 2020 2nd Asia Pacific Information Technology Conference,
2020, pp. 100-107.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.”
2008.

A. Kurt and et al., “Lnbot: A covert hybrid botnet on bitcoin
lightning network for fun and profit,” in Computer Security —
ESORICS 2020. Cham: Springer International Publishing, 2020,
pp. 734-755.

K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-
Pinote, N. Swamy et al., “Formal verification of smart contracts:
Short paper,” in Proceedings of the 2016 ACM Workshop on
Programming Languages and Analysis for Security (PLAS), 2016,
pp. 91-96.

N. Van Saberhagen, “Cryptonote v 2.0,” https://bytecoin.org/old
/whitepaper.pdf, 2013, accessed: 2021-02-23.

“Top publications,” https://scholar.google.ca/citations?view_op=
top_venues&vq=eng_computersecuritycryptography, accessed:
2021-02-12.



[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]
[64]

[65]

[66]

[67]

[68]

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on June 29,2023 at 17:18:04 UTC from IEEE Xplore. Restrictions apply.

“Virus total payload scanning and ranking platform,” https://ww
w.virustotal.com/, accessed: 2020-02-26.

“Source code search engine,” https://publicwww.com/, accessed:
2020-10-16.

S. Pastrana and G. Suarez-Tangil, “A first look at the crypto-
mining malware ecosystem: A decade of unrestricted wealth,”
in Proceedings of the Internet Measurement Conference (IMC),
2019, pp. 73-86.

M. Santos, “utorrent update smuggles shady cryptocurrency miner
into your computer,” https://99bitcoins.com/utorrent-update-cry
ptocurrency-miner/, accessed: 2020-03-31.

C. McDonald, “Cryptojacking malware hid into emails,” https:
//www.mailguard.com.au/blog/brandjacking-malware-hiding,
accessed: 2021-02-23.

K. G. Rakesh Sharma, Akhil Reddy, “A vulnerability used to
deliver cryptojacking malware,” https://www.fireeye.com/blog/th
reat-research/2018/02/cve-2017-10271-used-to-deliver-cryptom
iners.html, accessed: 2021-02-23.

S. Lee, C. Yoon, H. Kang, Y. Kim, Y. Kim, D. Han, S. Son, and
S. Shin, “Cybercriminal minds: An investigative study of cryp-
tocurrency abuses in the dark web.” in Network and Distributed
Systems Security (NDSS) Symposium 2019, 2019.

A. Goriacheva, N. Jakubenko, O. Pogodina, and D. Silnov,
“Anonymization technologies of cryptocurrency transactions as
money laundering instrument,” KnE Social Sciences, pp. 46-53,
2018.

J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and
E. W. Felten, “Mixcoin: Anonymity for bitcoin with accountable
mixes,” in International Conference on Financial Cryptography
and Data Security (ICFCIDS). Springer, 2014, pp. 486-504.

D. Y. Huang, M. M. Aliapoulios, V. G. Li, L. Invernizzi,
E. Bursztein, K. McRoberts, J. Levin, K. Levchenko, A. C.
Snoeren, and D. McCoy, “Tracking ransomware end-to-end,” in
2018 IEEE Symposium on Security and Privacy (SP). 1EEE,
2018, pp. 618-631.

M. Paquet-Clouston, B. Haslhofer, and B. Dupont, “Ransomware
payments in the bitcoin ecosystem,” Journal of Cybersecurity,
vol. 5, no. 1, p. tyz003, 2019.

M. Conti, A. Gangwal, and S. Ruj, “On the economic significance
of ransomware campaigns: A bitcoin transactions perspective,”
Computers & Security, vol. 79, pp. 162-189, 2018.

A. Kharraz, W. Robertson, D. Balzarotti, L. Bilge, and E. Kirda,
“Cutting the gordian knot: A look under the hood of ransomware
attacks,” in International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA). Springer,
2015, pp. 3-24.

“Monero price chart,” https://coinmarketcap.com/currencies/mon
ero/, accessed: 2020-04-13.

“The official webpage of browsermine,” https://browsermine.co
m/faq, accessed: 2020-10-19.

“The official webpage of coinhave,” http://web.archive.org/web/
20180102115842/https://coin-have.com/, accessed: 2020-10-19.

“The official webpage of coinimp,” https://www.coinimp.com/do
cumentation, accessed: 2020-10-19.

“Coinnebula official webpage,” https://web.archive.org/web/2018
0818144049/https://coinnebula.com/, accessed: 2020-10-19.

“The official github page of deep miner,” https://github.com/dee
pwn/deepMiner, accessed: 2020-10-19.

“Jsecoin,” https://jsecoin.com/, accessed: 2020-10-19.

“The official webpage of monerise,” http://web.archive.org/web/
20200813110918/http://monerise.com/, accessed: 2020-10-19.

“The official webpage of nerohut,” https://web.archive.org/web/20
190131001253/https://nerohut.com/documentation.php, accessed:
2020-10-19.

“Webmine official webpage,” webmine.cz/, accessed: 2020-10-19.

“The official webpage of webminerpool,” https://github.com/not
given688/webminerpool, accessed: 2020-10-19.

“The official webpage of webmine pool,” https://www.webminep
ool.com/page/documentation, accessed: 2020-10-19.

135

[69]
[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

“Xmrrig,” https://github.com/xmrig/xmrig, accessed: 2021-2-23.

J. Grunzweig, “Large scale monero mining operation,” https://un
it42.paloaltonetworks.com/unit42-large-scale-monero-cryptocurr
ency-mining-operation-using-xmrig/, accessed: 2021-2-23.

L. Kassem, “xmrig father zeus of cryptocurrency mining mal-
ware,” https://securityintelligence.com/xmrig-father-zeus-of-cryp
tocurrency-mining-malware/, accessed: 2021-2-23.

H. Partz, “Ukrainian man faces up to 6 years in jail for crypto-
jacking on his own websites,” https://cointelegraph.com/news/u
krainian-man-faces-up-to- 6- years-in-jail-for-cryptojacking-on-
his-own-websites, accessed: 2021-2-23.

J. Riith, T. Zimmermann, K. Wolsing, and O. Hohlfeld, “Digging
into browser-based crypto mining,” in Proceedings of the Internet
Measurement Conference (IMC) 2018, 2018, pp. 70-76.

H. L. Bijmans, T. M. Booij, and C. Doerr, “Inadvertently making
cyber criminals rich: A comprehensive study of cryptojacking
campaigns at internet scale,” in 28th {USENIX} Security Sym-
posium ({USENIX} Security 19), 2019, pp. 1627-1644.

N. Christopher, “Hackers mined a fortune from indian websites,”
https://economictimes.indiatimes.com/small-biz/startups/newsbu
zz/hackers-mined-a-fortune-from-indian- websites/articleshow/65
836088.cms, accessed: 2021-2-23.

T. Claburn, “Google tag manager exploited,” https://www.thereg
ister.com/2017/11/22/cryptojackers_google_tag_manager_coin_h
ive/, accessed: 2021-02-23.

L. H. Newman, “Google bans all cryptomining extensions from
the chrome store,” https://www.wired.com/story/google-bans-
all-cryptomining-extensions- from-the-chrome-store/, accessed:
2020-10-16.

J. Pearson, “A ’fortnite’ cheat maker duped players into down-
loading a bitcoin miner,” https://www.vice.com/en/article/8x598p
/a-fortnite-cheat- maker-duped-players-into-downloading-a- bitco
in-miner-epic-games-sued, accessed: 2021-2-23.

S. Sebastidn and J. Caballero, “Brilliant but evil: Gaming com-
pany fined $1 million for secretly using players’ computers to
mine bitcoin,” https://www.forbes.com/sites/kashmirhill/2013/11
/19/brilliant-but-evil- gaming-company-turned- players-compu
ters-into-unwitting-bitcoin-mining-slaves/?sh=11{7¢958570b,
accessed: 2021-2-23.

N. Avital, “New research: Crypto-mining drives almost 90% of
all remote code execution attacks,” https://www.imperva.com/bl
og/new-research-crypto-mining-drives-almost-90-remote-code-e
xecution-attacks/, accessed: 2021-2-23.

A. Windsor, “Breaking down a two-year run of vivin’s cryptomin-
ers,” https://blog.talosintelligence.com/2020/01/vivin-cryptomin
ing-campaigns.html, accessed: 2021-2-20.

C. P. Research, “Cloud-based cryptojacking article,” https://rese
arch.checkpoint.com/2020/the-2020-cyber-security-report/,
accessed: 2020-10-19.

Unit42, “Watchdog: Exposing a cryptojacking campaign that’s
operated for two years,” https://unit42.paloaltonetworks.com/wa
tchdog-cryptojacking/, accessed: 2021-02-23.

“Detect large-scale cryptocurrency mining attack against kuber-
netes clusters,” https://azure.microsoft.com/en-us/blog/detect-1a
rgescale-cryptocurrency-mining-attack-against-kubernetes-clust
ers/, accessed: 2021-2-20.

S. R. Department, “Estimated iot device count by 2025,” https:
/Iwww.statista.com/statistics/1101442/iot-number-of-connected-
devices-worldwide/, accessed: 2021-2-23.

D. McMillen, “What is the mirai botnet?” https://www.cloudflare
.com/learning/ddos/glossary/mirai-botnet/, accessed: 2020-11-02.

E. Bertino and N. Islam, “Botnets and internet of things security,”
Computer, vol. 50, no. 2, pp. 76-79, 2017.

A. Ahmad, W. Shafiuddin, M. N. Kama, and M. M. Saudi, “A new
cryptojacking malware classifier model based on dendritic cell
algorithm,” in Proceedings of the 3rd International Conference
on Vision, Image and Signal Processing, 2019, pp. 1-5.

“Google bans crypto-mining apps from play store,” https://www.
bbc.com/news/technology-44980936, accessed: 2020-10-16.



[90]

[91]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on June 29,2023 at 17:18:04 UTC from IEEE Xplore. Restrictions apply.

C. Osborne, “Apple bans developers from submitting cryptocur-
rency mining apps for ios devices,” https://www.zdnet.com/articl
e/apple-bans-developers-from-creating-ios-cryptocurrency-minin
g-apps/, 2018, accessed: 2020-10-16.

S. Dashevskyi, Y. Zhauniarovich, O. Gadyatskaya, A. Pilgun, and
H. Ouhssain, “Dissecting android cryptocurrency miners,” in Pro-
ceedings of the Tenth ACM Conference on Data and Application
Security and Privacy (CODASPY), 2020, pp. 191-202.

H. Takahashi, S. Nakano, and U. Lakhani, “Sha256d hash rate
enhancement by 13 cache,” in 2018 IEEE 7th Global Conference
on Consumer Electronics (GCCE). IEEE, 2018, pp. 849-850.

A. Bender, J. Katz, and R. Morselli, “Ring signatures: Stronger
definitions, and constructions without random oracles,” in Theory
of Cryptography Conference. Springer, 2006, pp. 60-79.

M. Méoser, K. Soska, E. Heilman, K. Lee, H. Heffan, S. Srivastava,
K. Hogan, J. Hennessey, A. Miller, A. Narayanan et al., “An
empirical analysis of traceability in the monero blockchain,”
Proceedings on Privacy Enhancing Technologies (PETS), vol.
2018, no. 3, pp. 143-163, 2018.

P. Vasin, “Blackcoin’s proof-of-stake protocol v2,” vol. 71, 2014.

E. Duffield, H. Schinzel, and F. Gutierrez, “Transaction locking
and masternode consensus: A mechanism for mitigating double
spending attacks,” CryptoPapers. info, 2014.

H. Darabian, S. Homayounoot, A. Dehghantanha, S. Hashemi,
H. Karimipour, R. M. Parizi, and K.-K. R. Choo, “Detecting
cryptomining malware: a deep learning approach for static and
dynamic analysis,” Journal of Grid Computing, pp. 1-11, 2020.

“Bitcoin cash official community page,” https://www.bitcoincas
h.org/, accessed: 2020-04-28.

“Litecoin official webpage,” https://litecoin.org/, accessed: 2021-
2-23.

V. Buterin et al., “A next-generation smart contract and decen-
tralized application platform,” white paper, vol. 3, no. 37, 2014.

“The official webpage of uplexa coin,” https://uplexa.com/,
accessed: 2020-10-19.

“The official webpage of sumokoin,” https://www.sumokoin.org/,
accessed: 2020-10-19.

“The official webpage of electroneum coin,” https://electroneum.
com/, accessed: 2020-10-19.

H. V. Nath and B. M. Mehtre, “Static malware analysis using ma-
chine learning methods,” in International Conference on Security
in Computer Networks and Distributed Systems (SNDS 2014).
Springer, 2014, pp. 440-450.

C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic
malware analysis using cwsandbox,” IEEE Security & Privacy,
vol. 5, no. 2, pp. 32-39, 2007.

“Nocoin: Block lists to prevent javascript miners,” https://github
.com/hoshsadig/adblock-nocoin-list, accessed: 2020-04-08.

“Minerblock: An efficient browser extension to block browser-
based cryptocurrency miners all over the web.” https://github.c
om/xd4rker/MinerBlock/blob/master/assets/filters.txt, accessed:
2020-04-08.

A. Acar, L. Lu, A. S. Uluagac, and E. Kirda, “An analysis of
malware trends in enterprise networks,” in Information Security,
Z. Lin, C. Papamanthou, and M. Polychronakis, Eds. ~Cham:
Springer International Publishing, 2019, pp. 360-380.

“Cryptojacking,” https://www.malwarebytes.com/cryptojacking/,
accessed: 2020-03-29.

Avast, “Avastantimalware,” https://www.avast.com/c-protect-your
self-from-cryptojacking, accessed: 2020-04-09.

“Javascript library callig instructions from the official documents,”
https://javascript.info/modules-intro, accessed: 2020-05-25.

R. K. Konoth, E. Vineti, V. Moonsamy, M. Lindorfer, C. Kruegel,
H. Bos, and G. Vigna, “Minesweeper: An in-depth look into drive-
by cryptocurrency mining and its defense,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS), 2018, pp. 1714-1730.

J. D. P. Rodriguez and J. Posegga, “Rapid: Resource and api-based
detection against in-browser miners,” in Proceedings of the 34th
Annual Computer Security Applications Conference (ACSAC),
2018, pp. 313-326.

136

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125

[126]

[127]

[128]

[129]

[130]

[131]

[132]

J. Z. i Mufioz, J. Sudrez-Varela, and P. Barlet-Ros, “Detecting
cryptocurrency miners with netflow/ipfix network measurements,”
in 2019 IEEE International Symposium on Measurements &
Networking (M&N). 1EEE, 2019, pp. 1-6.

R. Ning, C. Wang, C. Xin, J. Li, L. Zhu, and H. Wu, “Cap-
jack: Capture in-browser crypto-jacking by deep capsule network
through behavioral analysis,” in INFOCOM 2019-1EEE Confer-
ence on Computer Communications, pp. 1873-1881.

A. Kharraz, Z. Ma, P. Murley, C. Lever, J. Mason, A. Miller,
N. Borisov, M. Antonakakis, and M. Bailey, “Outguard: Detecting
in-browser covert cryptocurrency mining in the wild,” in The
World Wide Web Conference (WWW), 2019, pp. 840-852.

“Browser-based deep behavioral detection of web cryptomining
with coinspy,” in Workshop on Measurements, Attacks, and De-
fenses for the Web (MADWeb) 2020, 2020, pp. 1-12.

H. N. C. Neto, M. A. Lopez, N. C. Fernandes, and D. M. Mattos,
“Minecap: super incremental learning for detecting and blocking
cryptocurrency mining on software-defined networking,” Annals
of Telecommunications, pp. 1-11, 2020.

G. Hong, Z. Yang, S. Yang, L. Zhang, Y. Nan, Z. Zhang, M. Yang,
Y. Zhang, Z. Qian, and H. Duan, “How you get shot in the back:
A systematical study about cryptojacking in the real world,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2018, pp. 1701-1713.

M. Musch, C. Wressnegger, M. Johns, and K. Rieck, “Thieves
in the browser: Web-based cryptojacking in the wild,” in Pro-
ceedings of the 14th International Conference on Availability,
Reliability and Security (ARES), 2019, pp. 1-10.

R. Tahir, S. Durrani, F. Ahmed, H. Saeed, F. Zaffar, and S. Ilyas,
“The browsers strike back: countering cryptojacking and parasitic
miners on the web,” in IEEE INFOCOM 2019-1EEE Conference
on Computer Communications. 1EEE, 2019, pp. 703-711.

W. Wang, B. Ferrell, X. Xu, K. W. Hamlen, and S. Hao, “Seismic:
Secure in-lined script monitors for interrupting cryptojacks,” in
European Symposium on Research in Computer Security (ES-
ORICS). Springer, 2018, pp. 122-142.

W. Bian, W. Meng, and M. Zhang, “Minethrottle: Defending
against wasm in-browser cryptojacking,” in Proceedings of The
Web Conference (WWW) 2020, 2020, pp. 3112-3118.

I. Petrov, L. Invernizzi, and E. Bursztein, “Coinpolice: De-
tecting hidden cryptojacking attacks with neural networks,”
arXiv:2006.10861, 2020.

D. Carlin, P. O’kane, S. Sezer, and J. Burgess, “Detecting crypto-
mining using dynamic analysis,” in 2018 16th Annual Conference
on Privacy, Security and Trust (PST). 1EEE, 2018, pp. 1-6.

J. Liu, Z. Zhao, X. Cui, Z. Wang, and Q. Liu, “A novel approach
for detecting browser-based silent miner,” in 2018 IEEE Third
International Conference on Data Science in Cyberspace (DSC).
1EEE, 2018, pp. 490-497.

J. Rauchberger, S. Schrittwieser, T. Dam, R. Luh, D. Buhov,
G. Potzelsberger, and H. Kim, “The other side of the coin: A
framework for detecting and analyzing web-based cryptocurrency
mining campaigns,” in Proceedings of the 13th International
Conference on Availability, Reliability and Security (ARES), 2018,
pp. 1-10.

M. Caprolu, S. Raponi, G. Oligeri, and R. Di Pietro, “Crypto
mining makes noise,” arXiv:1910.09272, 2019.

F. Naseem, A. Aris, L. Babun, E. Tekiner, and S. Uluagac,
“MINOS: A lightweight real-time cryptojacking detection sys-
tem,” in 28th Annual Network and Distributed System Security
Symposium, NDSS, February 21-25, 2021, 2021.

A. D. Yulianto, P. Sukarno, A. A. Warrdana, and M. Al Makky,
“Mitigation of cryptojacking attacks using taint analysis,” in 2019
4th International Conference on Information Technology, Infor-
mation Systems and Electrical Engineering (ICITISEE). 1EEE,
2019, pp. 234-238.

M. A. Razali and S. M. Shariff, “Cmblock: In-browser detection
and prevention cryptojacking tool using blacklist and behavior-
based detection method,” in International Visual Informatics Con-
ference (IVIC). Springer, 2019, pp. 404-414.

A. Gangwal, S. G. Piazzetta, G. Lain, and M. Conti, “Detecting
covert cryptomining using hpc,” in International Conference on
Cryptology and Network Security. Springer, 2020, pp. 344-364.



[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]
[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on June 29,2023 at 17:18:04 UTC from IEEE Xplore. Restrictions apply.

N. Lachtar, A. A. Elkhail, A. Bacha, and H. Malik, “A cross-
stack approach towards defending against cryptojacking,” IEEE
Computer Architecture Letters, vol. 19, no. 2, pp. 126—129, 2020.

D. Tanana, “Behavior-based detection of cryptojacking malware,”
in 2020 Ural Symposium on Biomedical Engineering, Radioelec-
tronics and Information Technology (USBEREIT). 1EEE, 2020,
pp. 0543-0545.

G. Mani, V. Pasumarti, B. Bhargava, F. T. Vora, J. MacDonald,
J. King, and J. Kobes, “Decrypto pro: Deep learning based
cryptomining malware detection using performance counters,” in
IEEE International Conference on Autonomic Computing and
Self-Organizing Systems (ACSOS). IEEE, 2020, pp. 109-118.

“Coinblockerlists,” https://zerodot1.gitlab.io/CoinBlockerListsW
eb/, accessed: 2020-06-17.

C. Guarnieri, A. Tanasi, J. Bremer, and M. Schloesser,
cuckoo sandbox,” 2012, https://www.cuckoosandbox.org.

M. Musch, C. Wressnegger, M. Johns, and K. Rieck, “Web-based
cryptojacking in the wild,” arXiv:1808.09474, 2018.

A. Rossberg, B. L. Titzer, A. Haas, D. L. Schuff, D. Gohman,
L. Wagner, A. Zakai, J. F. Bastien, and M. Holman, “Bringing
the web up to speed with webassembly,” Commun. ACM, vol. 61,
no. 12, p. 107-115, Nov. 2018.

“Webassembly,” https://webassembly.org//, accessed: 2021-02-23.

“The

“Coinhive blockerproject github page,” https://github.com/Marfj
eh/coinhive-block, accessed: 2021-2-23.

“Coinhive blocker project,” https://github.com/andreas0607/Coi
nHive-blocker, accessed: 2021-2-23.

R. Holz, D. Perino, M. Varvello, J. Amann, A. Continella,
N. Evans, I. Leontiadis, C. Natoli, and Q. Scheitle, “A retrospec-
tive analysis of user exposure to (illicit) cryptocurrency mining
on the web,” arXiv:2004.13239, 2020.

S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and
F. Monrose, “Sok: The challenges, pitfalls, and perils of using
hardware performance counters for security,” in 2019 IEEE Sym-
posium on Security and Privacy (SP). 1EEE, 2019, pp. 20-38.

“Retro cryptomining project github page,” https://github.com/ret
rocryptomining/data, accessed: 2021-2-23.

D. Y. Huang, H. Dharmdasani, S. Meiklejohn, V. Dave,
C. Grier, D. McCoy, S. Savage, N. Weaver, A. C. Snoeren, and
K. Levchenko, “Botcoin: Monetizing stolen cycles.” in Network
and Distributed Systems Security (NDSS) Symposium.  Citeseer,
2014.

S. Eskandari, A. Leoutsarakos, T. Mursch, and J. Clark, “A first
look at browser-based cryptojacking,” in 2018 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW).
IEEE, 2018, pp. 58-66.

K. Sigler, “Crypto-jacking: how cyber-criminals are exploiting the
crypto-currency boom,” Computer Fraud & Security, vol. 2018,
no. 9, pp. 12-14, 2018.

P. H. Meland, B. H. Johansen, and G. Sindre, “An experimen-
tal analysis of cryptojacking attacks,” in Nordic Conference on
Secure IT Systems (NordSec). Springer, 2019, pp. 155-170.

M. Saad, A. Khormali, and A. Mohaisen, “Dine and dash: Static,
dynamic, and economic analysis of in-browser cryptojacking,” in
2019 APWG Symposium on Electronic Crime Research (eCrime).
IEEE, 2019, pp. 1-12.

A. Zimba, Z. Wang, and M. Mulenga, “Cryptojacking injection:
A paradigm shift to cryptocurrency-based web-centric internet
attacks,” Journal of Organizational Computing and Electronic
Commerce, vol. 29, no. 1, pp. 40-59, 2019.

P. Papadopoulos, P. Ilia, and E. Markatos, “Truth in web mining:
Measuring the profitability and the imposed overheads of cryp-
tojacking,” in International Conference on Information Security
(ISC).  Springer, 2019, pp. 277-296.

D. Carlin, J. Burgess, P. O’Kane, and S. Sezer, “You could be
mine (d): the rise of cryptojacking,” IEEE Security & Privacy,
vol. 18, no. 2, pp. 16-22, 2019.

A. B. A. Aziz, S. B. Ngah, Y. T. Dun, and T. F. Bee, “Coinhive’s
monero drive-by crypto-jacking,” in IOP Conference Series: Ma-

terials Science and Engineering, vol. 769, no. 1. 10OP Publishing,
2020, p. 012065.

137

[155]

[156]

[157

[158]

[159]

[160]

[161

[162

[163

[164]

[165]

[166]

[167

[168]

[169]

[170]

[171

[172]

[173]

[174]

[175]

[176]

S. Varlioglu, B. Gonen, M. Ozer, and M. Bastug, “Is cryptojack-
ing dead after coinhive shutdown?” in 2020 3rd International
Conference on Information and Computer Technologies (ICICT).
IEEE, 2020, pp. 385-389.

A. Zimba, Z. Wang, M. Mulenga, and N. H. Odongo, “Crypto
mining attacks in information systems: An emerging threat to cy-
ber security,” Journal of Computer Information Systems, vol. 60,
no. 4, pp. 297-308, 2020.

Norton, “Official site — norton™ - antivirus, anti-malware soft-
ware,” https://us.norton.com/, accessed: 2020-04-09.

S. Ramanathan, J. Mirkovic, and M. Yu, “Blag: Improving the ac-
curacy of blacklists,” in Network and Distributed Systems Security
(NDSS) Symposium 2020, 2020.

S. Yadav, A. K. K. Reddy, A. N. Reddy, and S. Ranjan, “Detecting
algorithmically generated domain-flux attacks with dns traffic
analysis,” IEEE/Acm Transactions on Networking, vol. 20, no. 5,
pp. 1663-1677, 2012.

Cado-Security, “Aws cloud-based cryptojacking report,” https://
www.cadosecurity.com/post/team-tnt- the-first-crypto-mining-w
orm-to-steal-aws-credentials, accessed: 2020-02-16.

W. Foxley, “Coindesk; jacking virus infect 850000 servers,” https:
/Iwww.coindesk.com/crypto-jacking- virus-infects-850000-serve
rs-hackers-on-the-run-with-millions, accessed: 2021-2-23.

T. Spring, “Cryptominer, winstarnssmminer, has made a fortune
by brutally hijacking computers,” https://blog.360totalsecurity.co
m/en/cryptominer-winstarnssmminer-made- fortune-brutally- hija
cking-computer/, accessed: 2021-2-23.

Palo-Alto-Networks, “Hildegard: New teamtnt cryptojacking mal-
ware targeting kubernetes,” https://unit42.paloaltonetworks.com/
hildegard-malware-teamtnt/, accessed: 2021-02-26.

S. Varlioglu, B. Gonen, M. Ozer, and M. F. Bastug, “Is crypto-
jacking dead after coinhive shutdown?” arXiv:2001.02975, 2020.

AV-Comparatives, “Malware protection test march 2019,” https:
/Iwww.av-comparatives.org/tests/malware- protection-test-march-
2019/, accessed: 2020-11-05.

Salon, “Faq: What happens when i choose to “suppress ads” on
salon?” https://web.archive.org/web/20200604052723if_/https:
/Iwww.salon.com/about/faq- what-happens-when-i-choose-to-su
ppress-ads-on-salon, 2019, accessed: 2020-10-16.

S. Liao, “Unicef mining for charity,” https://www.theverge.com
/2018/4/30/17303624/unicef-mining- cryptocurrency-charity-mon
ero, accessed: 2020-04-13.

C. Davenport, “Opera mini and mobile now block cryptocurrency-
mining scripts,” https://www.androidpolice.com/2018/01/22/ope
ra-mini-mobile-now-block-cryptocurrency-mining-scripts/,
accessed: 2020-10-16.

Redactie, “Analysing a cryptocurrency phishing attack that earns
$15k in two hours,” https://www.kpn.com/zakelijk/blog/analysin
g-cryptocurrency-phishing-attack.htm, accessed: 2020-04-13.

“Phishing attack caused 1.7 billion loss,” https://cointelegraph.co
m/news/israeli-citizen-accused-of-stealing-over- 17-million-in-cr
ypto, accessed: 2020-04-13.

M. Boddy, “Phishing attack performed on xrp network,” https:
//cointelegraph.com/news/phishing- sites-use-trick-letters-in-dom
ain-names-to-steal-xrp, accessed: 2020-04-13.

Lookout, “Fake bitcoin wallet,” https://blog.lookout.com/fake-bi
tcoin-wallet, accessed: 2020-04-13.

L. Stefanko, “Fake cryptocurrency apps google play bitcoin,” ht
tps://www.welivesecurity.com/2019/05/23/fake-cryptocurrency-
apps-google-play-bitcoin/, accessed: 2020-04-13.

D. Parkin, “Cryptocurrency stealer malware,” https://www.expres
s.co.uk/finance/city/1213514/cryptocurrency-fraud-malware-cli
pper-victims-crv, accessed: 2020-04-13.

C. Cimpanu, “Chrome extension caught stealing crypto-wallet
keys,” https://www.zdnet.com/article/chrome-extension-cau
ght-stealing-crypto- wallet- private-keys/, accessed: 2020-04-13.

J. Stewart, “Cryptocurrency-stealing malware landscape,” https:
/Iwww.secureworks.com/research/cryptocurrency-stealing-malwa
re-landscape, accessed: 2020-04-13.



[177] A. Acar and et al., “A usable and robust continuous authentica-
tion framework using wearables,” IEEE Transactions on Mobile
Computing, pp. 1-1, 2020.

[178] A. Acar and et al., “A privacy-preserving multifactor authentica-

tion system,” Security and Privacy, vol. 2, no. 5, p. 88, 2019.

Z. B. Celik and et al., “Curie: Policy-based secure data
exchange,” in Proceedings of the Ninth ACM Conference on
Data and Application Security and Privacy, ser. CODASPY 19,
2019, p. 121-132. [Online]. Available: https://doi.org/10.1145/32
92006.3300042

R. Heartfield and G. Loukas, “A taxonomy of attacks and a survey
of defence mechanisms for semantic social engineering attacks,”
ACM Computing Surveys (CSUR), vol. 48, no. 3, pp. 1-39, 2015.

[179]

[180

[181] S. Sebastidn and J. Caballero, “Avclass2: Massive malware

tag extraction from av labels,” in Annual Computer Security
Applications Conference, ser. ACSAC °20, 2020, p. 42-53.
[Online]. Available: https://doi.org/10.1145/3427228.3427261

[182] “Getting started with v2,” https://developers.virustotal.com/refere

nce#file-report, accessed: 2021-2-11.

Appendix A.
Papers Distribution

Figure 5 shows the distribution of cryptojacking-
related research papers per year.

18
16 1
14+
124
104

16

Paper #
o

1

o N A O ®

2014 2018 2019 2020

Figure 5. Yearly distribution of 42 cryptojacking-related academic re-
search papers we used in this study.

Appendix B.
Samples Distribution

In this section, our goal is to give more details about
the VT and PublicWWW datasets, perform quantitative
and longitudinal analysis on our two datasets to confirm
some of our findings in the paper, present the limitations of
the datasets, and give more insights on the dataset. More
details about both VT and PublicWWW datasets can be
found on the following website: https://github.com/sokcr
yptojacking/SoK

B.1. VT Dataset

We used VT Academic API to access the VT dataset
consisting of 437279 unique samples (both cryptojacking
and non-cryptojacking) and their VT scan reports in the
format of JSON. To detect the cryptojacking samples
among all samples, we used AV labels in the scan reports
of these samples and looked for the keyword “miner”, i.e.,
if any of Antivirus (AV) label in the report include the
keyword “miner”, we included in our samples. We picked
the keyword “miner” as we considered it to be the most
generic keyword to find all of the cryptojacking samples,
and it is also used in recent work as a generic class label
for the VT samples [181]. Our scan resulted in the 20200
cryptojacking malware samples. We want to note that this
method for selecting cryptojacking samples will not detect
the samples that AVs can not label.
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B.1.1. More Insights on VT Dataset. In addition to the
AV labels that we used to detect the miners, VT scan
reports also include other information regarding the sam-
ples such as first seen date, file type, submission names,
the total number of detection by AVs of the samples.
We performed more analysis using this information and
explain our results in the rest of the section.

Time Distribution: Figure 6 shows the yearly distribution
of the samples’ first seen date in the VT academic dataset

[182].
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Figure 6. Yearly distribution of VT dataset.

When we continued more analysis on the samples, we
found the VT dataset has the following two limitations:

o There are more cryptojacking samples that can be
accessed through the VT interface with more privi-
leges. Therefore, this dataset may have bias in terms
of the representation of the real-life cryptojacking
samples. For example, as can be seen from Figure 6,
85% of all cryptojacking samples in the VT dataset
are from 2018; therefore, the samples from 2018 are
over-represented in the VT dataset.

o Samples in the VT dataset are uploaded to VT as
a batch every six months. Therefore, we concluded
that a smaller time frame analysis than the yearly
distribution might not be reliable as representing the
time distribution of real-life samples seen in the wild.

File Type Distribution: In order to detect the file type,
we used the type given by the VT scan reports [182].
Figure 7 shows the top 10 file types of the samples in the
VT dataset. According to the figure, HTML is the most
common file type in the VT dataset, while the Win32 EXE
is the second most common file type.
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Figure 7. Top-10 file types of the samples in VT dataset.

File type distribution of VT dataset samples is im-
portant as they can be used to decide if the sample is
an in-browser or host-based type of cryptojacking. Even
though some of the file types clearly indicate the type
of the cryptojackings, some may require a more in-depth
analysis of the sample. In-browser samples only contain
the mining script and in the form of text format to
embed in the website source code, while the host-based
cryptojacking malware samples are in the executable or
other formats that can be run on the host machine. For
example, we found that all HTML files are in-browser
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samples while Win32 EXE and Win32 DLL samples are
host-based cryptojacking samples. However, for the file
types such as Text, C, C++, ZIP, one needs to check the
sample itself and other useful information like submission
names to decide whether the sample is in-browser or host-
based.

Detection Ratio: VT scan reports includes the detection
results of around 60 vendors for each sample [182]. In
this part, our goal is to able to see the detection ratio of
AVs for the cryptojackings samples in our VT dataset. For
this, we plot the histogram of the detection ratio, and the
results are given in Figure 8.
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Figure 8. Histogram distribution of detection ratio of the samples in VT
dataset.

The results show that the average detection ratio of
cryptojacking samples is approximately 40%. We note that
every cryptojacking sample in our dataset is detected by
at least one AV vendor. This is because of the filtering
method we used to find the cryptojacking samples among
all samples, i.e., searching for the keyword miner” among
all AV labels. Therefore, if any AV vendors have not
detected a sample, it would not be in our dataset in the
first place. This is a limitation of the VT dataset. In order
to overcome this limitation and create a recent and more
comprehensive dataset, we created another dataset, which
we will explain in the next section.

B.2. PublicWWW Dataset

The VT dataset does not include the samples that
can bypass the AV detection methods and samples that
have never submitted to VT. In order to create a more
comprehensive and recent dataset of cryptojacking mal-
ware, we used the HTML source keyword search engine
PublicWWW [45]. We created the PublicWWW dataset
using the following steps:

1) We obtained the keyword lists from the blacklists [106],

[107], previous studies [74], [112] and manual analy-

sis of the samples from the VT dataset. Particularly,

we used a merged blacklist from NoCoin [106] and

MinerBlock [107]; 76 keywords from [74] and 38

keywords from [112]; 25 keywords from the VirusTotal

samples.

We downloaded the list of URLSs for each keyword from

PublicWWW.

We merged the lists and removed the duplicates to

obtain a unique list of URLs.

4) We used a web crawler to download the HTML source
code of each URL.

5) We verified the samples by checking the keywords in
their source code and removed the samples that do not
satisfy this condition.

This process resulted in 6269 unique URLs, their HTML

source codes, and their final keyword list with 154 unique

keywords used in these samples. From the previous two

2)

3)
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studies [74], [112] and our findings of publicly known
service providers, we identified 14 service providers in to-
tal. We manually analyzed their documentation and found
that 5328 samples are using the scripts from those 14
service providers. Then, we identified 24 unique keywords
to uniquely capture the samples. We released the service
provider and keywords lists in our dataset link.
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Figure 9. Service provider distribution of the samples in PublicWWW
dataset.

Figure 9 shows the service provider distribution of
the samples in the PublicWWW dataset. As shown in
the figure, even though it is inactive, Coinhive is still the
most common service provider among all. On the other
hand, Coinimp is the second highest service provider and
it is still active as of writing this paper. In addition, we
found that 144 samples are using scripts from the multiple
samples while we are not able to identify the associated
service provider of 941 samples, which we marked as do-
main lists with an unknown service provider. We also want
to note that the samples we have in the PublicWWW are
captured during this paper’s experiments, but it does not
mean that these domains will contain the cryptocurrency
mining script any time in the future. Therefore, one may
need to re-verify the existence of cryptocurrency mining
scripts for their analysis by checking the source code.

Appendix C.
Attack Instances Distribution
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Figure 10. Yearly distribution of 39 cryptojacking attacks instances we
used in this paper.

Figure 10 shows the distribution of the attack instances
we used in this paper per year. This distribution graph does
not show any indicative result regarding the cryptojacking
malware’s popularity over time in our paper. Only one
attack instance from 2013 may seem like an outlier;
however, that example shows one of the first instances
of cryptojacking malware idea, which is very similar
to its usage after 2018. In that attack, a cryptojacking
malware attack is instantiated by attaching the sample
inside a video game to mine Bitcoin. Finally, in addition
to 45 major attack instances, we also added 14 service
providers’ webpage and 5 blacklists’ link and shared in
our dataset link.
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